化学生物学作业 27页

  • 714.36 KB
  • 2022-08-12 发布

化学生物学作业

  • 27页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
00.Abstract:Whole-cell,geneticallymodifiedbioreportersaredesignedtoemitdetectablesignalsinresponsetoatargetanalyteorrelatedgroupofanalytes.Whenintegratedwithatransducercapableofmeasuringthosesignals,abiosensorresultsthatactsasaself-containedanalyticalsystemusefulinbasicandappliedenvironmental,medical,pharmacological,andagriculturalsciences.Historically,thesedeviceshavefocusedonsignalingproteinssuchasgreenfluorescentprotein,aequorin,fireflyluciferase,and/orbacterialluciferase.Thebiochemistryandgeneticdevelopmentofthesesensorsystemsaswellastheadvantages,challenges,andcommonapplicationsofeachonewillbediscussed.Keywords:aequorin;bacterialluciferase(Lux);bioreporter;biosensor;fireflyluciferase(Luc);greenfluorescentprotein(GFP)01.IntroductionAbiosensorconsistsofabiologicalrecognitionelementthatoutputsasignaltoaninterfacedtransducercapableofmonitoringandmeasuringthatsignal.Biorecognitionelementstypicallytaketheformofanenzyme,antibody,nucleicacidfragment,organelle,oralivingprokaryoticoreukaryoticbioreportercell,whilethetransducerclassicallyexploitselectrochemical,optical,piezoelectric,magnetic,orthermalmeasurementinterfaces.Thebiorecognitionelementinitsnativeform,orageneticallyorbiochemicallymanipulatedversionofit,isemployedfortailoredsensingoftargetanalytes.Subsequentintegrationwiththetransduceryieldsaminiaturizedsensingplatformcapableofself-contained‘lab-on-a-chip’detectionandmonitoring.Althoughsuchmonitoringcanbemorepreciselyaccomplishedusinganalyticalinstrumentssuchasmassspectrometry,theirassociatedcostsandcomplexityareoftenfartooprohibitiveforroutineanalysesandtheirsizeandpowerrequirementstendtolimitusagesolelytothelaboratory.02.Biosensors,withtheirsmallsize,relativesimplicity,rapidityofoperation,andcontinuous,real-timetonearreal-timemonitoringcapabilities,possessuniquecharacteristicsconducivetothehigh-throughputandfield-basedorremotemonitoringneedsrelevanttoagricultural,environmental,pharmacological,andclinicalsensing.Althoughthemostpopularbiosensorsincorporateenzymesorantibodiesastheirbiorecognitionelements,inthisreviewwewillfocusonwhole-cellbiosensorsbecausetheydopossesssomeinterestingadvantages,primaryofwhichistheabilitytoindicatebioavailability—theeffectandinteractionstheanalytehasonalivingsystem.Asopposedtoanalyticalinstrumentsthatmeasureonlythetotalconcentrationofatargetanalyteinasample,whole-cellbiosensorsthatmeasurebioavailabilityindicatethattheanalytecanbeassimilatedbyordirectlyeffectsalivingorganism,therebyexposingpossibletoxicinteractionshigheruptheevolutionaryscale(i.e.,humans).03.BioreporterImmobilizationMethodsPerhapsthegreatestdifficultyinthedevelopmentofwhole-cellbiosensorsistheintimateadherenceofthebioreportertothetransducer.Sincethebioreporterisobligatedtoremainalivetoperformitssensingduties,whatevermechanismischosentoencapsulate,immobilize,oradherethereportercellsmustpreserveandsustainviability.Themoststraightforwardmethodssimplyencapsulatebioreporterswithinpolymersorgelssuchasagar,agarose,alginate,polyacrylamide,chitosan,polyvinylalcohol,andmanyothers[1].Theirmaindetrimentsarethatdiffusionoftheanalytethroughthepolymer/geloftenslowsreactiontimesandthattheanalytemayirreversiblyabsorbwithinthepolymer/gelmaking\nthebiosensorasingleusedevice.Premkumaretal.[2],ratherthanencapsulatingthecells,embeddedantibodiesinaglutaraldehydematrixandthenattachedEscherichiacolibioreportercellstotheantibodies.Thus,theE.colicells,althoughanchoredbytheantibodiestoasolidsubstrate,stillremainedfreetointeractwiththeirtargetanalytes.Sol-gels—silicaandnon-silica-basedporousglassgels—arealsopopularencapsulationmatrices,althoughmoresoforenzymesandantibodiesthanforwholecellsduetotheharshreactionconditionsduringformation,resultinginpoorcellsurvivability[3].However,modifiedhydrolysistechniquesandnewsol-gelcompositeshavedemonstratedlivingbioreporterencapsulationforuptooneyearunderrefrigeratedstorageconditions[4].Latexpolymershaverecentlyshownsignificantpotentialasbioencapsulantsaswell[5].Bioreporterbacteriamixedwithliquidlatexcanbe‘painted’asthinnanoporousfilmsontosolidsubstrates,allowedtodry,andthenrehydratedwhenneededtoreactivatethebioreportercells.00.Sincethefilmsarethin(<10μm),masstransferlimitationsoftargetanalyteareoflessconsequence.Shelf-lifeatroomtemperatureextendsfromtwomonthsuptooneyearuponrefrigeration.Thebioreporterincorporatedlatexcanalsobeusedessentiallyasinktoroboticallyprintprecisearraysormatricesofencapsulatedcells.Anotheruniquepolymeristhephotosensitivepolyvinylalcohol-styrylpyridinium(PVA-SbQ)whichcanbemixedwithbioreportercellsandthencuredunderultravioletlightexposure.Thisallowsprecisephotolithographicpatterningofthepolymerontransducerinterfaceswithsubsequentfastcuring[6].Surfacepatterningofbacteriabytheseso-calledsoftlithographictechniquescanbeaccomplishedwithavarietyofotherpolymersandassociatedmicrofabricationmethodsandlikelyrepresentsomeofthemostpromisingapproachestorecentlybecomeavailableforintegratinglivingcellswithbiosensorplatforms.ThereaderisdirectedtoanexcellentreviewbyWeibeletal.