- 531.50 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第七节 正弦定理、余弦定理应用举例
1.仰角和俯角
在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角.(如图371①).
① ②
图371
2.方位角和方向角
(1)方位角:从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图371②).
(2)方向角:相对于某正方向的水平角,如南偏东30°等.
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.( )
(2)俯角是铅垂线与视线所成的角,其范围为.( )
(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )
(4)如图372,为了测量隧道口AB的长度,可测量数据a,b,γ进行计算.( )
图372
[答案] (1)× (2)× (3)√ (4)√
2.(教材改编)海面上有A,B,C三个灯塔,AB=10 n mile,从A望C和B成60°视角,从B望C和A成75°视角,则BC等于( )
A.10 n mile B. n mile
C.5 n mile D.5 n mile
D [如图,在△ABC中,
AB=10,∠A=60°,
∠B=75°,∠C=45°,
∴=,
∴BC=5.]
3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的( )
A.北偏东15° B.北偏西15°
C.北偏东10° D.北偏西10°
B [如图所示,∠ACB=90°,又AC=BC,∴∠CBA=45°,而β=30°,
∴α=90°-45°-30°=15°,∴点A在点B的北偏西15°.]
4.如图373,要测量底部不能到达的电视塔的高度,选择甲、乙两观测点.在甲、乙两点测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500 m,则电视塔的高度是( )
A.100 m B.400 m
C.200 m D.500 m
图373
D [设塔高为x m,则由已知可得BC=x m,BD=x m,由余弦定理可得BD2=BC2+CD2-2BC·CDcos ∠BCD,即3x2=x2+5002+500x,解得x=500(m).]
5.如图374,已知A,B两点分别在河的两岸,某测量者在点A所在的河岸边另选定一点C,测得AC=50 m,∠ACB=45°,∠CAB=105°,则A,B两点的距离为( )
A.50 m
B.25 m
C.25 m
D.50 m
图374
D [因为∠ACB=45°,∠CAB=105°,所以∠B=30°.由正弦定理可知=,即=,解得AB=50 m.]
测量距离问题
如图375,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46 m,则河流的宽度BC约等于________m.(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,≈1.73)
图375
60 [如图所示,过A作AD⊥CB且交CB的延长线于D.
在Rt△ADC中,由AD=46 m,∠ACB=30°得AC=92 m.
在△ABC中,∠BAC=67°-30°=37°,
∠ABC=180°-67°=113°,AC=92 m,
由正弦定理=,得
=,即=,
解得BC=≈60(m).]
[规律方法] 应用解三角形知识解决实际问题需要下列三步:
(1)根据题意,画出示意图,并标出条件;
(2)将所求问题归结到一个或几个三角形中(如本例借助方位角构建三角形),通过合理运用正、余弦定理等有关知识正确求解;
(3)检验解出的结果是否符合实际意义,得出正确答案.
[变式训练1] 江岸边有一炮台高30 m
,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 【导学号:51062125】
10 [如图,OM=AOtan 45°=30(m),
ON=AOtan 30°=×30=10(m),
在△MON中,由余弦定理得,
MN==
=10(m).]
测量高度问题
如图376,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=______m.
图376
100 [由题意,在△ABC中,∠BAC=30°,∠ABC=180°-75°=105°,故∠ACB=45°.
又AB=600 m,故由正弦定理得=,解得BC=300 m.
在Rt△BCD中,CD=BC·tan 30°=300×
=100(m).]
[规律方法] 1.在测量高度时,要准确理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角.
2.分清已知条件与所求,画出示意图;明确在哪个三角形内运用正、余弦定理,有序地解相关的三角形,并注意综合运用方程、平面几何、立体几何等知识.
[变式训练2] 如图377,从某电视塔CO的正东方向的A处,测得塔顶的仰角为60°,在电视塔的南偏西60°的B处测得塔顶的仰角为45°,AB间的距离为35米,则这个电视塔的高度为________米. 【导学号:51062126】
图377
5 [如图,
可知∠CAO=60°,∠AOB=150°,
∠OBC=45°,AB=35米.
设OC=x米,则OA=x米,OB=x米.
