- 106.50 KB
- 2022-08-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.后成论Aristotle(公元前384-322年)首先提出了胚胎是由简单到复杂逐渐发育形成的,这个理论后来称为后成论。他是在观察鸡、星鲛和一些无脊椎动物胚胎发育的基础上提出来的。2.先成论公元17世纪后期和18世纪,以精源学说和卵源学说为代表精源学说认为胚胎预先存在于精子中。卵源学说则认为卵子中本来就存在微小的胚胎雏形。它们的共同点在于都认为胚胎是成体的雏形,是配子中固有的结构,胚胎发育仅仅是原有结构的增大。Driech(1891)首先证明海胆发育过程中存在调整型发育:胚胎为保证正常的发育,可以产生胚胎细胞位置的移动和重排。嵌合型发育细胞的命运实际上是由卵裂时所获得的合子核信息早已预定的,这一类型的发育我们称为嵌合型发育。诱导是指一类组织与另一类组织的相互作用,前者称为诱导者,后者称为发应组织,诱导者可指令邻近反应组织的发育。海胆:研究受精和早期胚胎发生的模式粘菌:细胞聚集分化与模式形成水螅:再生能力与现代试验生物学萌芽线虫:恒定细胞系示例果蝇:仍然是遗传学和分子发育生物学的国王。爪蟾:脊椎动物发育研究最好的卵子和典型的胚胎斑马鱼:一个崛起者鸟类哺乳动物。1.大多数动物的发育要经历胚胎期、幼体期、变态发育期和成体期2.卵细胞内部是不对称的,即具有极性3.卵裂是一系列迅速的细胞分裂4.原肠作用为构建内部器官做准备5.器官形成和组织分化产生了自主的有机体极体释放的位点通常视为“北极”,又叫做动物极,相应的另一极“南极”叫做植物极“动物”一词指的是典型的动物器官如眼睛或中枢神经系统;“植物”指源于原肠的营养器官,它们执行食物物理等相对“低等”的生理功能动物的卵细胞通常由非细胞套所保护:如卵黄膜、透明带、绒毛膜等。卵细胞的核通常位于细胞外周靠近表面的部分,减数分裂产生卵子的过程中,极体就从这里形成。受精卵(合子)高速分裂,而不伴随体积和物质的增加,细胞的数目越来越多,而个头越来越小。发育的这一时期叫做卵裂。卵裂期结束后形成囊胚。由细胞组成的上皮壁叫做囊胚层,而内部为囊胚腔,其内充满液体或液化的卵黄。海鞘:经-经-纬-经……,8次分裂后产生的256细胞柱形胚胎在两极细胞移动封口后成为中空柱形囊胚。螺旋型全卵裂:均采经线裂。第三次分裂前,卵裂球内的纺锤体转动45度,然后向动物极方向出芽小卵裂球。其后的大卵裂球以同样方式产生一大一小子分裂球,而小分裂球只生成小卵裂球。形成的囊胚无囊胚腔。哺乳动物旋转型全卵裂:第1次为经线裂,其后的2个卵裂球各采不同的卵裂方式。早期卵裂球的卵裂不同步,可产生奇数细胞的胚胎。\n鸟类的盘状偏裂:胚盘为动物极直径约2-3mm的胞质区,前3次卵裂经线裂,发生在输卵管中,胚盘为单细胞层,仍与卵黄相接触。鱼类的盘状偏裂:斑马鱼受精卵的前5次卵裂均为经线裂,产生的32个细胞为单层分布于卵黄上。其后的分裂方向不规则。囊胚期开始于128细胞期,属盘状囊胚。五种细胞运动机制:(1)分层:一层细胞分裂形成两层或多层相互平行的细胞层(2)内移:胚胎表面细胞单个向内迁移,做阿米巴运动。(3)内陷:一个区域内的细胞同时向内凹入,很像一个皮球被用力一戳之后形成的凹陷。(4)外包:表层细胞(通常指外胚层细胞)整体而不是以单个细胞为单位向外周扩展包绕胚胎深层细胞的细胞运动。(5)极化增殖:细胞在某一极分裂,释放出的子细胞进入胚胎空穴内。胚胎诱导:在机体的发育过程中,一个区域的组织与另一个区域的组织相互作用,引起后一种组织分化方向上变化的过程称为胚胎诱导。在胚胎诱导相互作用的两种组织中产生影响。引起另外的细胞或组织分化方向变化的这部分细胞或组织称为诱导者,而接受影响并改变分化方向的细胞或组织称为反应组织。在动物胚胎发育过程中存在大量的和连续的诱导作用。其中原肠的脊索中胚层诱导其上方的外胚层形成神经系统的诱导作为被称为初级胚胎诱导。初级胚胎诱导的产物——神经管(如视杯)又可作为诱导者,诱导表面覆盖的外胚层形成晶状体,这称为次级胚胎诱导,而晶状体和(或)视杯又作为诱导者诱导表面的外胚层形成角膜,此为三级胚胎诱导。海胆:海胆具美丽透明的胚胎。卵和精子可以大量地获取,卵子很小(直径0.1mm),是透明的,包裹在一个透明、易于剥离的膜里。人工授精后,它们完全同步发育,直至孵化出幼虫,这个过程需要1~2d。发育的起点:卵裂。精子核进入卵内,受精子与卵膜接触刺激,受精膜从卵表面举起,卵子被激活,卵裂开始。海胆以同步、放射状的全裂方式分裂直至囊胚期。128-细胞期以后,细胞周期长短和细胞分裂不再同步。胚胎进入囊胚期。囊胚的细胞壁称为胚盘,其外表面形成了纤毛,在动物极出现第一个幼虫感觉器官:顶簇。在植物极,胚盘变平,加厚形成或植物板。中间腔为囊胚腔。原肠胚约含1000个细胞。原肠形成的开始以小分裂球的子代迁移至中间腔为标志。小分裂球是诱导者,移植到胚盘的另一位点后,小分裂球诱导其相邻细胞内陷。3.1初级间质细胞的内移海胆胚胎大约有64个初级间质细胞,全部来自第4次不对称卵裂所形成的4个小裂球。Gustafson和wolpert曾用定时自动摄影术跟踪囊胚腔内初级间质细胞的研究表明,这些细胞融合形成索状合胞体(syneytialcable),最终形成幼虫碳酸钙骨针的轴。迁移的可能机理:亲和力的降低使得小裂球脱离与之相连的透明层(胚盘外表)及其相邻的细胞,并在基质片层(腔内)的牵拉下进入囊胚腔。其中纤连蛋白,硫酸蛋白多糖,ECM18可能在细胞迁移中起重要作用。\n海胆原肠作用过程:原植物极中央细胞内陷进入囊胚腔,表皮细胞转变成为初级间质细胞,然后内胚层表皮细胞内陷和扩展,其前端表皮细胞转化为次级间质细胞。两种间质细胞都将长出伪足,后者起定向和驱动细胞移动的作用。海胆原肠作用的机制:内胚层的早期内陷机制:纤丝收缩使细胞变位契形,成为细胞内陷的原动力。内胚层的晚期内陷机制:伪足的收缩和细胞间的变形重排(会聚伸展)。次级间质细胞在原肠顶端形成,并维持在原肠顶端。这些次级间质细胞在内陷的最后阶段对于将原肠牵拉至囊胚腔壁起至关重要的作用。其特定靶位可能位于将来形成的区域。当原肠最顶端接触到囊胚腔壁时,次级间质细胞分散进入囊胚腔。它们在囊胚腔中分裂,最终形成中胚层器官,肌肉细胞及一些其它细胞类型。海胆幼虫称为长腕幼虫,漂浮在水中,利用其纤毛摆动将微型食物漩入口中。从幼虫转化成五聚体海胆需要一个基本的重构过程。新构建从参与胚胎发生但被储存起来的一群细胞——成虫盘开始。其过程与“完全蜕变”的昆虫类似。经典实验1:胚胎具调控能力HansPriesch在Naples的StazioneLoologica做了如下具有重大历史性意义的实验:如果提供的胚胎是在原肠形成之前沿动一植物轴切开一分为二,可产生两个大小为正常个体一半的正常幼虫。从8-细胞期开始,在垂直于动-植物极卵轴的赤道板上将胚胎一分为二:动物一半发育成囊胚样的空卵裂球,植物一半能形成原肠,但生成的幼虫无嘴或手臂短。结论:活的生物体不单纯是部机器,因为机器零件不能自动补充自己而修复或一部完整的机器。(因为所有细胞都拥有全套的遗传信息,当沿卵轴切开时,两个半球都接受了动-植物极细胞质成分。另外,实验也表明:细胞质成分负责不同的发育潜能。于是Boveri提出沿着动-植物轴存在等级潜能的想法。经典实验2:相互作用与梯度理论动物化与植物化现象:长纤毛的顶簇没有在小范围内聚集,而是遍布整个囊胚。这种动物半球结构特征被夸大的现象叫做动物化。此现象随着与动物极距离增加而减少。在完整的胚胎中,这个强大的动物化潜力必须得到来自胚胎植物部分影响的低制或弥补。小分裂球是至今最好的植物化物。双梯度模式:即沿动-植物轴的两种生理行为存在镜像梯度。这些行为被归于形态生成物质或称形态生成素,高浓度的Li+能造成植物化至外原肠胚。Li+通过阻断PI-PKC信号传导系统干扰信号交换。海胆小分裂球启动原肠作用,可诱导第二胚轴的形成。粘菌(盘基网柄菌),是一种简单的真核微生物,外形象阿米巴虫,生活在富含有机物的土壤中,吃细菌,通过二分裂方式繁殖,营养期为完全无性生殖。在非正常条件下,如食物耗尽时产生奇妙的有性生殖:大量单个阿米巴集合成一个社会群体,形成虫子蛞蝓,它迁移到一个明亮的地方变成实体,其中孢子为生殖细胞,其形成和释放都是为了执行无性繁殖的功能。聚集的机理:CAMP(引诱的化学信号)由饥饿细胞以每5~10min的同步化脉冲发射,并在水膜中放射扩散。此信号被细胞表面受体蛋白检测到。此受体与PI信号传导系统的通路偶联。相邻的阿米巴在表面受体受到信号后,以释放自身的CAMP作为应答,细胞一个连一个形成“溪流”,最后聚集于中心,细胞数量可达100000个。\n细胞分化与模式形成:化学和物理条件决定细胞分化的方式和特异性细胞类型产生的位置。(1)位置信息假说:细胞在蛞蝓中的位置决定它的命运。(2)分类假说:细胞在聚集前就已分化,并根据其未来的作用寻找位置。许多事实趋向于杂合学说,即将位置信息和分类假说合并为一体的假说。化学条件:小分子量信号物质在数量控制细胞分化和条件细胞类型中起关键作用;在蛞蝓顶端存在高浓度的CAMP和分化诱导因子(DIF),但低浓度氨(NH3)的条件时,细胞注定成为基细胞。粘菌已成为研究信号周期发射,信号中转、趋化性和细胞通过粘附分子建立接触的模式动物。粘菌在由单细胞变形体形成的蛞蝓形假原生质团并进一步分化成为柄和孢子的过程,涉及一系列特异基因的表达,是研究低等生物体细胞分化很好的材料。然而与多细胞有机体细胞分化的不同之处是:前者为适应不同的生活环境,而后者则通过细胞分化构建执行不同的组织与器官。多细胞有机体在其分化程序与调节机制方面更为复杂。水螅是腔肠动物门的一员,这个最简单的多细胞生物体有典型的动物细胞如感觉、神经和上皮肌肉细胞。水螅能通过永生的干细胞产生替代肠腔,是至今还没有发现肿瘤或别的癌畸变动物,这说明这些动物有一个非常有效的增生控制系统。水螅纲(Hydrozoa)螅形目(Hydroida),水螅属(Hydra)动物。水螅有性生殖的发生是对生活条件变化的反应。如水温、光照、pH值、水中氧和二氧化碳的含量以及食物等的变化,都对水螅的有性生殖产生影响.线虫:主要优点1.易于养殖:成虫体长1mm,易冷冻保存;2.性成熟短:2.5-3天,两种成虫;3.细胞数量少,谱系清楚;4.易于诱变;5.基因组序列已全部测出(Science,Dec.11,1998)。线虫被证明是研究真核生物发育、遗传、细胞生物学、神经生物学和基因组织结构的一个极好材料。特点是:身体透明、遗传操作容易,特别是它的每一个体或繁殖的每一代的细胞谱系的高度精确性。线虫的自然生长环境是土壤,象粘菌一样食细菌。胚胎发生持续约12h(25℃)或18h(16℃)。出生之后,线虫的发育还将继续,从形态上,还需要经过3次蜕皮,从细胞数量上,一些器官的细胞还要继续分裂,比如,肠细胞还需要多来14个才够,而表皮细胞也还需要继续分裂直到数量达到213个。在这个数量继续增长的时期,细胞最多时达到1090(雌雄同体,若是雄虫则为1179)线虫通常是两性的,有xx性染色体,外形和解剖学上看是雌性,但它不但能产卵,其管状生殖腺还能产生精子。