[7]forfurtherinformation.Nanotechnologyhasalsoimpactedcellimmobilizationthroughelectrospinning,aprocesswheredropletsofapolymersolutionsuchaspolyvinylalcoholareelectrostaticallystretchedintoextraordinarilythinnanofibers[8].Bacterialcellsmixedwiththepolyvinylalcoholbecomeentrappedwithintheexceptionallylargesurfaceareaofthenanofibermatrixduringtheelectrospinningprocessandhavemaintainedviabilityafterthreemonthsofstorageat20°Cinpreliminaryreports.Applyingalesstechnicalapproach,Chuetal.[9]usedordinarycotton,polyester,rayon,andsilkfiberspretreatedwithpolyethyleneimineasacrosslinkingagenttoimmobilizeE.colibioreportercellsthatthenremainedresponsiveoverapreliminarythreedayperiod.01.Inamoreunusualencapsulant,eggshellmembrane,knownforitsexcellentgasandwaterpermeability,wasusedtophysicallyadsorbPseudomonasfluorescenscellsalbeitonlyforseveralhourswithinthetestformatdescribed[10].Toavoidencapsulationaltogether,reportercellscanalternatelybemaintainedincontinuousculturebioreactorsforprolongedperiods[11].Thebioreactors,oftenminiaturizeddowntomillilitersizevolumes,arethendirectlyinterfacedwiththetransducertoformthebiosensor.Theredoesexistabitofcomplexityinsuchsystemssincepumpsandchannelsareneededtodelivernutrientsandremovewastes,butbioreactor-basedbiosensorsforwaterqualitymonitoring,forexample,havebeensuccessfullycommercializedandimplementedintoon-lineflowthroughdevicessuchastheTOXcontrolsensordevelopedbyMicroLAN(www.toxcontrol.com).Anothermeansofbypassingencapsulationistouseelectrokinetics\ntocontrolparticlemotion,therebymovingandtrappingbiologicalcellswithinstrictlydefinedareas[12].Aformofelectrokineticsreferredtoasdielectrophoresishasbeenusedtolocalizecellsdirectlyonalab-on-a-chiptransducersurfaceandsuchtechnologyparallelswellwiththeneedsofwhole-cellbiosensors[13].Thenaturalabilityofsomemicroorganismstoformhighlyresilientsporescanalsobetakenadvantageofasalong-termstoragesolution.Dateetal.[14]convertedspore-formingBacilluscellsintobioreporterswithshelf-livesofupto8months,andfurthershowedthattheycouldberepeatedlycycledbetweentheiractiveanddormantstateswithlittleancillaryeffectontheirsensingcapabilities.00.Whole-CellOpticalBioreportersandBiosensorIntegrationThefunctionofthewhole-cellbioreporteristoproduceameasurablesignalinresponsetoatargetanalyteorrelatedgroupofanalytes.Inwhole-cellbiosensors,thissignalistypicallyeitheropticalorelectrochemical.Forthisreview,wewillfocusonbioreportersthatuseopticalsignalingastheiroutputtotheircompaniontransducerandreferthereadertoMehrvarandAbdi[15]foranexcellentreviewonelectrochemicalbiosensors.Inbiosensorapplications,thisprimarilyinvolvesbioluminescentsignalsproducedbybacterialluciferase(Lux),fireflyluciferase(Luc),andaequorinandfluorescentsignalsproducedbygreenfluorescentprotein(GFP)(Table1).01.Table1.Whole-cellbioreportersreferencedinthetext.Reportersaregroupedbythebioluminescentorfluorescentsystemexploited.Reportercelltypeislistedabovethecompound(s)detectedandreferencesrefertooriginalpublicationsdetailingconstructionandsensitivityofeachreporterconstruct.\n00.BacterialLuciferase(Lux)BioluminescentbacteriaarethemostabundantandwidelydistributedofthelightemittingorganismsonEarthandcanbefoundinbothaquatic(freshwaterandmarine)andterrestrialenvironments.Despitethediversenatureofbacterialbioluminescence,themajorityoftheseorganismsareclassifiedintothreegenera:Vibrio,Photobacterium,andPhotorhabdus(Xenorhabdus).Ofthese,onlythosefromPhotorhabdushavebeendiscoveredinterrestrialhabitats[36].Thesebacteriaoftenexistassymbiotesofotherorganisms,althoughsomecanbefree-livinginaquaticenvironmentsaswell.01.Todayitiswellknownthatthebacterialbioluminescencereactionistheresultoftwoproteins,LuxAandLuxB,thatworktogethertoproducelightfromtheoxidationofalongchainfattyaldehydeinthepresenceofreducedriboflavinphosphate(FMNH2)andoxygen,whiletheremainingproteinsintheluxoperon,LuxC,LuxD,andLuxE,functiontoregeneratethealdehydesubstraterequiredforthisreaction(Figure1A).However,thiswasnotalwayssoevident.Thestudyofbacterialbioluminescenceisrootedinthelessonsofgeneralbioluminescence.TheideathatoxygenwasarequiredsubstrateforbioluminescentreactionscomefromRobertBoyle’searlyexperimentsinthemid1600’sshowingthatremovalofoxygencausedthecessationoflightfromwhatwaseitherluminescentbacteriaorfungi[37].Inthelate1880’swhenitwasdiscoveredfromworkinbeetlesthatbioluminescencerequiredaluciferaseandaluciferinforfunction,thisknowledgewasappliedtothebacterialsystemaswell[38].02.Figure1.Bioluminescentreactioncatalyzedbythebacterialluciferasegenecassette.A)The\nluciferaseisformedfromaheterodimeroftheluxAandluxBgeneproducts.ThealiphaticaldehydeissuppliedandregeneratedbytheproductsoftheluxC,luxD,andluxEgenes.Therequiredoxygenandreducedriboflavinphosphatesubstratesarescavengedfromendogenousmetabolicprocesses,however,theflavinreductasegene(frp)aidsinreducedflavinturnoverratesinsomespecies.B)Theproductionoflight,catalyzedbytheproductsoftheluxAandluxBgenes,resultsfromthedecayofahighenergyintermediate(R1=C13H27).AB00.In1942Doudoroffwasoneofthefirsttoobserveandreportonthemetabolismofbioluminescentbacteriaandfoundthatallwereabletotolerateoxygen,aidingintheconfirmationthatoxygenwasrequiredforlightproduction[39].Althoughthefirstpublishedreportofabioluminescentreactionoccurringoutsideofthebacteriaoccurredin1920,itcouldnotbereproducedreliablyuntil1953whenMcElroyetal.[40]wereabletoconsistentlyproducelightfromautolysatesofAchromobacterfischericulturesuponadditionofFMN.Atthistimetheyalsoreportedtherequirementforaluciferincompoundofunknownstructure.ThiswasthefirstindicationthatFMNwasrequiredforbacterialbioluminescence.ThestructureoftheluciferinwaslaterconfirmedasalongchainfattyaldehydebyStrehleretal.[41].\n00.Thiscompletedthelistofrequiredsubstratesandanunderstandingwasestablishedthatbacterialluciferasecatalyzestheproductionoflightthroughoxidationofalongchainfattyaldehydeinthepresenceofoxygenandreducedriboflavinphosphate.ThegenesencodingthebacterialluciferasewerefirstclonedandexpressedinE.coliin1982[42],whilethefullbacterialluciferasecassettewasclonedandexpressedthenextyear[24].Inthemid1990’sthefirstcrystalstructureofthebacterialluciferaseheterodimerwasdetermined[43],givingresearcherstheirfirstglimpseattheproteinsthathadcapturedtheirimaginationforhundredsofyears.01.Whenthebacterialluciferaseenzymeissuppliedwithoxygen,FMNH2,andalongchainaliphaticaldehyde,itisabletoproducelightprimarilyatawavelengthof490nm.Thereisasecondaryemissionpeakat590nm,however,thisisonlydetectableusinghighlysensitiveRamanscattering[44].Thenaturalaldehydeforthisreactionisbelievedtobetetradecanal,however,theenzymeiscapableoffunctioningwithalternativealdehydesassubstrates[36].ThefirststepinthegenerationoflightfromthesesubstratesisthebindingofFMNH2bytheluciferaseenzymeanduntilrecentlyitsactivesiteontheenzymewasnotknown.IthasrecentlybeenconfirmedthatFMNH2bindsontheαsubunitinalargevalleyontheC-terminalendoftheβ-barrelstructure[45].02.Inorderforthereactiontoproceed,theluciferasemustundergoaconformationalchangefollowingFMNH2attachment.Thismovementisprimarilyexpressedinashortsectionofresiduesknownastheproteaselabileregion—asectionof29aminoacidsresidingonadisorderedregionoftheαsubunitjoiningα-helixα7atoβ-strandβ7a.Themajorityofresiduesinthissequenceareuniquetotheαsubunitandhavelongbeenimplicatedinthebioluminescentmechanism[46].FollowingattachmentofFMNH2,thisregionbecomesmoreorderedandisstabilizedbyanintersubunitinteractionbetweenPhe272oftheαsubunitandTyr115oftheβsubunit.Thisconformationalchangehasbeentheorizedtostabilizetheαsubunitinaconformationfavorablefortheluciferasereactiontooccur[45].03.NMRstudieshavesuggestedthatFMNH2bindstotheenzymeinitsanionicstate(FMNH-)[47].Withtheflavinboundtotheenzyme,molecularoxygenthenbindstotheC4atomtoformanintermediate4α-hydroperoxy-5-hydroflavin[48].ItisimportanttonotethatthiscriticalC4atomwasdeterminedtobeincloseproximitytoareactivethiolfromthesidechainofCys106ontheαsubunit[45],aresiduethathaslongbeenhypothesizedtoplayaroleinthebioluminescentreaction,butrecentlyhasbeenproventobenon-reactivethroughmutationalanalysis[49].04.Ithasbeenshown,however,thatC4isthecentralatomfortheluciferasereactionandfollowingestablishmentofthehydroperoxidethereitiscapableofinteractionwiththealdehydesubstrateviaitsoxygenmoleculetoformaperoxyhemiacetalgroup.Thiscomplexthenundergoesatransformation(throughanunknownintermediateorseriesofintermediates)toanexcitedstategenerallyacceptedtobealuciferase-bound4α-hydroxy-5-hydroflavinmononucleotide,whichthendecaystogiveoxidizedFMN,acorrespondingaliphaticacid,andlight(Figure1B)[48].Therehaveclassicallybeenmanytheoriesproposedtoexplaintheexactprocessrequiredforlightemission[50]thatcontinuetoexpandtodayastechnologyfordetectingtheintermediatecomplexeshasimproved.Forareviewoftheproposedmechanismandtheirstrengthsandweaknesses,thereaderisdirectedtoNemtsevaandKudryasheva[48].