在△ABO中,由余弦定理,
得AB2=OA2+OB2-2OA·OB·cos ∠AOB,
即352=+x2-x2·cos 150°,
整理得x=5,
所以此电视塔的高度是5米.]
测量角度问题
在海岸A处,发现北偏东45°方向、距离A处(-1)海里的B处有一艘走私船;在A处北偏西75°方向、距离A处2海里的C处的缉私船奉命以10海里/小时的速度追截走私船.同时,走私船正以10海里/小时的速度从B
处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?最少要花多长时间?
[解] 设缉私船t小时后在D处追上走私船,则有CD=10t,BD=10t.
在△ABC中,AB=-1,AC=2,∠BAC=120°.4分
根据余弦定理,可得
BC=
=,
由正弦定理,得sin∠ABC=sin∠BAC=×=,∴∠ABC=45°,因此BC与正北方向垂直.8分
于是∠CBD=120°.在△BCD中,由正弦定理,得
sin∠BCD===,
∴∠BCD=30°,又=,
即=,得t=.∴当缉私船沿北偏东60°的方向能最快追上走私船,最少要花小时.14分
[规律方法] 解决测量角度问题的注意事项
(1)首先应明确方位角或方向角的含义.
(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.
(3)将实际问题转化为解三角形的问题后,注意正弦、余弦定理的“联袂”使用.
[变式训练3] 如图378,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,求cos θ的值.
图378
[解] 在△ABC中,AB=40,AC=20,∠BAC=120°,由余弦定理得,BC2=AB2+AC2-2AB·AC·cos 120°=2 800⇒BC=20.4分
由正弦定理,得=⇒sin∠ACB=·sin∠BAC=.8分
由∠BAC=120°,知∠ACB为锐角,则cos∠ACB=.
由θ=∠ACB+30°,得cos θ=cos(∠ACB+30°)=-sin∠ACB sin 30°=.14分
[思想与方法]
解三角形应用题的两种情形
(1)已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.
(2)已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.
[易错与防范]
1.“方位角”与“方向角”的区别:方位角大小的范围是[0,2π),方向角大小的范围一般是.
2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误.
课时分层训练(二十一)
正弦定理、余弦定理应用举例
A组 基础达标
(建议用时:30分钟)
一、选择题
1.如图379所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为( )
图379
A.a km B.a km
C.a km D.2a km
B [在△ABC中,AC=BC=a,∠ACB=120°,
∴AB2=a2+a2-2a2cos 120°=3a2,AB=a.]
2.如图3710,两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的( )
【导学号:51062127】
图3710
A.北偏东10°
B.北偏西10°
C.南偏东80°
D.南偏西80°
D [由条件及题图可知,∠A=∠B=40°,又∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此灯塔A在灯塔B南偏西80°.]
3.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是( )
A.10海里 B.10海里
C.20海里 D.20海里
A [如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根据正弦定理得=,
解得BC=10(海里).]
4.如图3711,一条河的两岸平行,河的宽度d=0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为 ( )
图3711
A.8 km/h B.6 km/h
C.2 km/h D.10 km/h
B [设AB与河岸线所成的角为θ,客船在静水中的速度为v km/
h,由题意知,sin θ==,从而cos θ=,所以由余弦定理得2=2+12-2××2×1×,解得v=6.]
5.如图3712,两座相距60 m的建筑物AB,CD的高度分别为20 m、50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为 ( )
图3712
A.30° B.45°
C.60° D.75°
B [依题意可得AD=20(m),AC=30(m),
又CD=50(m),所以在△ACD中,由余弦定理得
cos∠CAD=
===,
又0°<∠CAD<180°,所以∠CAD=45°,所以从顶端A看建筑物CD的张角为45°.]
二、填空题
6.在地上画一个∠BDA=60°,某人从角的顶点D出发,沿角的一边DA行走10米后,拐弯往另一方向行走14米正好到达∠BDA的另一边BD上的一点,我们将该点记为点B,则B与D之间的距离为________米. 【导学号:51062128】
16 [如图所示,设BD=x m,
则142=102+x2-2×10×x×cos 60°,整理得x2-10x-96=0,x=-6(舍去),x=16,∴x=16(米).]