自体受精导致近亲繁殖,反复杂交的结果,突变基因(新等位基因)在F2代就成为纯合基因。由于不分离,x染色体偶尔丢失会产生0.2%的xo雄性体。XO雄性体与两性体交配,两性体交配扮演真正的雌性。因此,在线虫,交叉受精和自体受精是可能的。在交叉受精中,新等位基因可以被引入。追踪细胞命运图谱的方法:①在胚胎中注入永久标志物和荧光染料,标记抗体或报导基因,有些细胞系有自然分化标记物。②用一束激光束可消除定义的细胞(手术除去创立者细胞)。\n细胞谱系产生的原因:每个细胞的命运不仅由早期胚胎发生时分配的细胞成分(如RNA)决定(细胞分裂不对称所致),很大程度上也取决于相邻细胞间早期精确的相互作用。如在生殖系P0至P4的细胞赋有一种特殊传代物的特征:不对称细胞分裂把细胞质P颗粒(Pgranules)只分配到生殖细胞中,而不分配到注定要成为体细胞的姐妹细胞中。在动物界里,螺旋或斜向卵裂在若干类群中发生:无腔的涡虫纲、纽形动物、环形动物和软体动物(乌贼除外)。这几个种系的动物被称为螺旋动物。通常它们的胚胎发育经过一个典型的囊胚和原肠胚,终止于担轮幼虫或类似担轮幼虫如面盘幼虫。果蝇的生命周期快,繁殖容易和可进行基因定位研究的巨大的多线染色体等特性使它最适合用于遗传分析。然而,只是在1978年E.B.Lewis引入同源基因复合物之后,果蝇才成为发育生物学最重要的模式材料。果蝇的胚胎发生只需1d;幼虫经历三个阶段,到第四天蜕皮分离,然后蛹化。在蛹中,它经过历时5d的变态。成年果蝇存活约9d果蝇卵子发生:卵原细胞→4次有丝分裂→16细胞的合胞体→其中一个为卵母细胞(occyte)(2n→1n),其余15个成为滋养细胞(多倍体)①滋养细胞:基因组的扩增使其具高转录活性,它们将供给卵母细胞大量的核糖体和RNP颗粒(mRNA+Protein),它们由滋养细胞排出并经合并运输进入卵母细胞。②滤泡细胞:邦助营养卵母细胞,介导卵黄的供给。卵母细胞只是一个消费者,它自身的细胞核并不具转录活性。母源滋养细胞,滤泡细胞和脂肪体细胞利用自身的基因和细胞资源制造所有输入卵母细胞的物质。当然这些基因产物影响卵子胚胎发育时,它们被称为母源基因影响。高速的胚胎发生:①卵裂:表面卵裂细胞核高频率复制→256个核→合胞体,核移至卵外周,定居皮层→合胞体胚盘期(6000个核)→细胞质膜沿核内陷,产生细胞→细胞胚盘期。还有一些核留在中心卵黄内,或为消黄细胞(Vitellophages)。在正常卵的后极,移入的核和极颗粒,含包括mtRNA在内的几种RNA)被细胞膜包裹并通过出芽的方式排出,它们为原始生殖细胞。在原肠形成时,极细胞迁移,穿过中肠上皮到达胚胎生殖腺②原肠形成和早期胚胎发生:原肠作用开始于腹部预置中胚层的内陷。内胚层形成:由前部和后部中肠内陷,最后融合形成中肠。中胚层和腹神经的形成:腹侧细胞带→腹沟(原沟)→带状中胚层→肌肉系统↘两侧→神经生成细胞→腹神经索脑:囊胚层局部加厚,内陷,分层为成神经细胞,参与了脑的构建。背部闭合:外胚层的背部边缘和内部器官的边缘朝背部卵黄中心生长直至彼此相遇并沿背中线融合。控制胚胎模式形成的主导基因时间表达顺序母源性基因→缝隙(缺口基因)→成对控制基因、体节极性基因同源异型基因前端组织中心:BICOID(BCD)蛋白浓度梯度bcdmRNA在滋养细胞中转录并转运至卵细胞中,定位于卵子预定胚胎的前端(其3’末端非翻译区中具有与其定位有关的序列)。受精后bcd\nmRNA迅速翻译,BCD蛋白在前端积累并向后端弥散,形成从前向后稳定的浓度梯度。BCD蛋白是一种转录调节因子,缝隙基因hunchback(hb)是其靶基因之一。hb是控制胚胎胸部及头部部分结构发育的重要基因,只有BCD蛋白浓度达到一定临界值才能启动hb基因的转录(在合胞体胚盘阶段开始翻译)。后端组织中心:NANOS蛋白和CAUDAL蛋白浓度梯度。后端系统的mRNA产物不能直接调节合子基因的表达,而是通过抑制一种转录因子的翻译来进行调节。nanosmRNA定位于后端,NANOS蛋白从卵的后部扩散,形成与BICOID蛋白梯度方向相反的浓度梯度。在HB蛋白开始合成时,分布在胚胎后部的hbmRNA的翻译被NANOS的浓度梯度所抑制(翻译水平上抑制),而在前部BCD蛋白浓度梯度,可以激活hb基因的表达。结果HB蛋白的分布区域主要只位于胚胎前半部分。Caudal(cdl)mRNA最初也是均匀分布于整个卵质内,BCD能抑制cdlmRNA的翻译。在BCD活性从前到后降低的浓度梯度作用下,形成CDL蛋白从后到前降低的浓度梯度。cdl基因突变导致腹部体节发育不正常。未端系统:TORSO信号途径T0R蛋白为一种跨膜酪氨酸激酶受体RTK在整个合胞体胚胎的表面表达。被配体结合后,经一系列信号传递,最终激活合子的靶基因的表达:如缝隙基因huckebein(hkb)和tailless(tll)在末端区的表达。果蝇背一腹轴的形成:dorsal(dl)mRNA和DL蛋白在卵子中均匀分布。当胚胎到第9次细胞核分裂之后,细胞核迁移到合胞体胚盘的外周皮质层,在胚胎腹侧DL蛋白开始往核内聚集,但在背侧DL蛋白仍位于胞质中,从而使DL蛋白在细胞核内的分布沿背一腹轴形成一种浓度梯度。分节基因与胚胎体节的形成:分节基因的功能是把早期胚胎沿前一后轴分为一系列重复的体节原基。首先由母体效应基因控制缝隙基因的活化,其次,缝隙基因之间互相调节彼此的转录且共同调节成对控制基因的表达,然后成对控制基因之间相互作用,把胚体分隔成为一系列重复的体节,并且进一步控制体节极性基因的表达。缝隙基因和成对控制基因再共同调控同源异型基因的表达。影响体节一致性的基因:同源异型基因同源异型基因最终决定身体体节将出现那一种特异类型。果蝇大部分同源异型基因都位于第3号染色体相邻的两个区域,其中一区域称为触角足复合体,另一个区域是双胸复合体(Bx-c),这两个复合体统称同源异形复合体(HOM-C)。HOM-C是由8个基因构成2个基因簇。还有一个同源异型基因caudal在HOM-C区之外。果蝇的同源异型框基因bicoid,zen,ftz虽然都位于Hom-c区内,但bicoid,zen是母体效应基因,ftz是分节基因,都不是同源异型选择基因。HOM-C基因结构十分复杂,有些基因具有多个启动子和多个转录启动位点。HOM-C基因的另一个重要特征是都含一段180bp的保守序列,称为同源异框(homeobox),含有同源异型框的基因统称为同源异型框基因。由同源异型框编码的同源异型结构域可形成与DNA特异结合的螺旋一转角-螺旋结构。由于它们含有DNA结合区,这些蛋白质反过来能作为转录因子控制其它下游基因。这是一个惊人的研究结果:在早期胚胎发育中,基因的活性的等级串联被启动,早期表达的基因启动/关闭后面待表达的下游基因。\n果蝇变态:早在第一个幼虫期,少部分细胞保持双倍体,而不象大多数幼虫的体细胞那样成为多倍体或多线染色体。这些细胞群的特定任务是在膜下构建成虫盘。果蝇是一个由扩展的成虫盘组成的镶嵌体。激素触发了变态的许多事件并使同步化。如保幼激素起生殖腺控制激素(促性腺激素)的作用,它在成虫盘上与在幼虫上的作用一样,促进成虫盘生长但阻止其早熟成为成体结构。爪蟾:在蛙(Rana)卵中,重新分配有时引起未来相对于精子进入点的背侧部分失去色素。色素减少的这个区称为灰色新月(graycrescent)。灰色新月或其空间对应部位(爪蟾中看不到灰色新月)标志着原肠作用形成开始和囊胚孔形成的区域。2卵裂和原肠形成:辐射状完全卵裂产生囊胚,原肠形成包括内陷和外包。原肠作用的最初征兆是缘区内胚层瓶状细胞在准确的时间和精确的位置内陷。接着,缘区细胞通过胚唇进行内卷形成原肠。中胚层套膜前沿的内卷细胞沿胚孔顶壁内表面迁移,而位于其后的预定脊索中胚层通过在胚胎背部集中延伸变窄变长。与此同时,预定外胚层细胞通过细胞分裂和数层细胞并合为单层细胞而向植物极下包。上述细胞运动结果是把内、中、外三个胚层细胞置于适当的位置,为它们分化成不同的器官做准备。在两栖动物上进行的最著名的胚胎学实验:1、spemann的经典移植实验:胚孔唇移植实验在spemann关于“位置信息”(spemann:developmentaccordingtolocation)的实验中,将尚未决定的、未来的腹部表皮移植到蝾螈注定成为嘴巴的区域,这块移植物按照新的位置形成嘴和牙,但只能按照该细胞的遗传偏性发育。2胚胎诱导实验:预定背唇区域下方植物极细胞移植实验早期原肠胚的背唇(含背部化诱导子)移植到另一早期原肠胚的腹部表皮区→组织内陷形成次级原肠和次级胚轴→最终形成连体胚胎。Black和Gerhart(1985)的移植实验表明:开启原肠作用的因子位于受精卵将形成背部的植物极细胞的深层细胞中,而不是位于灰色新月中。动植物极之间细胞质的相互作用可能激活植物极细胞质中的组分(即原肠作用诱导因子的产生)。3诱导因子实验诱导因子的剂量依赖作用在未卵裂的卵中,可找到诱导因子母源的mRNA,卵裂后,这些细胞转译这些mRNA并把产生的诱导因子通过扩散传播到达相邻细胞。扩散导致浓度梯度的建立。已知活化素对体外培养的动物中有剂量依赖作用:低浓度引起动物中止分化成表皮,但随着浓度增高,将产生肌肉细胞、心脏搏动特异性肌肉细胞和脊索。接受高剂量背部化信号分子的细胞群体将形成具头-背-尾区域特征的结构,包括背轴器官如脊髓和脊索。斑马鱼:胚胎发育特性:受精后40min卵裂开始,呈圆盘状部分卵裂,导致形成一个帽状囊胚,叫胚盘(blastodisc)。在斑马鱼第10次卵裂期间,细胞分裂不再同步,新的基因开始表达,且细胞获得运动性。这种现象称为中期囊胚转移MBT)。沿卵黄表面下包的表面细胞层为被层(,EVL)。卵黄合胞体层(YolksyncyticalLayer,YSL)是位于胚盘下面卵黄表面含有多个细胞核的一层细胞质层。卵黄合胞体层的扩展拉动包被层细胞向下运动。卵黄合胞体层的扩展受其中的微管系统控制。\n胚盘沿卵黄扩展,内卷或内移形成下胚层,集中和延伸把下胚层和上胚层细胞带到背部形成胚盾。在胚盾内,细胞插入、重排,使脊索中胚层向动物极延伸。胚盾在功能上相当于两栖类的背唇,如果将它移植到宿主胚胎中,能够诱导形成次级胚轴。斑马鱼中囊胚(经历了10次卵裂)的三类细胞:1.卵黄多核层(YSL):胚盘的植物极边缘细胞裂解,其核和质与卵黄细胞融合在一起而构成的一层细胞核层。在胚盘下包中,部分YSL细胞核移向胚盘下成为internalYSL,它们可能起提供营养的作用;边缘处的为externalYSL,它们可能起驱动下包的作用。2.Envelopinglayer(EVL):位于胚盘最外层已表皮化的细胞,发育后期会脱落。3.DeepCells:介于YSL和EVL之间的细胞,它们将发育为胚胎本体。晚期囊胚的深层细胞的命运已经建立。鸟类:爬行动物和鸟类已具某些使它们能完全生活在陆地并省去幼虫期的进化特征。在壳内发育中的胚胎被充满液体的囊包围,这个囊称羊膜(amnion),爬行类、鸟类和哺乳动物都称羊膜动物(amniotes)。鸟的卵裂是部分卵裂(meriblastic)。动物极区域的逐渐细胞化(卵裂)导致了胚盘的产生。胚盘的边缘是一个尚未细胞化的环形合胞体区。2上胚层与下胚层形成持续的细胞分裂,在胚盘下面,形成胚下腔或囊胚腔。