\n00.Whilethebacterialluciferaseproteinisallthatisrequiredtogeneratelightinthepresenceofitsrequiredsubstrates,itisoftenbeneficialforinvestigatorstoexpressothergenesfromtheoperoninordertosupplytheluciferasewiththesubstratesrequiredforitsautonomousfunction.Toaccomplishthis,itisnecessarytoco-expresstheluxC,luxD,andluxEgenes.Theproductsofthesegenesassembleintoamulti-enzymecomplexandareresponsibleforbiosynthesisofmyristylaldehydeusingcomponentsalreadypresentinthecell,thusnegatingtherequirementtosupplyanaldehydesubstrateexogenously.01.TheluxDgeneencodesforatransferaseproteinandisthefirsttoactinthealdehydebiosynthesispathway.Itisresponsibleforthetransferofanactivatedfattyacylgrouptowater,formingafattyacid.Duringthecourseofthisreactiontheenzymeitselfbecomesacylated.ThenewlyformedfattyacidisnextpassedofftotheluxCgeneproduct,whichactivatestheacidbyattachingAMPfromamoleculeofATP,therebycreatingafattyacyl-AMPthatremainstightlyboundtotheenzyme.Thefattyacyl-AMPisthentransferredtotheluxEgeneproductviatransferoftheacylgroup.Thisproteinactsasareductaseandcatalyzesthereductionofthefattyacyl-AMPtoaldehydeusingNADPHtosupplytherequiredreducingpower[36].Thisallowsfortheinvivogenerationofthealdehydesubstrate.BecausetheremainingFMNH2andoxygensubstratesarenaturallysuppliedbytheorganism,thecoexpressionofthesegenesthusallowstheluxsystemtooperateinafullyautonomousfashion.02.LuxbiosensorsandapplicationsBacterialluciferaseiswellsuitedtofunctionasareportergenebecause,whenexpressedwiththegenesrequiredforaldehydebiosynthesis,itiscapableoffunctioningcompletelyautonomouslywithnoexogenousinputs.Themostbasicbacterialluciferaseassociatedreporterassaysarebasedondeterminingthepresenceorlevelofbioavailabilityoftoxiccompounds.Takingadvantageoftheautonomousnatureoftheluxoperon,bioreporterscanbeengineeredtoconstitutivelyexpresslightunderenvironmentalconditions.Uponexposureofthebioluminescentstraintoatoxiccompound,itwillundergoametabolicslowdownordeath,causingadecreaseinthetotalbioluminescentsignal[51].Theseassaysindicatethatatoxiccompoundispresentbuttheydonotidentifywhatthecompoundis.ThecommonlyusedMicrotoxassayoperatesinthisregard[16].Topermitidentification,otherbioreportertypesareengineeredtospecificallyrespondonlytocertaintargetcompoundsoranalytesofinterest.Theabilityofbacteriatometabolizespecificcompoundsistakenadvantageofinthesesensingstrategiestocreatefusionsoftargetspecificgenesequenceswiththebioluminescentluxgenes.Thus,whenexposedtoatargetcompound,thesebioreportercellswillemitbioluminescentlightsignalsthatareeitherdependentontheadditionofadecanalsubstrateifonlytheluxABgenesareusedorfullyautonomousiftheluxCDABEgenesareused[52].FullyautonomousluxCDABE-basedbioreportershavethedistinctadvantageofreportingtargetanalytepresencecontinuouslyandinareal-timeornearreal-timeformat.Historically,oneproblemassociatedwithreal-timemonitoringhasbeentheslowturnovertimeofthebioluminescentreaction.Coupledwiththelonglifeoftheluciferaseheterodimer,thishasmadeitdifficulttoresolvereporterfunctionovershortperiodsoftime.Inordertocompensateforthis,ithasbeendemonstratedthatinclusionofaproteasetagcanshortenthelifespanoftheluciferaseproteinsandincreasethetemporalresolutionoflux-basedreporters[53].Besideschemicaltargets,lux-basedreportersystems\nhavealsobeendesignedtodetectbiologicaltargets,forexample,foodandwaterbornepathogens.Inthesesystems,abacteriophage,orbacterialvirus,isusedasacarrieroftheluxgenesanditsabilitytoinfectonlycertainbacterialhostsisexploitedasameanstowardsdeliveringbioluminescencetoatargetbacterium[18].00.Animportantadvantagestemmingfromtheautonomousnatureofthebacterialluminescencecassetteisthat,sinceitdoesnotrequiresubstrateadditionforexpression,itcanbeusedremotelyifcoupledtoaproperdetectiondevice.Thisallowsforthemonitoringofcompoundsofinterestthatmaybeinaccessibletotheresearcherundernormalconditionsbecauseoflogisticalorsafetyconcerns[54].Althoughnotadetractionfromthemicrobialapplicationsofbacterialluciferase,itshouldbenotedthatitistheonlyreportercoveredinthisreviewthathashistoricallybeenlimitedtoexpressiononlyinprokaryotes.InrecentyearsthishasbeenchallengedasthegenesequenceshavebeenalteredtoallowforfunctionofthefullcassetteinthelowereukaryoteSaccharomycescerevisiae[20]andforluciferaseexpressioninculturedmammaliancells[25].01.Asatrulyautonomousexpressionsystem,Luxinterfacesextremelywellwithsignaltransducersandhasseenwidespreaduseinbiosensorapplications.Fiberopticcablesrepresentoneoftheeasiestinterfaces,withthebioreportersimmobilizedatoneendofthecableandtheotherendterminatingataphotomultipliertube(PMT)orotherluminometer-typedevice.Thecablecanthenbeinsertedintoliquid,solid,orgaseoussamplestoremotelymonitorfortargetanalytessuchasheavymetals,polycyclicaromatichydrocarbons(PAHs),orforageneralassessmentofsampletoxicity[27,29,33,35,55].Multi-fiberopticaldevicesimmobilizedwithdifferentlytargetsensitivebioreportershavealsobeendevelopedandfieldtestedformultiplexedmonitoring[56].Inthissamevein,butperhapsmoreuserfriendly,istheLumisens2instrumentdevelopedbyHorryetal.