7.如图3713,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是________米. 【导学号:51062129】
图3713
10 [在△BCD中,CD=10,∠BDC=45°,∠BCD=15°+90°=105°,∠DBC=30°,=,BC==10.在Rt△ABC中,tan 60°=,AB=BCtan 60°=10(米).]
8.如图3714所示,一艘海轮从A处出发,测得灯塔在海轮的北偏东15°方向,与海轮相距20海里的B处,海轮按北偏西60°的方向航行了30分钟后到达C处,又测得灯塔在海轮的北偏东75°的方向,则海轮的速度为________海里/分钟.
图3714
[由已知得∠ACB=45°,∠B=60°,
由正弦定理得=,
所以AC===10,
所以海轮航行的速度为=(海里/分钟).]
三、解答题
9.某航模兴趣小组的同学,为了测定在湖面上航模航行的速度,采用如下办法:在岸边设置两个观察点A,B,且AB长为80米,当航模在C处时,测得∠ABC=105°和∠BAC=30°,经过20秒后,航模直线航行到D处,测得∠BAD
=90°和∠ABD=45°.请你根据以上条件求出航模的速度.(答案可保留根号)
图3715
[解] 在△ABD中,∵∠BAD=90°,∠ABD=45°,
∴∠ADB=45°,∴AD=AB=80,∴BD=80.4分
在△ABC中,=,
∴BC===40.8分
在△DBC中,DC2=DB2+BC2-2DB·BCcos 60°
=(80)2+(40)2-2×80×40×=9 600.
∴DC=40,航模的速度v==2米/秒. 14分
10.如图3716,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.
图3716
(1)求渔船甲的速度;
(2)求sin α的值. 【导学号:51062130】
[解] (1)依题意知,∠BAC=120°,AB=12,AC=10×2=20,∠BCA=α.4分
在△ABC中,由余弦定理,得
BC2=AB2+AC2-2AB·AC·cos∠BAC
=122+202-2×12×20×cos 120°=784,解得BC=28.
所以渔船甲的速度为=14海里/小时.8分
(2)在△ABC中,因为AB=12,∠BAC=120°,BC=28,∠BCA=α,由正弦定理,得=,10分
即sin α===.14分
B组 能力提升
(建议用时:15分钟)
1.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是 ( )
A.50 m B.100 m
C.120 m D.150 m
A [设水柱高度是h m,水柱底端为C,则在△ABC中,A=60°,AC=h,AB=100,BC=h,根据余弦定理得,(h)2=h2+1002-2·h·100·cos 60°,即h2+50h-5 000=0,即(h-50)(h+100)=0,即h=50,故水柱的高度是50 m.]
2.如图3717,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100 m,则山高MN=________m.
图3717
150 [根据图示,AC=100 m.
在△MAC中,∠CMA=180°-75°-60°=45°.
由正弦定理得=⇒AM=100 m.
在△AMN中,=sin 60°,
∴MN=100×=150(m).]
3.如图3718已知在东西方向上有M,N两座小山,山顶各有一个发射塔A,B,塔顶A,B的海拔高度分别为AM=100米和BN=200米,一测量车在小山M的正南方向的点P处测得发射塔顶A的仰角为30°,该测量车向北偏西60°方向行驶了100米后到达点Q,在点Q处测得发射塔顶B处的仰角为θ,且∠BQA=θ,经测量tan θ=2,求两发射塔顶A,B之间的距离.
图3718
[解] 在Rt△AMP中,∠APM=30°,AM=100,∴PM=100,连接QM(图略),在△PQM中,∠QPM=60°,4分
又PQ=100,
∴△PQM为等边三角形,
∴QM=100.8分
在Rt△AMQ中,由AQ2=AM2+QM2,得AQ=200.
在Rt△BNQ中,tan θ=2,BN=200,
∴BQ=100,cos θ=.12分
在△BQA中,BA2=BQ2+AQ2-2BQ·AQcos θ=(100)2,
∴BA=100.
即两发射塔顶A,B之间的距离是100米.14分