腔的顶部称为上胚层,其后部边缘的细胞脱离并移居在胚下腔底部,形成下胚层。下胚层不参与胚胎的构建,它们可能在内胚层,外胚层细胞迁移时起指导作用。下胚层细胞构成的区域即生殖新月,它含有生殖细胞前体。3内胚层与中胚层形成随着下胚层细胞向前迁移,上胚层细胞向一端聚集而形成原条,通过原条两侧进入囊胚腔的细胞分成两部分,一部分细胞向更深层迁移,将下胚层中线处的细胞挤走,发育成胚胎内胚层器官以及大部分胚胎外膜,另一部分细胞在整个囊胚腔中扩散,大致在上、下胚层之间的中间位置形成松散的细胞层,它们发育成胚胎中胚层部分和胚胎外膜。在中胚层细胞继续内移的同时,原条开始回缩,在原条回缩留下的痕迹上出现了胚胎背轴和头突。最终享氏结回缩到最后端区域,将来形成肛门。鸡胚原条的形成:由后部边缘区的上胚层细胞加厚而成,它的出现确定了胚胎的A-P轴线。原条内会形成一个凹陷,叫原沟,是上胚层细胞进入囊胚腔的门户。原条的头部末端是一个加厚层,叫Hansen`snode,是一个诱导中心。细胞早期通过原条的移动:最早穿过原条进入囊胚腔的细胞向头部方向移动,最终迁移至胚胎的头部,成为前肠内胚层。这些细胞的移动将原来的下胚层细胞挤至明区前部,成为生殖新月区是原生殖细胞存在部位.其后通过Node进入囊胚腔的细胞在上胚层和内胚层之间向头部移动,形成头部中胚层和脊索中胚层。原条的后退:当Node移至明区中央时,Node和原条一起后退,在此过程中长出脊索。Node退至最后端将形成肛门区。4羊膜的形成当神经管形成时,真皮褶从周围的胚外上皮层伸出,被推至胚胎上方,褶的游离边缘结合在一起,最后胚胎被具双层壁的腔——羊膜腔完全包围。羊膜腔充满液体。因此,陆地动物的胚胎发育仍然在水中进行。羊膜腔里的液体和尿囊相似。\n哺乳类:哺乳类卵子为少黄卵,但其胚胎仍保留着为适应多黄卵而进化形成的鸟类和爬行类胚胎的原肠作用运动方式,哺乳类的内细胞团可以看作是坐落在想象的卵黄球顶部的胚盘,它按照与其祖先爬行类似的模式发育。哺乳动物胚胎是唯一的在胚胎发育期间生长的胚胎。哺乳动物类胚胎直接从母体获得营养,这一进化导致母体解剖结构发生巨大变化:如输卵管膨大形成子宫,以及专司吸收母体营养的胎儿器官:胎盘(placenta)的出现,它主要由胚胎的滋养层细胞和内细胞团形成的中胚层细胞发育而来。1卵子发生:人的卵子发生始于女婴出生前的早期胎儿时期2从排卵到着床:精子通过阴道、子宫和输卵管的长途旅行中,经过了获能(雌性分泌物的影响)后,约1%前进到达卵子。只有一个精子成功地进入卵细胞,其它精子通过释放顶体酶帮助溶解卵黄。3“胚外”器官的发育:受精卵经完全卵裂后到达囊胚泡期。囊胚泡看上去就像一个囊胚,但它不能象海胆和两栖动物的囊胚那样内卷形成原肠,相反囊胚泡的细胞壁经过分化成为滋养外胚层。着床后,滋养层细胞经历几个核内复制循环发育成多倍体的巨大细胞。部分滋养层将生成胎盘(placenta),滋养层包围着一个腔和含成胚细胞(embryoblast,双倍体)的内细胞团。4人胚胎的着床,羊膜和卵黄囊:羊膜腔是由于内细胞团的细胞分离形成的,下胚层(内胚层)细胞围绕卵黄囊腔形成卵黄囊(空的)。哺乳类胚胎上胚层含有所有形成胚胎本身的细胞。和鸡胚一样,哺乳动物的中胚层和内胚层细胞同样通过原条迁移,当它们进入原条时,上胚层细胞停止表达将细胞凝集在一起的E-细胞选择蛋白,并各自独立迁移。鸡胚中胚层由原条最后端的细胞形成,而小鼠胚胎中胚层则由原条前端的细胞形成绒毛膜:胚外中胚层(来源于卵黄囊)和滋养层上的突起相通产生血管。合胞体滋养层组织和富含血管的中胚层构成绒毛膜脐带:胚胎和滋养层相连的胚外中胚层狭窄的基柄最终形成脐带。胎盘:绒毛膜和子宫壁融合形成胎盘。胎盘既含母体成分,又含胎儿成分,胎盘不仅起物理上起支持和营养交换作用,而且参与母体和胎儿之间的内分泌和免疫调控。胎儿从卵裂到出生的9个月时间内的发育过程可分为明显的3个阶段。每一阶段大约持续12周。第一阶段:单细胞的受精卵发育成高度分化的多细胞胚胎;第二阶段:体积增大和人体特征的精细化第三阶段:胎儿迅速成长,神经系统和各器官系统基本完善。分化:从单个全能的受精卵产生各种类型细胞的发育进程中分化。已分化细胞不但具有一定形态和合成特异性产物,而且行使特定的功能。决定:细胞在分化之前,将发生一些隐蔽的变化,使细胞朝特定方向发展,这一过程称为决定。最常见的形态发生决定子:生殖细胞决定子。形态发生决定子可能是某些特异性蛋白质或mRNA等生物大分子物质,它们可以激活或抑制某些基因表达,从而决定细胞分化方向。1918年,Spemann证明;细胞发育潜能的诸多变化确实发生在原肠用过程中。在早期原肠胚的所移植的细胞表现说明:它们的最终发育命运完全取决于它们在胚胎中所处的位置。晚期原肠细胞的预期命运已经决定,它们的发育命运不再因所处位置不同而改变因此,在由早期原肠胚向晚期原肠胚过渡期内,细胞的发育潜能逐渐受到限制。晚期原肠细胞只能朝某一预定方向分化(已决定细胞)。\n进一步诱导作用建立在组织和组织相互作用基础上,即一种组织通过和另一种组织之间相互作用从而决定其发育命运。这种诱导作用称为次级诱导。细胞通讯方式:1、分泌化学信号进行通讯内分泌(endocrine):远距离调控作用(运输到血液中发挥作用)如:甾类激素、多肽类激素旁分泌(paracrine):旁激素,近距离调控(如PDGF)自分泌(autocrine):癌细胞较普遍。如转化生长因子(TGFs)化学突触(chemicalsynapse);神经递质外激素:如昆虫分泌性诱导激素2、接触性依赖的通讯:细胞间直接接触,信号分子与受体都是细胞的跨膜蛋白3、间隙连接实现代谢偶联或电偶联信号通路:1)通过细胞内受体介导的信号传递甾类激素介导的信号通路两步反应阶段:初级反应阶段:直接活化少数特殊基因转录,发生迅速;次级反应:初级反应产物再活化其它基因产生延迟的放大作用。甾类激素(Steroidhormones)以两种方式激活基因的转录:A:受体在激素进入细胞前就结合在靶基因调控区上,但只有当激素与该受体结合后才激活转录。B:激素先与胞质中其受体结合,再进入核激活转录。(2)通过细胞表面受体介导的信号跨膜传递离子通道偶联的受体介导的信号跨膜传递;G-蛋白偶联的受体介导的信号跨膜传递;与酶连接的受体细胞外基质结构组成:指分布于细胞外空间,由细胞分泌的蛋白和多糖所构成的网络结构。主要成分:胶原、氨基聚糖和蛋白聚糖、层粘连蛋白和纤粘连蛋白、弹性蛋白(elastin)旁激素又称生长分化因子,由诱导细胞产生,并通过扩散的方式到达邻近的靶细胞。旁激素可归为4个大家族(1).纤维母细胞生长因子(2).Hedgehog家族(3).Wnt家族(4).TGF-β超家族(5).NOTCH/DELTA信号传导途径近端诱导细胞分化的主要特征:1、近端诱导过程中普遍存在互为诱导和被诱导的现象.2.近端诱导的区域特异化3.近端诱导可以是群体细胞参与的行为也可以精确到单个细胞水平.4.细胞间质对近端诱导的实现发挥重要的作用远程控制细胞分化的主要特征:(1)激素在远程控制细胞分化中的多效能性(2)对激素的特异应答决定于靶细胞(3)激素对细胞的分化诱导过程存在有靶组织细胞受体表达的反馈调节机制.(4)远程控制分化过程须与近端诱导协同工作(5)远程控制分化在发育程序中具有运作上的独立性激素腺体形成之前胚胎母体就产生某些传统的激素:\n胚胎:产生几种促性腺多肽,使母体月经完全停止,为怀孕作准备。产生胰岛素,胰岛素生长因子,起生长因子的作用。母体:产生应激激素,如肾上腺激素和皮质醇等,很像性激素一样进入胚胎,调整胚胎的发育。细胞分化的远程控制是指内分泌细胞产生和释放激素,通过血液运输到达靶细胞,远距离诱导和控制细胞分化.内分泌激素的定义及特性:定义:由特定激素腺体产生、释放的,通过血液、淋巴等循环液体分布到全身的信号分子。只有具备了相应激素受体的细胞才能够对特定激素信号发生反应。特点:①激素具有多种效应:各种细胞对同一激素的反应不同;激素与不同类型细胞受体的结合是特异的。②激素可以到达许多远距离靶目标,适宜控制发育的时间进程,而不能传递位置信息。受精指的是精子和卵子各自的单倍体基因组相融合形成两倍体合子的事件。受精的第一个功能是将父母的基因传递给子代,第二个功能在卵细胞质中激发一些确保发育正常进展的系列反应。受精过程随动物物种而异,但一般都包含以下几个主要方面:卵母细胞成熟,精子获能,精卵间的接触和识别(包括向化性的距离效应),精子入卵(配子融合的遗传物质的融合),卵的激活并开始发育。整个过程实为激素调控下的联级反应。精子的结构:精子头部由顶体囊泡和精核构成。大部分精子的细胞质在精子成熟过程中被排除。顶体位于精核前端,由高尔基体演化而来。顶体中含有多种水解酶,主要作用是溶解卵子的外膜。有些动物的顶体中还有与精卵识别有关的分子。整个精核是一致密结构,几乎看不到染色质丝和核仁,精子中所有的基因都不表达。卵子的结构:成熟卵子中合成和吸收了大量的物质,包括大量的蛋白质、核糖体和tRNA、mRNA、形态发生因子以及保护性化学物质,为以的生长和发育奠定了基础。卵质外是质膜,质膜外是卵黄膜。质膜在受精时可以调控特定的离子在卵子内外的流动,且能与精子质膜融合。卵黄膜能识别同一物种的精子,对受精的物种特异性有非常重要的作用。在哺乳动物中特称为透明带,紧靠着透明带的一层滤泡细胞称为放射冠皮层是质膜下一层约5um厚的胶状胞质,比内部的胞质硬,含有高浓度的肌动蛋白分子,受精时,聚合成微丝,延伸到细胞表面形成微绒毛,帮助精子进入卵子。皮层内有皮层颗粒,含消化酶、粘多糖、黏性糖蛋白和透明蛋白,阻止多精入卵并可以为卵裂球提供支持。卵母细胞趋于成熟的形态学标志为:核膜破裂(又称生发泡破裂,GVBD),染色体凝集,纺缍体形成和第一极体排出。精子获能是指射出的精子在生殖道获能因子作用下,精子膜发生一系列变化(如吸附于精子膜表面精液蛋白的去除,膜表面蛋白的重组等),进而产生生化和运动方式的改变。获能后,精子穿越卵母细胞周围的滤泡细胞和透明带的能力提高,这是精子发生顶体反应的前奏。受精卵的代谢启动:卵子的激活:\n1.精卵细胞膜在接触处融合,通过由精子注入到卵子的一种激活因子建立了一条通道。接着,精子的细胞核、中心粒和线粒体通过这条通道直接进入卵子中。2.卵膜电性的去极化。到达晚的精子不能与改变了电压的卵子受体建立联系。3.在精子接触点上,磷脂酰肌醇(PI)信号通路被启动。4、第二信使IP3和环腺甘二磷酸一核糖(cyclicADP-ribose)或精子提供的激活因子,导致钙离子从内质网中释放到胞浆中。5.钙波引起皮质小泡也称皮质颗粒大量胞吐。皮层颗粒的爆发不仅产生游离的、膨胀的凝胶状物质而促使受精膜形成,而且也释放破坏透明带上精子结合蛋白的酶类。以上任何一种情况都能使膨胀的卵黄膜丧失精子结合能力。6、PKC(蛋白激酸C)被DAG激活后,通过刺激Na+/H+泵反向转运,使胞浆中pH升高。7.另一连串事件发生以激活PKC开始,最后导致DNA复制。海胆雌雄原核的融合海胆雄原核形成后旋转180o,其中心体位于雌、雄原核之间,装配成星体,连接并牵动雄原核与雌原核相互靠近,最后融合形成合子核。