[57]wherethebioreporterbacteriaareimmobilizedonadisposablecardratherthanthefiberopticcableitself.Afiberopticcablethenscanseachindividuallyimmobilizedbioreportertomonitorforbioluminescenceoutputinaflow-throughformat.Similarflow-throughsamplershavebeenconstructedusingbioreactorscontaininggrowingculturesofthebioreporterintowhichbarefiberopticcablesareinserted.Uponexposuretoatargetanalyteortoxicintermediate,thebioreportercultureyieldsincreased(ordiminished)bioluminescencethatisdetectableviatheintegratedfiberoptics.Continuous,on-linewatertoxicitymonitoringhasbeendemonstratedusingsmall-scale(1–2mL)bioreactorsandlargercommerciallyavailablesystemssuchasthepreviouslymentionedTOXcontrolsensorthatcanbeplumbedintopre-existingwaterlines[11].Fiberopticshavealsobeenusedtomonitorbioreporterbacteriaintheirnaturalenvironmenttonon-invasivelyassessmetabolicandphysiologicalresponsestoecosystemperturbations,forexample,theadditionofacontaminant[58].02.Althoughfunctional,therequisitelinkageofthefiberopticcabletoaPMTorotherlightgatheringdevicenecessitatessizeandpowerconstraintsthatarenotconducivetominiaturization.Toaddressthis,severalgroupshavedevelopeddifferentvariationsofchip-basedmicroluminometersthatcandirectlyinterfacewiththebioreporterorganisms.Thisnegatestheneedforafiberopticcabletochannelthesignaltoatransducerandinsteadformsanall-inclusivebioreporter-on-a-chipbiosensor.Thistechnologywasfirstdemonstratedwiththebioluminescentbioreporterintegratedcircuit(BBIC)thatconsisted\nofasmall(1.5×1.5mm),low-power(3mW)CMOSmicroluminometerforlightgatheringandatransmitterforremotedatatransmission[59].PolymerencapsulantsattachthebioreportersdirectlyontotheBBICsurfaceortheBBICcanbeinterfacedwithbioreporterinoculatedflow-cellsorbioreactors.Forfieldmonitoring,theBBIChasbeenincorporatedintoahandheldwandthatoperatesoffofaninternallithiumwatchbattery(Figure2)[31].00.Figure2.ExampleofaCMOSmicroluminometertransducerinahand-heldbiosensorformat.Bioreportercellsengineeredtoemitbioluminescentlightsignalsaredirectlyinterfacedtothetransducerelementtoformacompactandremotelyoperablebiosensor.01.Asaphotodetectoraddon,MOEMS(Micro-Opto-Electro-Mechanical-System)canincreasedetectionlimitsbyminimizingsystemnoiseusinganintegratedheterodyneopticalsystem(IHOS)techniquethatmodulatesbioreporterbioluminescencepriortophotoconversion[60].AMOEMSmodulator/solidstatephotodetectorinterfacehasbeentestedwithaLuxbioreporterandaminimumdetectablesignalof109photons/sec/cm2wasdemonstrated.Toaccommodatemultiplexed,multi-analytesensingonasinglechip,Eltoukhyetal.[61]designeda128channelarrayCMOSmicroluminometercapableofholdingandindividuallysensingmultiplebioreporterssimultaneously,thusenablinghighdensityfingerprintingofsamplechemicalmakeupusinganyofthemanydifferentlyanalyte-specificbioreportersavailable,allwithinasinglelab-on-a-chipplatform.Avalanchephotodiodes(APDs)mayalsobeofutilitytobioreportersensingastheycanbedesignedforphotoncounting,muchlikeaphotomultipliertube,butinaminiaturizedstandalonedesign[62].APDscurrentlyrepresentthemostsensitivesolid-statedevicesavailableandcanachievequantumefficienciesgreaterthan90%.However,theyrequirehigheroperatingvoltages,generateexcessivebackgroundnoisethatmaymasklowlevelsignalsgeneratedfrombioreportercells,andtheircomplexcircuitrytranslatesintohighcost.Danieletal.[22]havepreliminarilytestedanAPDinconjunctionwithastressresponsiveLuxbioluminescentbioreporterwithina10μLsamplechamberanddemonstratedsufficientsensitivityatlowpart-per-millionconcentrationsofanalidixicacidinducer.Thisgrouphasalsorecentlydevelopedanintegratingspheredevicecapableofmeasuringabsolutephotonnumbersemanatingfrombioluminescentcells,which,althoughtoocomplexandfragiletoBioreporterinterfaceserveasabiosensor,shouldfindimportantutilityinshapingfactorsfundamentaltobiosensorengineeringsuchasquantumyieldandminimumsignaldetectionparameters[63].02.FireflyLuciferase(Luc)Fireflyluciferase(Luc)isthebeststudiedofalargenumberofluminescentproteinstobediscoveredininsects.Theinsectsrepresentalargerelatedgroupofbioluminescentorganisms,withover2,500speciesreportedtobecapableofgeneratinglight[64].Whilethevastmajorityoftheseluminescentreactionsremainunstudied,theexceptionisintheorderColeoptera(beetles)wheresystemshavebeencharacterizedforthechickbeetles,railroadworms,andfireflies(predominantlyPhotinuspyralis)[65].Firefliesproducelightinanorgancalledalantern,usingtherapidintroductionofoxygenasatriggerforluminescenceinordertoattractmatesaswellasdeterpotentialpredators[66].03.Thefirststudiesofthemechanismbehindinsectluminescencewerecarriedoutinthelate1800’sbyRaphaelDuboisusingthegroundupabdomensfromtheelanteridaebeetle.ItwasDuboiswhofirstproposedtheexistenceofasystememployingaluciferaseandaluciferinfortheproductionoflight.ThenextadvancecamefromNewtonHarvey,who\nreportedonthespecificityofluciferase/luciferininteractionsandconfirmedtherequirementformolecularoxygen[65].Inthemid1900’sWilliamMcElroybeganwhatwastobealongandsuccessfulcareerworkingwithfireflyluciferasebydiscoveringtherequirementthatATPbeinvolvedintheluminescentreaction[67].Basedinpartonthesefindings,hisgroupsoonproposedthatthebioluminescentreactionoccurredviaatwostepprocess[68]andwasthefirsttodeterminethestructureofthefireflyluciferinas2-(4-hydroxybenzothiazol-2-yl)-2-thiazolineacid[69]—commonlyabbreviatedasLH2intheliteraturetosignifyreducedluciferin.Inthelate1960’sand1970’sthemechanismunderlyingtheluminescentreactionwasreported[70,71],aswastheconfirmationoftheintermediateproductsofthisproposedreaction[65].Themechanismwasfinallysecuredin1980whenoxyluciferinwasisolatedasapurifiedproductoftheLH2luminescencereaction[72].Thelatestadvanceintheunderstandingoffireflyluciferasecamein1996whenContietal.[73]publishedthecrystalstructureoftheluciferaseataresolutionof2.0.Thisopenedthedoorfortargetedmutagenesisinvestigationsandgaveresearchersthefirstlookatthestructureofthisreporterprotein.00.TheLucproteincatalyzestheoxidationofthereducedluciferin(LH2)inthepresenceofATP-Mg2+andoxygentogenerateCO2,AMP,PPi,oxyluciferin,andyellow-greenlightatawavelengthof562nm(Figure3).ItisimportanttonotethatLH2isachiralmolecule,andwhileboththeDandLformscanbindtoLucandparticipateinadenylationreactions,onlytheDformiscapableofcontinuingoninthereactiontogeneratelight[65].Thisreactionoccurswithaquantumyieldof0.88,thehighestofanycharacterizedluminescentsystemwithnearlyonephotonproducedperoxidizedluciferin[73].Becauseofthehighquantumyield,thereactioniswellsuitedtouseasareporterwithasfewas10-19molofluciferase(2.4×105molecules)abletoproducealightsignalcapableofbeingdetected[74].01.Ithasbeenknownsincetheearly1950’sthatthechemicalreactionunderlyingfireflyluminescenceisatwo-stepprocessthatfirstrequiresadenylationofLH2followedbyoxidationandtheproductionoflight[68].Priortotheinitiationofthereaction,theLucproteinmustfirstbindtoLH2.However,atthistimeitisnotyetcapableofundergoingoxidationorproducinglight.ThefirststepinthegenerationoflightistheadenylationoftheboundLH2withthereleaseofpyrophosphate[75].ThefunctionofthisadenylationistoincreasetheacidityoftheC4protonofthethiazolineringonLH2.ThisallowsforremovalofaprotonfromC4causingformationofacarbanion[76].Thiscarbanionisthenattackedbyoxygen,displacingAMPanddrivingtheformationofacyclicperoxidewithassociatedcarbonylgroup(adioxetanonering).Asthebondssupportingthisstructurecollapse,itbecomesdecarboxylated,releasingCO2andforminganelectronicallyexcitedstateofoxyluciferinineithertheenolorketoform[75].02.Figure3.Thebioluminescentreactioncatalyzedbyfireflyluciferase.Theluciferaseproteinholdsthereducedluciferintoallowforadenylation(a).Thisprocessisfollowedbyadeprotonationreactionthatleadstotheformationofacarbanion(b)andattackbyoxygen(c),drivingtheformationofacyclicintermediate(d).Asthisintermediatedecays,carbondioxideisreleased,formingtheexcitedstateluciferinineithertheketo(e)orenolate(f)form.UsedwithpermissionfromBranchinietal.[77].\n00.Thekineticsofthisreactioncanbealteredbyvaryingtheconcentrationofthesubstrates,withlowconcentrations(inthenMrange)showingsteadylightproductionandhighconcentrations(μMrange)producingabrightflashfollowedbydecayto5–10%ofthemaximum[78].Therearemultiplepossibleinhibitorycompoundsthatcouldberesponsibleforthekineticprofilegeneratedunderhighsubstrateconcentrations.Ithaspreviouslybeenshownthateventhoughoxyluciferinisanaturalproductoftheluciferasereaction,itiscapableofremainingboundasaninhibitortoenzymaticturnover[79].Thesamewasfoundtobetrueofanotherpotentialbyproduct,L-AMP,whichcanaccountforupto16%oftheproductformedduringtheluminescentreaction[80].Thismay,inpart,explainhowtheadditionofCoAtotheluminescentreactioncanresultinimprovedperformance.WhenCoAisaddedduringtheinitialstepsofthereaction,