中心体发出的微管形成星光,连接并牵动雄原核与雌原核相互靠近Imprinting基因:在卵子发生或精子发生过程中被打上了不同印记的基因。雌性基因组主要形成胚体,而雄性基因组主要形成胚外膜。卵细胞受精后引起卵细胞成分的重新排比和分配称为卵细胞质重排。两栖类的灰色新月:精子入卵后,皮层向精子进入的方向旋转大约30o,在动物极皮层含大量色素而内层含有少量色素的物种中,这一胞质不同层次的相对运动形成了一个在精子进入点对面的新月形的灰色区域,称为灰色新月。受精卵经过一系列的细胞分裂将体积极大的卵子细胞质分割成许多较小的、有核的细胞,形成一个多细胞生物体的过程称为卵裂(cleavage)。处于卵裂期的细胞叫做卵裂球。卵裂期是指受精卵开始有丝分裂并产生由较小的细胞构成的囊胚(blastula)的过程。卵裂的主要特点包括:分裂周期短;分裂球的体积下降:海胆胚胎的质/核比由550降至6;早期卵裂中合子基因大多处于休眠状态;卵裂常经历由均等裂向不均等裂变化。动物细胞的卵裂平面是主要由星体而不是由纺锤体决定的,中心体行为的差异造成不同的细胞具有不同的卵裂平面。蛙囊胚腔内体液的积累与离子转运有关。随着囊胚腔内离浓度的增加,水分就通过渗透作用进入进入囊胚腔内。囊胚腔内液体的积累对囊胚腔壁造成一个向外的力压力,这种静水压是参与形成和维持囊胚为球形的一个重要作用力。卵裂的方式是一个受遗传控制的过程,主要由两个因素决定:1.卵质中卵黄的含量及其在细胞质内的分布决定卵裂发生的部位及卵裂球的相对大小。2.卵质中影响纺锤体方位角度和形成时间的一些因子紧密化的机制:8细胞胚胎的外层胞间形成致密连接,而内层胞间形成缝隙连接。注射了E-Cadherin抗体的胚胎不能够致密化。在4细胞期激活蛋白激酶C导致compaction发生。因此,Compaction可能始于蛋白激酶C的活化,它引起细胞骨架的重排,在膜上均匀分布的E-Cadherin重新定位在胞间相交处。\n哺乳动物胚泡的着床:胚泡在向子宫移动过程中体积增大,是因为定位于滋胚层细胞膜囊胚腔一侧的Na-K泵将外部Na+泵入腔中,最后通过渗透作用吸水使囊胚腔增大。胚胎外的透明带阻止了胚泡与输卵管壁的粘连。胚泡到达子宫时,胚胎细胞分泌strypsin(一种类胰蛋白酶),它使透明带穿孔,胚泡从孔中挤出与子宫壁接触,通过一系列反应而着床。果蝇胚胎发生中细胞周期调控机制的转变:①1-7次细胞分裂周期(母源性调控)排卵时,贮存于卵中的pre-MPF中T-14和Y-15被翻译出的cdc25磷酸酶去磷酸化,所以,在前7次核分裂过程中,活化的MPF保持高水平,核分裂迅速,只要完成DNA复制,核分裂即刻开始(cyclinB+cdc2)②8~13细胞分裂周期(母源性调控)cyclinB蛋白在M相开始降介,导致MPF激酶活性的周期性波动。母型mRNA合成的细胞周期蛋白为核分裂的限速步骤。由于母型StringmRNA合成的蛋白(cdc25)的降介,导致细胞分裂停滞在14周期的中期,大量的pre-MPF积累。③14~16细胞分裂周期(合子调控启动)合子型cdc25磷酸酶是在G2相末期由核转录后获得的,pre-MPF的T-14和Y-15位被合子型cdc25磷酸酶去磷酸化时,随后的第14、15、16次核分裂才能被启动。核分裂才得以从母型调控转向合子型调控。因string蛋白成为限制因素,使胚胎周期中增加了一个G2相。④17细胞分裂周期cyclinE成为DNA复制的限速因素,这时果蝇的胚胎细胞周期中增加了一个G1相。原肠作用是胚胎细胞剧烈的、高速有序的运动过程,通过细胞运动实现囊胚细胞的重新组合。原肠形成期间,囊胚细胞彼此之间的位置发生变动,重新占有新的位置,并形成由三胚层细胞构成的胚胎结构。至少有三种蛋白可能在间质细胞的迁移过程中起重要的作用,包括囊胚腔壁基质片层组分纤连蛋白、间质细胞膜上的硫酸蛋白多糖和囊胚腔细胞胞外基质中只在原肠作用期表达的ECM18。蛙类原肠作用首先是从将来胚胎的背部,即刚好位于赤道下方的灰色新月区开始的。随着瓶状细胞进入胚胎内部,背唇被后来内卷进入胚胎发育为头部中胚层前体的细胞代替。接下来,由胚孔背唇内卷进入胚胎的细胞为脊索中胚层细胞,它们将形成脊索。脊索是一个临时性中胚层脊柱(backbone),对诱导神经系统的分化起重要的作用。两栖动植物极轴的决定:两栖类原肠作用的准备工作可以追溯到精卵的结合之前。未受精卵沿动植物极存在一个极性,这种极性能够影响到将来卵裂的方式。未受精卵的极性是由沿动植物极分布的母源性mRNA和蛋白质的差异分布决定的。鸟类的原肠作用:1、下胚层和上胚层的形成鸟类胚盘中央细胞被胚下腔和卵黄分开,看起来透明,称为明区。明区边缘细胞和卵黄接触看起来不透明,称为暗区。上胚层某些细胞单个的迁移到胚下腔中,形成初级下胚层。胚盘后缘有一层细胞向前迁移和初级下胚层汇合,形成次级下胚层原条的形成鸟类的原条首先见于胚胎的后端上胚层细胞的加厚处。这种加厚是来自上胚层的中胚层细胞内移进入囊胚腔以及来自上胚层后端两侧细胞向中央迁移所致。随着加厚部分不断变窄,它不断向前运动,并收缩形成清晰的原条。原条延伸至明区长度60%至70%处,成为胚胎前后轴的标志。伴随着细胞集中形成原条,在原条中出现一凹陷,成为原沟。原沟与两栖类胚孔的作用相似,迁移的细胞通过原沟进入囊胚腔。\n在原条的前端是一个细胞加厚区叫原节或亨氏节。亨氏节的中央有一个烟囱状的凹陷,叫原窝。细胞可以通过原窝进入囊胚腔。亨氏节在功能上相当于两栖类胚孔的背唇。哺乳的原肠作用:内细胞团内最早的细胞隔离是下胚层(原始内胚层)的形成。下胚层排列在囊胚腔周围,形成卵黄囊内胚层。卵黄囊内胚层不参与新生机体的任何组织。位于下胚层之上的内细胞团称为上胚层。上胚层细胞被缝隙(cleft)隔开;缝隙最后连接起来,把胚胎上胚层和形成羊膜腔壁的上胚层(羊膜外胚层)隔开。羊膜腔一旦形成,内部便充满羊水。下胚层细胞从内细胞团中分离出来形成卵黄囊,滋养层细胞分裂形成细胞滋养层和合胞体滋养层;细胞滋养层形成绒毛,合胞体滋养层融入子宫组织。上胚层分裂形成羊膜外胚层(包绕羊膜腔)和胚胎上胚层,哺乳类胚胎由胚胎上胚层形成。在两栖类囊胚中最靠近背侧的一群植物半球细胞,对组织者具有特殊的诱导能力,称为Nieuwkoop中心(Nieuwkoopcenter)。Nieuwkoop中心是兼具动物极和植物极细胞质的特殊区域,含有背部中胚层诱导信号。原肠作用过程中新形成的中胚层是由其下方的植物极半球预定内胚层细胞对动物半球预定外胚层细胞诱导的结果。两栖类胚轴形成的机制:为维持正常的发育,在胚胎背部细胞中必须含有β-CATENIN,并使sms基因表达,SMS与TGF-β基因家族的蛋白质协同作用使gcd基因激活,在SMS和GCD等共同作用下才能形成组织者。组织者的形成涉及多种基因的激活,存在于Nieuwkoop中心的分泌蛋白激活位于其上方中胚层细胞中一系列转录因子,后者再激活编码组织者分泌产物的一些基因。后端化因子随着前端神经系统的区域性特化神经管,后端开始进行分化。后端的分化由胚胎后端产生后端化因子进行调控。成纤维细胞生长因子eFGF、WNT3a和视黄酸(Retinoicacid,RA)都是后端化因子。RA主要作用于后脑的图式形成;eFGF对于脊髓的分区最为重要;而WNT3a可以抑制前端控制基因的表达,还可以协调RA和eFGF的作用。中侧轴特化因子脊椎动物中侧轴形成的关键事件都是原肠胚左侧侧板中胚层表达的nodal-相关基因调控。爪蟾的nodal-相关基因-1(Xnr-1)的表达区域仅限于原肠胚左侧,Xnr-1激活pitx-2在胚胎左侧专一性表达。VG1蛋白可以增加胚胎左右对称的特化,异位表达VG1可导致胚胎左右逆转。神经管是中枢神经系统的原基,其形成称为neurulation。其方式分初级神经管的形成和次级神经管的形成两种。1.1初级神经管的形成:在脊索中胚层的诱导下,由外胚层细胞增殖、内陷并最终离开外胚层表面而形成中空的神经管。绝大多数脊椎动物前部神经管的形成采用此种方式。1.2次级神经管的形成:由内陷的实心神经索通过内部腔裂的方式(包括细胞调亡)形成管状结构,称为次级神经管。在鱼类中全部为次级神经管。在鸟类中前部为初级神经管,后部为次级神经管。哺乳动物的情况与鸟类类似,只是次级神经管的形成方式占的比例更小。\n神经管形成的起始:来自背部中胚层的信号诱导预置神经板边缘的细胞的背测收缩,而预置的表皮细胞向中线移动,使表皮与神经板交接处凸起形成神经褶。外胚层细胞的命运:背部中线区的细胞将形成脑和脊髓;中线区外侧的细胞将生成皮肤;上述二者相交处的细胞为神经嵴细胞(neuralcrest),它们将迁移各处形成外周神经元、色素细胞、神经胶质细胞等。人类胚胎的神经管闭合缺陷症:不同区域的神经管的封口时间不同。第二区封口失败,胚胎的前脑不发育,即致死性的无脑症;第5区不封口导致脊柱裂口症。SonicHedgehog、Pax3等因子是神经管闭合所必需的。孕妇服用叶酸和适量的胆固醇可降低胎儿神经管缺陷的风险。次级神经管的形成:神经诱导作用的机制组织中心产生的信号分子(如Chordin、Noggin、Follistatin)可拮抗腹部化信号(如BMP4),从而使其附近的外胚层细胞朝预置的神经命运发育。神经元的分化:神经元命运的确定:跨膜蛋白Delta和Notch的相互作用在神经元命运确定中起关键作用。二者互作后Notch通过一系列反应抑制NeuroD和Neurogenin的表达。Neurogenin是激活Delta表达所必需的。脊髓沿D-V轴分化的机制:腹部命运:决定于来自脊索和floorplate的信号。将脊索置于脊髓的侧面或背部,其接触的脊髓部位将形成第二个floorplate,附近分化出motorneuron,但背部标志基因pax3和pax7的表达受抑制。腹部信号分子是SonicHedgehog,其不同的浓度决定了不同的腹部命运(高浓度诱导motorneurons,而低浓度诱导C.neurons)。背部命运:决定于来自神经管形成中背部外胚层产生的BMP4和BMP7,它们能够诱导脊髓背部细胞表达BMP4和Dorsalin-1。背、腹部信号分子间的互作提供了脊髓细胞分化的位置信息。如将notochord去除后,Dorsalin的表达区就向腹部扩展。神经嵴细胞:发生部位:神经管闭合处的神经管细胞和与神经管相接的外表层细胞,它们间质细胞成为神经嵴细胞。特点:具有迁移性。分化命运:因发生的部位和迁移目的地不同而不同。可分化为感觉、交感及副交感神经系统的神经元和胶质细胞;肾上腺髓质细胞;表皮中的色素细胞;头骨软骨和结缔组织等。其它组织对神经嵴细胞迁移的影响:1、体节细胞的影响:不同A-P部位的神经嵴细胞都只能从体节的前半部迁移,即使将体节做180o旋转也如此。其原因可能是后半部表达跨膜蛋白Eph成员,而神经嵴细胞表达其配体,二者的互作产生排斥。2、神经管和脊索的影响:均抑制神经嵴细胞的迁移。如果神经嵴细胞迁移前将神经管沿D-V轴转180o,则神经嵴细胞向胚胎背部方向迁移。神经嵴细胞的迁移主要遵循两条路线:A.腹部路线(大部分细胞):形成神经节、交感神经节、肾上腺髓质、肠肌丛神经网B.背部路线:细胞迁移并分布于体节后部、生皮节和外胚层之间,优先分化为色素细胞神经嵴细胞一个最大特点是它们的多能性,随着细胞向靶位点迁移,他们的多能性逐渐被限定而接近其最终命运,而且只有当它们到达其最终目的地时,才明确决定。\n神经连接的建立:神经连接的模式化是一个渐成的自组织过程:成神经细胞在它们迁移的终点进行最后的分化,细胞一端成为一个输入区,形成接收信息的树突;另一极特化成输出信息的轴突。树突和轴突必须向其他方向生长并建立突触连接,这是一个难以想象的复杂过程。无序成分之间相互作用从而形成高度有序的结构,这种现象叫自组织,它正是神经连接模式化的基础。脑发育是依赖于神经元与神经胶质细胞,神经元与胞外基质支持组织,以及神经元之间的相互作用。遗传信息使相互作用的细胞产生信号分子,构建信号受体,从而组成一个能触发足够反应的信号传递系统。神经轴突的生长首先决定于其自身表达的基因产物。神经轴突的生长也决定于其所处的环境因素,某些因素具有吸引作用,而某些具有排斥作用。这些环境因素包括其伸展途径中的组织结构、胞外基质成分、相邻细胞的表面特性。“神经生长因子”能趋化性地引导生长锥,并作为正确连接的神经细胞的存活因子。生长锥是位于树突和轴突顶部的感受器。“神经生长因子”(NGF,Ritalevi-montaloini于1987年发现)是第一个被确认能诱导生长锥向其远程靶位置移动的信号分子,它是由靶位置分泌的糖蛋白,作用于未成熟的脊神经元和交感神经元上,它是一类引导生长锥移动的分子,从而决定神经突触的延伸方向。这种延伸方向由NGF的浓度梯度决定。多种分子信号和胶质帮助前导纤维标识路径与神经连接神经营养因子的作用由靶细胞分泌的NGF、BDNG、NT-3/4/5等是近距离趋向因子,某种因子对一种神经元起吸引作用,但可能对另一种神经元起排斥作用。即使在出生后,也有可能根据经验建立新的连接,塑造新的连接模式。长期记忆可能依靠连续的神经元分化当神经元的生长锥抵达靶位(肌细胞、其它神经元、腺体)时,将在二者间形成特化的连接,即神经突触血管形成因子包括前列腺素和碱性成纤维细胞生长因子,后者在囊胚期胚胎又称中胚层诱导因子。1.1中胚层的早期发育1.1.1体节的发育:在体节形成的初始,各部位的细胞在发育上是等潜能性的.但是,很快这一状态发生了改变,即不同部位的细胞被限定在特定的分化方向上(1)中腹部的体节细胞出现细胞增殖并失去它们上皮细胞的特征,再次变为间充质细胞,称为生骨节。生骨节细胞将发育成椎骨软骨细胞,进而分化发育形成体轴骨骼系统(包括椎骨、肋骨、韧带等)。(2)最远离神经管的体节侧部同样出现细胞形态变化和细胞间的解聚现象。这一部分细胞将分化发育为体壁和肢体肌肉的前体细胞。形成循环系统是侧板中胚层的最大功能之一。循环系统由心脏、血细胞和复杂的血管系统组成,为正在发育的脊椎动物的胚胎提供营养。循环系统是正在发育的胚胎中第一个发挥功能的系统,心脏是第一个发挥功能的器官。脊椎动物的心脏起源于脏壁中胚层的两个区域,这两个区域与邻近组织相互作用决定心脏发育。心脏形成细胞迁移到腹中线位置,并融合成一个能收缩的肌细胞构成的管状心脏;当成对的心原基还在融合时,心脏已开始搏动,心脏收缩的起博器是静脉窦。\n大血管的形成:由中胚层形成。毛细血管的形成:血岛血管的形成,毛细血管不是由心脏形成主血管越变越细伸长的结果,而是由每个器官中胚层所含的称为成血管细胞的细胞自身排列成毛细管。这些器官特异性毛细血管网最终连接到主血管延伸的小血管上。分节基因与胚胎体节的形成:分节基因的功能是把早期胚胎沿前一后轴分为一系列重复的体节原基。首先由母体效应基因控制缝隙基因的活化,其次,缝隙基因之间互相调节彼此的转录且共同调节成对控制基因的表达,然后成对控制基因之间相互作用,把胚体分隔成为一系列重复的体节,并且进一步控制体节极性基因的表达。体节极性基因和成对控制基因再共同调控同源异型基因的表达。影响体节一致性的基因:同源异型基因,同源异型基因决定身体各部的特异性,同源异型基因在染色体上的顺序排列与其在体内的不同时空表达模式相对应。复习题(2010~2011学年第二学期)1、上皮-间质诱导相互作用有几种类型,试举例说明?答:在上皮——间质贴近诱导作用有三种类型的相互作用:细胞与细胞的接触,细胞与基质的接触和可溶性信号的扩散。(2分)(1)细胞与细胞的接触:输尿管芽诱导肾小管是依赖于它们细胞的紧密接触。(1分)(2)细胞与基质的接触:在一些器官的发生中,可以看到一种类型的细胞的细胞外基质能引起另一组细胞的分化。如角膜上皮细胞的表面从富含胶原的晶状体囊接收了一些指令。细胞外基质也能为次级诱导提供位置的信息。比如细胞外基质在皮肤中决定次级诱导的位点中是非常重要的。(1分)(3)可溶性信号的扩散:一些诱导系统并不需要接触,如脊索中胚层诱导其上方的外胚层形成神经管。在诱导组织和反应组织的细胞间未见接触,而且即使其间加入滤膜,诱导作用也能发生。(1分)2、动物界如何保证受精的专一性和唯一性?答:(1)首先精子具有向化性,特别是水生动物,其卵母细胞在完成第二次减数分裂后,可以分泌具物种特异性的向化因子,构成卵周特有的内环境,这种内环境不仅可以控制精子类型,而且可以使其适时完成受精。(2)对于哺乳动物主要是精子和卵子表面存在特异性的一些表面蛋白,配体和受体之间通过长期进化在结构上可以相互识别,不同物种之间如果精、卵配体和受体结构差异很大,就不能结合,也就无法受精。(3)动物界保证受精的唯一性主要通过受精过程中卵子表面发生透明带反应、皮质反应等保证单精受精和受精卵染色体数目的恒定。3、简述卵子成熟的标志是什么?答:(1)卵母细胞成熟形态学标志为:生发泡破裂、染色体凝聚、纺锤体形成和第一极体排出。(2)在分子水平上,卵母细胞内cAMP浓度下降,Ca2+浓度上升,蛋白质合成增加,蛋白质去磷酸化或磷酸化,促成熟因子之类的活性物质出现。4、华美光杆线虫做为发育生物学的模式生物具有哪些优点?\n答:(1)可在实验室用培养皿培养。(1分)(2)生命周期短(一般为3.5d),胚胎发育速度快。(1分)(3)存在雌雄同体和雄性两类不同生物型,主要是雌雄同体生物型。(1分)(4)体细胞数量少,由于透明可见,易于追踪细胞分裂谱系。(1分)(5)能观察到生殖细胞的发生及种质颗粒的传递过程。(1分)5.何为胞质定域?列举1个在线虫胚胎发育过程中涉及的胞质定域例子。答:形态发生决定子在卵细胞质中呈一定形式分布,受精时发生运动,被分割到一定区域,并在卵裂时分配到特定的裂球中,决定裂球的命运,这一现象称为胞质定域。(2分)(1)生殖细胞的特化:在卵胞质中存在着呈区域性分布的形态发生决定子,而最常见的形态发生决定子可能算是生殖细胞决定子。生殖细胞决定子在卵裂时分配到一定的裂球中,并决定这些裂球发育成生殖细胞。副蛔虫卵子植物极胞质中所含的能决定生殖细胞形成的物质叫生殖质。(1.5分)(2)咽部原始细胞命运的决定:秀丽园杆线虫胚胎细胞命运主要由卵内胞质决定,而不是由邻近细胞间相互作用决定。在其胚胎中发现的SKN-1蛋白就很可能是一种“转录因子”样形态发生决定子。它存在于卵胞质中,处于无活性状态,随卵裂而不等进入卵裂球。其作用尚需其他因子的协同,包括Pie-1和mex-1,另外pop-1对MS裂球特化至关重要,因此,pop-1也可能是一种转录因子,可以与SKN-1相互作用,决定MS发育命运。(1.5分)6、简述透明带在动物繁殖中的作用。答:透明带在繁殖中的作用主要有3个方面:(1)在精卵结合时,进行精卵特异性识别,保证受精的专一性。(2)发生透明带反应,防止多精受精。即保证受精的唯一性。(3)在早期胚胎发育中起保护作用,同时在胚胎着床中,可防止输卵管壁的粘着,防止宫外孕。7、简述调控果蝇胚胎前后轴形成的两种系统?答:决定前后轴的2组母体效应基因包括:前端系统(anteriorsystem)决定头胸部分节的区域,后端系统(posteriorsystem)决定分节的腹部,1)前端系统BICOID(BCD)和HUNCHBACK(HB)调节胚胎前端结构的形成。前端系统至少包括4个主要基因,其中bicoid(bcd)基因对于前端结构的决定起关键的作用。BCD具有组织和决定胚胎极性与空间图式的功能。bcd是一种母体效应基因,其mRNA由滋养细胞合成,后转运至卵子并定位于预定胚胎的前极。受精后bcdmRNA迅速翻译,BCD蛋白在前端累积并向后端弥散,形成从前向后稳定的浓度梯度,主要覆盖胚胎前2/3区域。bcd基因编码的BCD蛋白是一种转录调节因子。另一母体效应基因hunchback(hb)是其靶基因之一,控制胚胎胸部及头部部分结构的发育。hb在合胞体胚盘阶段开始翻译,表达区域主要位于胚胎前部,HB蛋白从前向后也形成一种浓度梯度。hb基因的表达受BCD蛋白浓度梯度的控制,只有BCD蛋白的浓度达到一定临界值才能启动hb基因的表达。2)后端系统NOS(NOS)和CAUDAL(CDL)调节胚胎后端结构的形成。后端系统并不像BCD蛋白那样起指导性的作用,不能直接调节合子基因的表达,而是通过抑制一种转录因子的翻译来进行调节。NOS蛋白的功能是在胚胎后端区域抑制母性hbmRNA的翻译。另一个重要的母源性产物caudal(cdl)mRNA最初也是均匀分布于整个卵质内,BCD能抑制cdlmRNA的翻译。在BCD活性从前到后降低的浓度梯度作用下形成CDL蛋白从后到前降低的浓度梯度。8.试比较允许的相互作用和指令的相互作用?答:邻近组织的相互作用可分为允许的相互作用和指令的相互作用两种类型。\n(1)容许的相互作用:反应组织含有所有要表达的潜能,它只需要一个环境允许它表达这些特性。虽然它的表达需要某些刺激,但这不能改变它的后生型发育方向。如许多组织的发育需要一种固体的、含有纤连蛋白和层粘连蛋白的基质。纤连蛋白和层粘连蛋白只是刺激细胞的发育,但并不改变产生的细胞的类型。(2.5分)(2)指令的相互作用:这种相互作用改变反应组织的细胞类型。反应组织的发育潜能不稳定,其发育方向和过程取决于接收的诱导刺激的类型。如在脊索诱导神经管的底板细胞的形成中,所有的神经管细胞都能对脊索的信号起反应,但只有那些邻近脊索的细胞被诱导。这些被诱导的细胞接收信号后表达一组不同于它们在未与脊索接触时表达的基因。大多数指令的相互作用的四个主要特性是:①在组织A存在的情况下,反应组织B以一定的方式发育。②在缺少组织A的情况下,反应组织B不以那种方式发育。③在缺少组织A,但组织C存在的情况下,组织B不以那种方式发育。④在组织A存在的情况下,正常将不同发育的组织D被诱导,改变得像组织B一样发育。(2.5分)14、细胞分化是基因差异性表达的结果,试述差异性基因表达产生的原因主要来自于哪几个方面?答:(参考第二版书55页)差异性基因表达产生的原因主要来自于两方面。首先是细胞内环境的差异影响核基因的表达。在早期胚胎发育的卵裂阶段,由于卵质的不均匀分布,卵裂的结果所产生的分裂球(细胞)存在不同的细胞内环境,引起胚胎细胞核基因的差异表达。其次是细胞外环境的影响。在胚胎发育早期不同的胚胎细胞位于不同的区域,受到不同的外环境的影响,接受不同的位置信息。特别是邻近细胞的相互关系,如胚胎诱导对于胚胎细胞分化具有重要意义。各种细胞外信号分子,包括远离细胞的产物(细胞因子,激素等信号分子),通过细胞间的通讯,特别是信号传导间接影响细胞核基因的表达。