itpreventsthefastsignaldecaynormallyobserved,andwhenitisaddedfollowingthisdecayitcanpromotere-initiationoftheflashkinetics.ThiscanbeattributedtoCoA’sinteractionwithL-AMPtoformL-CoA,resultinginturnoveroftheLucenzymeandreoccurrenceoftheluminescentreaction[81].01.Insects,andspecificallybeetles,thatproduceluminescencearequitediverseinthecolorstheyarecapableofproducing.Itwasoriginallybelievedthatthecolorsweretheresultofdivergentluciferasestructures,however,thesequencesoffourluciferasegenesfromPyrophorusplagiophthalamuswithfourdifferentemissionspectraweresequencedanditwasfoundthattheysharedupto99%aminoacididentity[82].Therearecurrentlythreemechanismsthathavebeenproposedtoexplainthemultiplebioluminescentcolorations:theactivesitepolarityhypothesis[83],thetautomerizationhypothesis[84],andthegeometryhypothesis[85].02.Theactivesitepolarityhypothesisisbasedontheideathatthewavelengthoflightproducedisrelatedtothemicroenvironmentsurroundingtheluminescentproteinduringthereaction.Innon-polarsolventsthespectrumisshiftedtowardsblueandinpolarsolventsitismorered-shifted.Itisquestionable,however,ifpolarityfluctuationscanaccountforlargescalechangeslikethosethathavebeenobservedinP.plagiophthalamus.Thetautomerizationhypothesisstatesthatthewavelengthoflightproducedisdependentonwhethereithertheenolorketoformoftheluciferinisformedduringthecourseofthereaction.Arecentstudyhasreportedthatbyalteringthesubstrateofthereactiontheketoformoftheluciferincanproduceeitherredorgreenlight,makingthishypothesisunlikely\n[86].Finally,thegeometryhypothesissuggeststhatthegeometryoftheexcitedstateoxyluciferinisresponsiblefordeterminingtheemissionwavelength.Ina90°conformationitwouldachieveitslowestenergystateandredlightwouldbeproduced,whereasintheplanarconformationitwouldbeinitshighestenergystateandgreenlightwouldbeproduced.Intermediatecolorswouldbetheresultofgeometriesbetweenthesetwoextremes[64].00.LucbiosensorsandapplicationsFireflyluciferasemakesanexcellentreporterforthereasonspreviouslydiscussed,however,themajorhurdlehasalwaysbeentheexpressionofthereporterinreal-timeduetotherequirementofaseparateluciferin.Becauseofthis,themajorityofhistoricalstudiesinbacteriahavefocusedontheuseofLucoutsideofthecellininvitroreactions,preventingtheabilitytodetectexpressioninreal-time.However,thebrightnatureandquickreactiontimeofLucmakeitanexcellentcandidateforfast,large-scaleapplicationssuchasimmunoassays.Anadvantageofthistypeofsystemisthatthebioluminescentsignalcanbecorrelatedtotheconcentrationofthecompoundofinteresttoallowforrapidquantificationwithlittletonobackground[87].01.TheuseofLucinvivoinbacterialsystemsovercomesthepreviousdetractionsassociatedwiththeuseofafireflyluciferaseinbacterialcells,however,thereisstillnoknownwaytogeneratetheluciferininabacterialsystemdenovo.Ithasrecentlybeenreportedthatbacterialcellscanbedehydrated,whichincreasesporesizelargeenoughforuptakeoftheluciferin,andthenre-hydratedwhilecontainingtheluciferinwithoutilleffects.Thispresentsasimpleandinexpensivemethodforintroductionoftheluciferinsubstrate.BecauseoftheefficiencyoftheLucreaction,itisevenpossibletovisualizethelocationoftheLucproteinspatiallywithinindividualcellsusingthismethod[26].AnotherpromisingadvancehasbeentheisolationandcharacterizationoftheluciferaseregeneratingenzymefromP.pyralis[88].Ithasbeensuggestedthatco-expressionofthisenzymealongwithLuccouldallowforcontinualbioluminescentproductionwithouttheneedforre-additionoftheluciferinsubstrate[89].02.Intermsofbiosensors,Lucisnotroutinelyusedsinceitsrequirementforluciferinisahindrancetotheautonomousmonitoringprincipleofthebiosensor.Forexample,Ikariyamaetal.[28]immobilizedluc-incorporatedE.colibioreportersinadialysismembraneattachedtothedistalendofafiberopticcabletomonitorforbenzenederivativesinliquidtestsamples.Thefiberopticcablewasfirstimmersedinthesampleforafixedamountoftime,andthenluciferinwashandinjectedalongwithacelllysisagenttoinstigatethebioluminescentresponsethatwasthensubsequentlymeasuredbyaPMT.Obviously,thehands-onmanipulationsdonotcontributetoanidealbiosensorformat.Maehanaetal.[30]solvestheextraneousluciferinadditionsomewhatbyincorporatingmicrofluidicsintotheirchip-basedbiosensor.Variousmicrowellspatternedontoasiliconwaferholdthesampleandthebioreporterbacteria(agenotoxicsensingE.colistrain),andalthoughtheluciferinsubstrateislateraddedwithinthesamemicrowells,onecouldenvisionseparatewellsandmicrofluidicmixingasameanstowardsforminganall-inclusivebiosensor.Indeed,Meietal.[90]describestechniquesfordoingso.Measurementofluminescencewasalsoperformedoff-chipwithaCCDcamera,butagain,previouslymentionedmicroluminometerscouldbedirectlyinterfacedtoformatruebiosensor.