15、列举3种发育生物学模式生物的特点,优势及其应用?答:1)斑马鱼基本的生物学特征①胚胎透明,发育快:--适合胚胎学研究②后代数量大(雌鱼每周能产几百枚卵):--适合遗传学分析③个体小:--易于大规模饲养,养殖成本低④50条染色体,基因组:1.7GB,测序即将完成。斑马鱼是进行心血管发育机制研究的理想模式脊椎动物2)线虫①生命周期短(一般为3~4天),胚胎发育速度快(在培养温度为25℃时,胚胎发育期为12小时),便于不问断跟踪观察每个细胞的演变。②可用培养皿进行实验室内培养,便于遗传突变筛选,并可冷冻保存,常温下复苏后继续研究。③个体小,只要把线虫浸泡到含有核酸的溶液中,就可以实现基因导入。④体细胞数量少,通体透明,便于观察单个细胞的分裂和分化过程,并可观察发育过程的细胞凋亡现象。⑤雌雄同体和雄性个体两种生物型。⑥基因组测序已在1998年完成,共包含19099个编码蛋白的基因,成为第一个基因组被完全测序的多细胞动物。细胞凋亡现象及其机制最早是在线虫中揭示的3)小鼠①小鼠是最小的哺乳动物,易于培养,维持费用低。②在遗传生理方面和人类相似,在病理学方面研究所得成果可运用于人类身上,是人类直接受益的模式生物。③繁殖不受季节影响,繁殖能力强,正是小鼠的这些研究优势,在小鼠中已完成了父系和母系的基因组印记、黑白两种皮毛的嵌合体小鼠、畸胎瘤细胞植入嵌合体小鼠、转基因小鼠、基因敲除缺陷型。鼠、小鼠胚胎干细胞分离等著名的发育生物学实验。16、哺乳动物卵裂有何主要特点?与其他卵裂的主要区别及对未来胚胎发育有何影响?\n答:哺乳动物卵裂有几个主要特征:(1)卵裂速度缓慢。(2)为旋转卵裂,卵裂球排列方式很独特。(3)早期卵裂不同步。所以通常卵裂球数为奇数。(3分)哺乳动物卵裂与其他动物的主要区别是存在紧密化现象和囊胚腔的形成,由于紧密化现象出现内细胞团和滋养层细胞的分离,在未来发育中,内细胞团形成真正的胚体,滋养层细胞发育成为绒毛膜、胎盘等胚外器官。18.神经胚期中胚层可分化为哪几个区域?答:神经胚期中胚层可分化为5个不同区域①胚胎背面脊索中胚层分化为脊索(可诱导神经管形成及前后轴建立的临时器官。)(1分)②背部体壁中胚层分化为体节,神经管两侧的中胚层细胞。(1分)③中段中胚层分化为泌尿、生殖器官。(1分)④侧板中胚层分化为心脏、血管、血细胞、体腔衬里,肌肉外四肢所有中胚层成分、胚外膜。⑤头部间质分化为面部结缔组织和肌肉。(1分)19.神经嵴可分化为哪几类细胞?答:主要分化为四类细胞:(1分)①感觉、交感和副交感神经系统的神经元和神经胶质。(1分)②肾上腺髓质细胞。(1分)③表皮色素细胞。(1分)④头骨和结缔组织成分。20.请以母体基因dorsal为例,说明母体基因如何参与昆虫胚胎背腹轴的发育。答:背–腹系统最为复杂,涉及约20个基因。其中dorsal(dl)等基因的突变会导致胚胎背部化,即产生具有背部结构而没有腹部结构的胚胎。背-腹系统对合子靶基因表达的调节方式与前端系统相似,通过一种转录因子的浓度梯度来完成。但背腹系统浓度梯度形成的方式却与前端系统完全不同。dl基因是这一信号传导途径的最后一个环节,它编码一种转录调节因子。dlmRNA和DL蛋白在卵子中是均匀分布。当胚胎发育到第9次细胞核分裂之后,细胞核迁移到达合胞体胚盘的外周皮质层,在腹侧的DL蛋白开始往核内聚集,但背侧的DL蛋白仍位于胞质中。从而,使DL蛋白在细胞核内的分布沿背腹轴形成一种浓度梯度。DL蛋白的浓度梯度通过对下游靶基因的调控,控制沿背-腹轴产生区域特异性的位置信息。这种浓度梯度在腹侧组织中可活化合子基因twist(twi)和snail(sna)的表达,同时抑制dpp和zen基因的表达,进而指导腹部结构的发育。dpp和zen基因在胚胎背侧表达,指导背部结构的发育。21.试述透明层在海胆原肠胚形成过程中作用机制?答:(1)原肠作用时,小裂球进入囊胚腔时内移,通过与透明层之间的亲和力降低,使小裂球脱离透明层。(2)植物极内陷时,透明层作用机制透明层由内外两个片层组成。由植物极板细胞伸出的微绒毛插入透明层中;植物极板细胞的细胞质中含有贮存着硫酸软骨素蛋白多糖(CSPG)的分泌小泡;CSPG由分泌小泡分泌到透明层中,CSPG吸水使透明层内层膨胀,而与内层相连的外层并不膨胀,其结果是导致透明层弯曲,相连的细胞内陷。23、简述果蝇的性别决定?答:(1)果蝇中染色体性别决定也是XX/XY系统。在果蝇中性别决定是通过平衡X染色体上的雌性决定因子和常染色体(非性染色体)上的雄性决定因子实现的。不同X染色体与常染色体比率产生的不同性别。在果蝇和昆虫中存在雌雄嵌合体,表明在昆虫中没有性激素来调节这样的事件,每个细胞自己进行性别“决定”。XO细胞显示雄性的特征,而XX细胞显示雌性的特性。在果蝇性别决定中,Y染色体一点也不起作用,它只对保证雄性的生殖能力是必须的。(3分)(2)作为性别决定中枢的性别——致死基因\n性别-致死基因(Sxl)具有雌性特异的转录,是受X染色体上的“计数器”成分刺激的,它组成X∶A比率的“X”部分。在受精后不久sis-a、sis-b、runt和da基因使Sxl只在雌性胚胎中在转录上是活跃的。“分母成分”是那些从常染色体得到计数的基因。一个主要的分母成分好像是无表情基因。具有太高的sis-b与无表情基因比率的雄性激活Sxl并死亡,而具有太低的sis-b与无表情比率的雌性不激活Sxl并死亡。性别—致死基因上基因在雄性和雌性二者中都转录。但由于RNA加工方式不同,以及Sxl蛋白质好像是结合自己的mRNA前体,并以雌性的方式拼接。雄性的sxlmRNA是没有功能的。雌性特异的Sxl信使编码354个氨基酸的一种蛋白质,而雄性特异的Sxl转录本在48个氨基酸后面含有一个翻译终止密码(UGA)。(4分)(3)性别转换基因(tra)可选择地拼接于雄性或雌性,产生雌性特异的mRNA和非特异的mRNA。tra产物与tra-2蛋白协作帮助产生雌性表现型。(2分)(4)性别决定的开关基因——双性基因,在雄性和雌性中都是有活力的,其初级转录本是以性别特异的方式加工的。雄性和雌性的转录本的前三个外显子是完全相同的。雌性特异转录本的一个外显子是雄性特异的信使中不翻译的3′末端。tra-2和雌性特异的tra-1蛋白质特异地结合于靠近dsx前-mRNA雌性特异的3′拼接位点一个DNA序列,它们给这个位点加入非特异的拼接因子。如果不产生tra,双性基因转录本以雄性特异的方式拼接。利用下游的3′拼接位点,形成雄性特异的转录本,编码一种活性蛋白质,它抑制雌性的特征,促进雄性的特性。换句话说,如果性别转换基因产生有活性的,雌性特异的蛋白质,则完成不同类型的加工。(4分)(5)性别决定级联的靶基因:包括卵黄蛋白基因、性别决定基因温度敏感的等位基因(tra-2ts)等。(2分)24、在机体的发育过程中,许多基因的表达存在时空的特异性,而这种特异性是受到发育的遗传程序所控制。试从基因表达调控的各个主要阶段(转录、翻译和翻译后的修饰等)来阐述发育过程中基因表达的时空特异性?答:在发育的过程中,许多基因只在某个特定的时间表达,其他时期是没有功能的,在组织的水平上是特异的,其表达调控主要在以下几个水平完成:1.差别基因的转录:调节这些基因转录成RNA,这是最重要的调节机制。主要有开关基因决定,这些基因的表达,决定细胞两种不同的命运分化。\n2.核RNA的选择性加工:调节核RNA进入细胞质并加工成mRNA,使同一基因在发育的不同时期或不同的组织合成不同的蛋白质。3.mRNA的选择性翻译:调节这些mRNA翻译成蛋白质,根据细胞需要蛋白质的情况,利用翻译水平的机制,保证合成精确量的蛋白质。4.差别蛋白质的加工:选择性的加工蛋白质成为功能性蛋白质,胚胎发育中,差异基因的表达调控机制很复杂,也有少量的基因表达在DNA水平。25、SRY基因存在与Y染色体中,它编码TDF,组织性腺发育成精巢,而非卵巢。请阐述?答:在胚胎中位于皮质的原始生殖细胞在睾丸因子(TDF)的影响下萎缩,而TDF的合成则依赖与SRY基因。SRY基因存在与Y染色体中,它编码TDF,组织性腺发育成精巢,而非卵巢。Sry的直接作用模型:Sry直接诱导雄性生殖嵴特异性基因的表达。Sry的间接作用模型:Sry诱导生殖嵴细胞合成某种因子→中肾细胞进入生殖嵴→诱导生殖嵴表皮细胞转变为睾丸支柱细胞、并表达雄性特异性基因。名词解释1.细胞分化:从单个全能的受精卵产生各种类型细胞的发育过程叫细胞分化。2.定型:细胞在分化之前,将发生一些隐蔽的变化,使细胞朝特定方向发展,这一过程称为定型。定型分为特化和决定两个时相。3.特化:当一个细胞或者组织放在中性环境,如培养皿中可以自主分化时,就可以说这个细胞或组织已经特化了。4.决定:当一个细胞或组织放在胚胎另一个部位可以自主分化时,就可以说这个细胞或组织已经决定了。已特化的细胞或组织的发育命运是可逆的。相比之下,已决定的细胞或组织的发育命运是不可逆的。5.胞质隔离:卵裂时,受精卵内特定的细胞质分离到特定的分裂球中,裂球中所含有的特定胞质决定它发育成哪一类细胞,细胞命运的决定与临近的细胞无关。6.胚胎诱导:胚胎发育过程中,相邻细胞或组织之间通过相互作用,决定其中一方或双方的分化方向,也就是发育命运。7.镶嵌型发育:以细胞自主特化(细胞发育方向取决于细胞内特定的细胞质)为特点的胚胎发育模式。8.调整型发育:以细胞有条件特化(细胞的发育方向取决于它与邻近细胞之间的相互作用)为特点的胚胎发育模式。9.胞质定域:形态发生决定子在卵细胞质中呈一定形式分布,受精时发生运动,被分隔到一定区域,并在卵裂时分配到特定的裂球中,决定裂球的发育命运。这一现象称为胞质定域。\n10.形态发生决定子性质:1.激活某些基因转录的物质2.mRNA11.受精:是指两性生殖细胞融合并形成具备双亲遗传潜能的新个体的过程。12.精子获能:哺乳动物的精子需要在雌性生殖道中停留一个特定的时期,以获得对卵子受精的能力,这一过程称为精子获能。13.顶体反应:顶体反应是指受精前精子在同卵子接触时,精子顶体产生的一系列变化。(顶体反应释放的水解酶溶解和精子结合的卵黄膜或透明带,并在该位置进行精卵细胞膜的融合。)14.卵裂:受精卵经过一系列的细胞分裂将体积极大的卵子细胞质分割成许多较小的、有核的细胞,形成一个多细胞生物体的过程称为卵裂。15.原肠作用:是胚胎细胞通过剧烈的、高速有序的运动,使囊胚细胞的重新组合,形成由外胚层、中胚层和内胚层三个胚层构成的胚胎结构的过程。16.神经嵴:神经嵴细胞来源于外胚层,从神经管和表皮连接处迁移出来,又被称作第四胚层。迁移身体不同部位,产生各种类型分化细胞,如感觉、神经元及胶质细胞、表皮色素细胞及头部骨骼和结缔组织等。17.胚胎诱导:在有机体的发育过程中,一个区域的组织与另一个区域的组织相互作用,引起后一种组织分化方向上的变化的过程称为胚胎诱导。18.诱导者:产生影响并引起另一种细胞或组织分化方向变化的这部分细胞或组织称为诱导者。19.反应组织:接受影响并改变分化方向的细胞或组织称反应组织。20.组织者:能够诱导外胚层形成神经系统,并能和其他组织形成次级胚胎的胚孔背唇称为组织者。21.初级胚胎诱导:原肠胚的脊索中胚层诱导其上方的外胚层形成神经系统这个关键的诱导作用,传统地被称为初级胚胎诱导。22.次级诱导:一种组织与另一种组织相互作用,特异指定它的命运称为次级诱导;23.三级诱导:次级诱导的产物作为诱导者,指定与之发挥作用组织的命运叫三级诱导。如眼发育过程中:视泡由原肠顶前端诱导前脑向两侧突出而成。视泡诱导其上面的外胚层形成晶状体,晶状体和视泡又诱导其上面的外胚层形成角膜。24.胚胎细胞形成不同组织、器官,构成有序空间结构的过程称为图式形成。\n25.在两栖类囊胚中最靠近背侧的一群植物半球细胞,对组织者具有特殊的诱导能力,称为Nieuwkoop中心。26.顶外胚层嵴(AER):在鸟类和哺乳类中胚层诱导肢芽顶端前、后边缘的外胚层细胞伸长,形成一个增厚的特殊结构,称为顶外胚层嵴。27.干细胞:一类具有自我更新和产生分化后代这两种基本特性的细胞。28.胚胎干细胞(ES):从早期囊胚细胞分离并在体外培养和建系的细胞。29.胚胎生殖细胞:从胚胎生殖嵴原始生殖细胞分离建系的细胞。30.成体干细胞:先在成年组织和器官,以后在胎儿组织被证明其存在,随后个别也在体外培养和建系成功的干细胞。31.两栖类原肠作用总结:1.边缘区瓶状细胞在准确的时间和位置内陷。2.边缘区细胞通过胚唇进行内卷形成原肠。3.内卷的中胚层细胞沿胚孔顶壁内表面迁移。4.预定脊索中胚层在胚胎背部集中延伸5.预定外胚层细胞通过细胞分裂和数层细胞合并为单层细胞而向植物极下包。一、主要模式动物及其优缺点1.果蝇:体积小,易于繁殖;产卵力强;性成熟短;易于遗传操作,如诱变;基因组序列已全部测出。2.线虫:以于养殖;性成熟短;细胞数量少,谱系清楚;易于诱变;基因组序列已全部测出。3.非洲爪蟾:性成熟短;乱踢打,易于操作;抗感染力强,易于组织移植。4.斑马鱼:体积小,易于饲养;产卵力强;性成熟短;易于遗传操作,如诱变;体外受精和发育,易于观察;基因组序列已全部测出。5.小鼠:哺乳动物模型;成熟的遗传操作技术;基因组序列已全部测出。6.鸡:繁殖力强;易于手术操作和观察。缺点:转基因困难。7.拟南芥:繁殖周期短;易于突变筛选;基因组序列已测出。二、传统的发育生物学研究技术1.染料细胞标记2.荧光细胞标记3.细胞移植三、信号转导1.RTK→GNRP→RAS→RAF→MEK→ERK→Transcriptionfactor→Transcription2.配体→R→JAK→STAT3.TGFβ配体→R2→R1→Smad4.Hedgehog→ptc→Smo→Ci5.Wnt→frizzled→dsh→GSK3→β-catenin6.Notch\n四、阻碍多精入卵机制卵子细胞膜去极化引起的快速的阻碍作用;卵子皮层颗粒的胞吐作用产生的一种较慢的阻碍作用;卵子细胞质降解额外精子的核酸或排出包含有额外精子核酸的细胞质。精子与卵子相互作用的五个步骤:1.精子的趋化性2.精子的顶体反应,释放水解酶。3.精子与卵子外围的卵黄膜(透明带)结合4.精子穿过卵外的结构5.精卵细胞质膜的融合五、卵裂方式及其特征和代表动物完全卵裂:1.辐射式卵裂(海鞘、海胆、蛙)基本特征:1)每个卵裂球的有丝分裂器与卵轴垂直或平行。2)卵裂沟将卵裂球分成对称的两半。2.螺旋式卵裂(蜗牛)螺旋式的特征:1)卵裂的方向与卵轴成斜角,2)细胞之间采用热力学上最稳定的方式堆叠,细胞间接触的面积更大,3)只经过较少次数的卵裂就开始了原肠形成。3.两侧对称式卵裂(水螅)主要特征是:第一次卵裂平面是胚胎的唯一对称面,它将胚胎划分为左右成镜像对称的两部分。第二次卵裂也是经裂,但不通过卵子的中心。第三次卵裂是纬裂,生成一层动物极卵裂球和一层植物极卵裂球。第四次卵裂是不规则的,第五次卵裂形成一个小的囊胚。4.旋转式卵裂(哺乳动物)其特征包括:1)卵裂速度缓慢;2)第1次为经裂,其后的2个卵裂球各采用不同的卵裂方式,一个是经裂,一个是纬裂;这种卵裂的方式称为交替旋转对称式卵裂。3)早期卵裂不同步,并非所有裂球同时卵裂,导致奇数细胞。4)哺乳动物在早期卵裂过程中,合子基因组就已开始活动,合成卵裂所必需的蛋白质。不完全卵裂:1.盘状卵裂(鱼类、鸟类)细胞分裂仅仅在动物极胚盘中发生。早期卵裂伴随着高度重复的经裂-纬裂模式,分裂速度很快。最初的几次分裂同步发生,形成一堆屹立在卵细胞动物极的细胞。2.表面卵裂(昆虫)表面卵裂的特征是,直到核已经分裂,细胞还不能形成。进行多次的有丝分裂,然后细胞核迁移至卵的四周,这时的胚胎称为合胞体层六、原肠作用六种细胞运动方式:外包,内陷,内卷,内移,分层,集中延伸。\n七、海胆原肠作用初级间质细胞的内移植物极板中央来源于小分裂球的细胞不断伸出和收缩线状伪足,脱离表面单层细胞,进入囊胚腔,称为初级间质细胞。初级间质细胞沿囊胚腔内表面运动,主动伸出伪足与囊胚腔壁连接,占据囊胚腔预定腹侧面,融合形成索状合胞体,最终形成幼虫碳酸钙骨针的轴。早期原肠内陷初级间质细胞在囊胚腔内迁移的过程中,仍然留在植物极板上的细胞移动填补由初级间质细胞内移而形成的空隙,植物极板进一步变扁平。之后,植物极板向内弯曲,内陷。当植物极板内陷深及囊胚腔的1/4~1/2时,内陷突然停止。所陷入的部分称为原肠,而原肠在植物极的开口称为胚孔。晚期原肠内陷早期原肠内陷完成之后,经过短暂停歇,原肠大幅度拉长,短粗的原肠变成又细又长的管状结构。在此期间没有新细胞形成,原肠的拉长过程是通过细胞重排实现的,原肠周长内细胞数目大为减少。原肠顶端形成次级间质细胞,原肠延伸是以次级间质细胞提供的张力为动力的。次级间质细胞伸出线状伪足,直达囊胚腔壁内表面。与囊胚腔连接,收缩伪足,拉动原肠延伸。当原肠最顶端接触到囊胚腔壁时,次级间质细胞分散进入囊胚腔。次级间质细胞在囊胚腔中分裂,最终形成中胚层器官。囊胚腔壁接触到原肠的位置最终形成口,口和原肠最顶端形成一连续相通的消化管。海胆的胚孔最终形成肛门。八、两栖类原肠作用灰色新月区的预定内胚层细胞内陷,形成狭缝状胚孔,内陷细胞称为瓶状细胞。瓶状细胞的收缩拉动边缘区细胞向植物极运动,同时将植物极的内胚层细胞推向胚胎的内部。动物半球细胞外包和向胚孔处集中。缘区深层细胞内卷,沿着外层细胞的内表面运动,因此构成背唇的细胞在不断更新。(原肠前缘的瓶状细胞,发育为前肠咽部的细胞。后来内卷的为头部中胚层前体的细胞、脊索中胚层细胞。)囊胚腔被挤压到与背唇相对的一侧。同时胚唇向侧面和腹面延伸,形成侧唇、腹唇。通过侧唇和腹唇,位于外胚层细胞中的中胚层和内胚层细胞继续内卷,使胚孔形成一环状,包绕在含有大量卵黄、体积较大的内胚层细胞周围,这些内胚层细胞暴露在植物极外面,称为卵黄栓。最终,卵黄栓也被包入内部。至此,所有内胚层细胞都已进入胚胎的内部,外胚层细胞包被在胚胎的表面,而中胚层细胞则位于内胚层和中胚层之间。九、鸟类的原肠作用1.下胚层和上胚层的形成鸟类胚盘中央细胞被胚下腔和卵黄分开,看起来透明,称为明区。明区边缘细胞和卵黄接触看起来不透明,称为暗区。上胚层某些细胞单个的迁移到胚下腔中,形成初级下胚层。胚盘后缘有一层细胞向前迁移和初级下胚层汇合,形成次级下胚层。2.原条的形成\n来自上胚层的中胚层细胞内移进入囊胚腔以及来自上胚层后端两侧细胞向中央迁移致使胚胎后端上胚层细胞的加厚。随着加厚部分不断变窄,它不断向前运动,并收缩形成清晰的原条。原条中出现一凹陷,称为原沟。迁移的细胞通过原沟进入囊胚腔。在原条的前端是一个细胞加厚区叫原节或亨氏节。亨氏节的中央有一个烟囱状的凹陷,叫原窝。细胞可以通过原窝进入囊胚腔。进入鸟类囊胚腔的细胞以单个细胞为单位,内移的细胞并不形成紧密联系的细胞层,只形成松散联系的间质细胞。通过亨氏节进入囊胚腔的细胞向前迁移,形成前肠、头部中胚层和脊索;通过原条两侧部分进入囊胚腔的细胞形成大部分内胚层和中胚层组织。3.通过原条的细胞迁移:内胚层和中胚层的形成下胚层细胞构成的区域即生殖新月不形成任何胚胎本身结构,但含有生殖细胞前体,以后通过血管迁移到生殖腺中。通过亨氏节进入囊胚的细胞也向前迁移,保持在内胚层和上胚层之间,将来形成头部中胚层和脊索中胚层细胞。随后在中胚层细胞继续内移的同时,原条开始回缩,使大致位于明区中央的亨氏节向后推移。在原条回缩的痕迹上出现了胚胎背轴和头突。随着亨氏节继续回缩,脊索后端部分开始形成。最终亨氏节回缩到最后端区域,将来形成肛门。至此,上胚层完全由预定外胚层构成。尽管中胚层细胞还要继续向内迁移很长时间,但大部分预定内胚层细胞已进入胚胎内部。当预定中胚层和内胚层细胞向囊胚腔内运动时,预定外胚层细胞还在分裂,并成为胚胎最上层唯一的细胞群。预定外胚层细胞迁移离开胚盘,通过下包包被卵黄。鸟类原肠作用结束的时候,外胚层已将卵黄包被起来,内胚层已经取代了下胚层,而中胚层则已经迁移到内外两胚层之间的位置。十、中胚层分区脊索中胚层:脊索轴旁中胚层(体节中胚层):体节、骨、肌肉、软骨、真皮居间中胚层:泌尿生殖系统、生殖管道侧板中胚层:1.体壁中胚层:体壁的骨骼、肌肉、血管、结缔组织2.脏壁中胚层:消化和呼吸系统的肌组织、血管、结缔组织头部中胚层:面部结缔组织和肌肉十一、果蝇体轴的形成决定前后轴的3组母体效应基因包括:前端系统决定头胸部分节的区域,后端系统决定分节的腹部,末端系统决定胚胎两端不分节的原头区和尾节。另一组基因即背腹系统,决定胚胎的背–腹轴。1.前端系统:bcd基因对于前端结构的决定起关键的作用。bcd是一种母体效应基因,其mRNA由滋养细胞合成,后转运至卵子并定位于预定胚胎的前极。受精后bcdmRNA迅速翻译,BCD蛋白在前端累积并向后端弥散,形成从前向后稳定的浓度梯度,主要覆盖胚胎前2/3区域。BCD蛋白是一种转录调节因子。另一母体效应基因hunchback(hb)是其靶基因之一,控制胚胎胸部及头部部分结构的发育。\nhb在合胞体胚盘阶段开始翻译,表达区域主要位于胚胎前部,HB蛋白从前向后也形成一种浓度梯度。hb基因的表达受BCD蛋白浓度梯度的控制,只有BCD蛋白的浓度达到一定临界值才能启动hb基因的表达。2.后端系统:在这一系统中起核心作用的是nanos(nos)基因。其mRNA由滋养细胞转录,后运至卵,定位于后极,使NOS蛋白从后至前形成浓度梯度。NOS蛋白的功能是在胚胎后端区域抑制母性hbmRNA的翻译。HB可结合DNA抑制腹部图示形成所必需的缺口基因的表达。cdlmRNA最初也是均匀分布于整个卵质内,BCD能抑制cdlmRNA的翻译。在BCD活性从前到后降低的浓度梯度作用下形成CDL蛋白从后到前降低的浓度梯度。cdl基因的突变导致腹部体节发育不正常。3.末端系统:这个系统基因的失活会导致胚胎不分节的部分,即前端原头区和后端尾节,缺失。在这一系统中起关键作用的是torso(tor)基因。tor基因编码一种跨膜酪氨酸激酶受体,在整个合胞体胚胎的表面表达。其NH2-基端位于细胞膜外,COOH基端位于细胞膜内。当胚胎前、后端细胞外存在某种信号分子(配体)时可使TOR特异性活化,最终导致胚胎前、后末端细胞命运的特化。torso-like(tsl)基因可能编码这一配体。TOR与配体结合后,引起自身磷酸化,经一系列信号传递,最终激活合子靶基因的表达。在卵子发生过程中,tsl在卵子前极的边缘细胞和卵室后端的极性滤泡细胞中表达。TSL蛋白被释放到卵子两极处的卵周隙中,由于TOR蛋白过量,TSL不会扩散末端区以外,从而保证tor基因只在末端区被活化。4.背-腹轴的形成卵室腹侧特异性滤泡细胞产生Sp?tzle蛋白,释放并定位于卵周隙中,与Toll受体结合使之活化,通过一系列信号转导最终使与DL蛋白结合的Cactus蛋白降解,DL释放进入细胞核。DL蛋白在细胞核内的分布沿背腹轴形成一种浓度梯度。这种浓度梯度在腹侧组织中可活化合子基因twist(twi)和snail(sna)的表达,进而指导腹部结构的发育,同时抑制dpp和zen基因的表达。dpp和zen基因在胚胎背侧表达,指导背部结构的发育。十二、果蝇体节的形成母体效应基因调节首先表达的合子基因,即缺口基因的表达。不同浓度缺口基因的蛋白质产物引起成对控制基因的表达,形成与前后轴垂直的7条表达带。成对控制基因蛋白质产物激活体节极性基因的转录,进一步将胚胎划分为14个体节。缺口基因、成对控制基因以及体节极性基因共同调节同源异型基因的表达,决定每个体节的发育命运。十三、脊椎动物附肢的发育脊椎动物的附肢都是由体壁中胚层和外部的表皮共同组成的。附肢发育起始于肢场侧板中胚层(四肢骨的前体)和体节中胚层(四肢肌肉的前体)间质细胞的增殖。肢芽形成的信号是由形成预定附肢间质细胞的侧板中胚层细胞提供的,这些细胞分泌的FGF10能够启动上皮和中胚层细胞之间的相互作用。\n轴的形成:附肢沿近远轴的分化是由AER和附肢中胚层诱导的相互作用产生的。由AER合成、释放到其下的间质中的成纤维细胞生长因子FGF可能是维持间质细胞增殖的分子。Wnt-7a基因在肢背部中胚层图示形成中起到关键作用。engrailed-1在AER形成之前在附肢腹部的外胚层中特异表达。Sonichh在后端高表达起始了前后轴的形成。后与Wnt7a相互作用促进前后轴形成。十四、果蝇性别决定X-染色体基因产物的作用称为分子因素(sis-a、sis-b),而常染色体基因产物的作用称为分母因素。当X:A转录因子浓度达到一定时(X:A=1.0),游离的计数元素使Sxl基因处在“开”的状态。而在雄体中X:A=0.5时,不激活Sxl的早期转录启动。Sxl基因有早期和晚期两个启动子(PL和PE)和8个外显子,在第2个外显中有翻译的起始密码子AUG,而在第3和第8个外显子中有终止密码子UGA。雌体中可激活早期转录产生活性的Sxl蛋白。Sxl晚期转录可在两种性别的囊胚形成后开始表达。Sxl蛋白是一种RNA-结合蛋白,它可以改变晚期启动子产生的Sxl初始转录体的剪接,在雌果蝇中由于已存在早期启动子合成的Sxl,因此可以对晚期启动子的mRNA进行适当剪接,从而能产生有活性的Sxl.Sxl的活性在雌体中得到了维持。Sxl通过控制性别转换基因转录本的加工,调节体细胞的性别决定。在雄性中,tramRNA第二个2外显子中有终止密码,使蛋白失去功能。而雌性中则避开2,在4处终结产生有功能的tra蛋白。雌性特异的tra蛋白质与tra-2使双性基因dsx以雌性方式拼接,促进雌性特征,抑制雄性发育。而雄性中没有tra蛋白,双性基因转录本以雄性特异的方式拼接,则编码出另一种较大的蛋白,能抑制雌性特征,促进雄性特征。特化specification:当细胞或组织放在中性环境如培养皿中可以自主分化时,该细胞或组织已经特化。已特化的细胞或组织的命运是可逆的。(“签约意向”)决定determination:当一个细胞或者组织放在胚胎另一部位可以自主分化时,该细胞或组织已经决定。已决定细胞或组织的发育命运是不可逆的。(“正式签约”)在细胞发育过程中,定型和分化是两个相互关联的过程。在早期发育过程中,某一组织或器官原基必须首先定型,然后胚胎细胞的定型有两种主要方式:第一种方式的细胞定型是通过胞质隔离(cytoplasmicsegregation)来实现的。卵裂时,受精卵内特定的细胞质分离到特定的分裂球中,裂球中所含有的特定胞质决定它发育成哪一类细胞,细胞命运的决定与临近的细胞无关。这种定型方式称为自主特化(autonomousspecification)。以细胞自主特化为特点的胚胎发育模式称为镶嵌型发育(mosaicdevelopment),或自主性发育,整体胚胎好像是自我分化的各部分的总和。第二种方式的细胞定型是通过胚胎诱导实现的。胚胎发育过程中,相邻细胞或组织之间通过相互作用,决定其中一方或双方的分化方向,也就是发育命运。\n初始阶段,细胞可能具有不止一种分化潜能,和邻近细胞或组织的相互作用逐渐限制了它们的发育命运,使它们只能朝一定的方向分化。细胞命运的这种定型方式称为有条件特化(conditionalspecification)或渐进特化(progressivespecification)或依赖型特化(dependentspecification)对细胞呈有条件特化的胚胎来说,如果在胚胎发育的早期将一个分裂球从整体胚胎上分离,那么剩余的胚胎细胞可以改变发育命运,填补所留下的空缺。以细胞有条件特化为特点的胚胎发育模式称为调整型发育(regulativedevelopment)。任何动物胚胎发育过程中都存在自主特化和有条件特化两种细胞定性方式,程度大小不同而已。多数无脊椎动物:自主特化(主要)有条件特化(次要)脊椎动物:有条件特化(主要)自主特化(次要)形态发生子在卵细胞质中呈一定形式分布,受精后发生运动,被分隔到一定区域,并在卵裂时分配到特定的卵裂球中,决定裂球的发育命运。这一现象称为胞质定域,或胞质隔离、胞质区域化、胞质重排。例:极叶的形成线虫的生殖质果蝇的极质种质学说假定卵子和精子都对新生有机体贡献出质量和数量等同的染色体;染色体由各种能决定细胞发育命运的“核决定子”组成;染色体携带全部的遗传物质,是有机体不同世代延续的基础。受精卵在分裂时,每个裂球内都分配有相同数目的染色体,但是组成染色体的“核决定子”并不均等地分配到每个裂球中,也就是说每个裂球只含有部分“核决定子”;不同的“核决定子”在胚胎发育过程中分配到不同的细胞内,由此决定细胞的发育命运,使其发育成身体的某一特定部分。只有那些最终将发育成生殖细胞的细胞才含有全部“核决定子”,由此将亲代性状传递给子代,并保持物种的稳定性。第五章受精的机制受精(fertilization)是指两性生殖细胞融合并形成具备双亲遗传潜能的新个体的过程。受精作用是发育的开端,一个新的生命从此开始。受精的第一个功能是将父母的基因传递给子代,第二个功能是激发卵细胞中确保发育正常进展的一系列反应。精子头部由顶体囊泡(acrosomalvesicle)和精核构成。大部分精子的细胞质在精子成熟过程中被排除。顶体位于精核前端,由高尔基体演化而来。顶体中含有多种水解酶,主要作用是溶解卵子的外膜。有些动物的顶体中还有与精卵识别有关的分子。整个精核是一致密结构,几乎看不到染色质丝和核仁,精子中所有的基因都不表达卵子的结构卵质外是质膜(plasmamembrane),质膜外是卵黄膜(vitellineenvelope)。\n质膜在受精时可以调控特定的离子在卵子内外的流动,且能与精子质膜融合。卵黄膜能识别同一物种的精子,对受精的物种特异性有非常重要的作用。在哺乳动物中特称为透明带(zonapellucida),紧靠着透明带的一层滤泡细胞称为放射冠(coronaradiata)。精子获能哺乳动物的精子需要在雌性生殖道中停留一个特定的时期,以获得对卵子受精的能力,这一过程称为精子获能(capacitation)。顶体反应是指受精前精子在同卵子接触时,精子顶体产生的一系列变化。具有顶体结构的无脊椎动物或脊椎动物中,只有发生顶体反应的精子才能进入卵子并与卵子融合,也只有精子与卵子接触时才发生顶体反应。哺乳动物精卵的特异性识别发生在卵细胞的透明带(zonapellucida)部分。第五章卵裂在大多数种类的动物中(哺乳动物例外),受精后早期胚胎细胞分裂的速度以及各卵型球所处的位置都是由贮存在卵内的母型mRNA和蛋白质所控制的。通过有丝分裂分配到卵裂球中的合子基因组,在早期卵裂胚胎中并不起作用,即使用化学物质抑制转录,早期胚胎也能正常发育。直到卵裂较晚的时期,早期胚胎合子基因组才大量转录合成mRNA,实现由母型向合子型过渡的调控胚胎发育的机制。哺乳动物早期卵裂不同步,常出现奇数细胞存在。紧密化:紧密化的细胞分裂后,形成16个细胞的桑葚胚。在桑葚胚中有1-2个细胞属于内细胞团,并由大多数的外层细胞所包围。内细胞团将发育为胚胎,外层细胞将发育为滋养层细胞参与胎盘的胚胎组分。滋养层细胞与内细胞团细胞的分离代表了哺乳动物发育中的第一个分化事件。最初,桑葚胚内部是没有空腔的,后来,在成腔作用过程中,滋养层细胞向桑葚胚中分泌液体产生囊胚腔,这时的早期胚胎称为囊胚,内细胞团则位于环形滋养层细胞层的一侧。囊胚形成是哺乳动物卵裂结局的标志。第六章原肠作用原肠作用(gastrulation)是胚胎细胞剧烈的、高速有序的运动过程,通过细胞运动实现囊胚细胞的重新组合。原肠形成期间,囊胚细胞彼此之间的位置发生变动,重新占有新的位置,并形成由三胚层细胞构成的胚胎结构。尽管整个动物界原肠作用方式变化多样,但总体可概括为五种细胞运动机制,即外包(epiboly)、内陷(invagination)、内卷(involution)、内移(ingression)和分层(delamination)。第七章神经胚和三胚层分化①首先,预定神经外胚层(外胚层中线处细胞)形状发生改变,细胞纵向变长加厚,形成神经板。约占整个外胚层细胞的50%。预定形成表皮的外胚层细胞变得更加扁平。②神经板形成后不久,边缘加厚,并向上翘起形成神经褶。在神经板中央出现的U型沟即神经沟,它将胚胎分为右边和左边面部分。\n③随后,神经褶向胚胎背中线迁移,最终合拢形成神经管,上面覆盖着外胚层。④神经褶最靠背面部分的细胞变成神经嵴细胞。哺乳类脑区形成:哺乳类早期神经管是一笔直的管状结构。①早在胚胎后部神经管形成之前,神经管的端部发生剧烈变化,膨大成前脑、中脑、和菱脑3个原始脑泡。②当神经管后端合拢时,视泡从前脑两侧面凸出来。③前脑再发育成为前端的端脑和后面的间脑。端脑最终形成大脑两半球,间脑形成丘脑、下丘脑区域和视觉感受区。中脑不再分,中脑腔最终形成大脑导水管。菱脑再发育成前面的后脑和后面的髓脑。后脑形成小脑,负责调解身体运动、姿势和平衡。髓脑最终形成延髓,其神经元调节呼吸以及胃肠道和心血管的运动。第五章胚胎诱导:在有机体的发育过程中,一个区域的组织与另一个区域的组织相互作用,引起后一种组织分化方向上的变化的过程称为胚胎诱导。诱导者:在胚胎诱导相互作用的两种组织中,产生影响并引起另一种细胞或组织分化方向变化的这部分细胞或组织。反应组织:接受影响并改变分化方向的细胞或组织。诱导者的作用可能是激活那些对细胞分化所必需的特异蛋白质的编码基因。而反应组织则必须具有感受性才能接受诱导者的刺激发生分化的变化。在动物胚胎的发育过程中存在着大量的和连续的诱导作用:①原肠胚的脊索中胚层诱导其上方的外胚层形成神经系统这个关键的诱导作用,它传统地被称为初级胚胎诱导。②初级胚胎诱导的产物神经管又可作为诱导者,如视杯诱导表面覆盖的外胚层形成晶状体,这被称为次级胚胎诱导。③而晶状体和(或)视杯又作为诱导者诱导表面的外胚层形成角膜,此为三级胚胎诱导。胚胎中其他器官的形成也存在类似的诱导级联