\n00.AequorinWhiletheluminescentproductoftheaequorinproteinhasbeenknownsincemanfirstsetouttothesea,itwasnotuntil1962thattheproteinitselfwasfirstisolated[91].Aequorinisacalcium-sensitiveluminescentproteinnativetothejellyfishAequoreaaequorea.Despiteknowledgeofitsexistencetherewasoriginallymuchdifficultyinisolatingtheproteinbecauseitdidnotuseaconventionalluciferase-luciferininteractiontoproducelight,butratherreliedonthepresenceofcalciumionstoexciteapre-boundfluorophore(Figure4)[92].Furtherstudyofthemechanismbehindaequorin’sluminescentnaturewasdelayeduntilthefirstpracticaluseoftheisolatedproteinwasdescribedin1967.Itwaspublishedthataequorincouldbeusedasabioreportertomonitorcalciumsignalinginthemusclefibersofbarnaclesfollowingdirectmicroinjection[93].Thisdemonstrationofaequorin’sapplicationleadtoarenewedinterestinthemechanismunderlyingitsluminescenceandsetoffalonghistoryofitsuseasareporterprotein.01.Dueinparttothechallengesassociatedwithgatheringlargeamountsofproteinfromthenativejellyfish,itwasnotforanotherfiveyearsthatthestructureofthechromophorewasdiscoveredtobecoelenterazine[95],thesamemoleculethatwasisolatedfromtheluminescentsquidWatasenia[92]andchemicallysynthesizedbyInoueetal.[96]thatsameyear.Withthechemicalsynthesisofcoelenterazinepublished,themajorhurdletoaequorin’susewasthedifficultyinobtainingusableamountsofproteinfromthejellyfish.ThiswasovercomeseveralyearslaterwhenthecDNAoftheaequorinproteinwasfirstclonedandexpressedinE.coli[97,98].Followingthis,thecrystalstructurewasdeterminedin2000[99],openingthewaytoafullunderstandingofthestructureandfunctionofthisimportantprotein.02.Forsuccessfulproductionoflight,theaequorinapoproteinmustbondwithcoelenterazineandbetriggeredbycalcium.Theresultofthisreactionistheproductionofbluelightatawavelengthof465nm,theevolutionofCO2,andtheconversionofmatureaequorintobluefluorescentprotein(theaequorinapoproteinnowboundtocoelenteramide)[100].Theemissionoflightatthiswavelengthrequiresthegenerationofanexcitedstatemoleculethatmustbepopulatedbyachemicalreactionwithatleast70kcal/molofexergonicity.Thismuchenergycannotbeexplainedsimplybythebindingofcalciumtotheprotein,indicatingthattheluminescencereactionisproceededbyanintramolecularchemicalreaction[101].Thebindingofcalciumfunctionsasthetriggerofthisreaction,whichinturnproducesluminescence.03.Figure4.Thebioluminescentreactioncatalyzedbyaequorinisdependentonthepre-boundcoelenterazineluciferin.Uponcalciumbinding,thestericorientationoftheluciferinisdisturbedleadingtoacyclizationreactionthatirreversiblyformsadioxetanoneintermediate.Asthisintermediatedecays,carbondioxideisreleasedandasinglet-excitedanionisproduced,followedbythegenerationoflightat465nm.UsedwithpermissionfromJonesetal.[94].\n00.Theproposedmechanismofthistriggeristheresultofthestructuralorientationofthecalciumbindingsitesinrelationtothehydrophobicresiduesoftheproteinbackbonethathavebeenshowntostabilizecoelenterazineinthehydrophobiccavity.TheloopstructuresintheirassociatedEF-handmotifsarenotproperlypositionedtobindcalciumintheirnativestate.Uponbindingtheremustnecessarilybechangesinthespatialrelationshipbetweenthecoordinatingaminoacidresiduestoaccommodatethecalciumion[101].ThekeyresiduesinvolvedinthisshiftappeartobeHis169andTyr184,sincethesehavepreviouslybeenestablishedascoordinatingthepositionofcoelenterazineinthehydrophobiccavity[99].Becauseoftherigidstabilityimpartedtocoelenterazinebytheseresidues,itcanbeexpectedthatanyrearrangementduetocalciumbindingwouldthereforeresultinthereorientationofcoelenterazine.01.TheacceptedchemicalreactionofcoelenterazinetoproducelighthasbeensuggestedbyMcCapraandChang[102]andrelatedtothestructuralchangesresultingfromcalciumbindingbyVysotskiandLee[101].Briefly,followingthestructuralchangesimpartedbycalciumbinding,thesharedhydrogen-bondingnetworkbetweencoelenterazine,Tyr184,andHis169becomesdisrupted.ThisforcesHis169tobecomepartiallyprotonatedwhileTyr184assumesanegativecharge.ThehydroperoxideattachedtocoelenterazineatC2willthenprotonateTyr184inareactionmadepossiblebecausetheyshareasimilarpKinthehydrophobiccavityundertheseconditions.TheresultingnegativechargeonthehydroperoxidethenundergoesanucleophilicattackonC3ofcoelenterazinetoirreversiblyformadioxetanoneintermediate.Thiscyclizationprovidestheenergyrequiredtodrivetheproductionoflightfromtheoverallreaction[101].02.Asthebondsbetweennewlycyclizedoxygenscollapse,theperoxideisreleasedasCO2and\nasinglet-excitedanionisproduced.Thisanioniscapableofemittinglightdirectlyoritmayfirstbeprotonated(presumablybytransferoftheprotonoriginallytransferredtoHis169)toproducesinglet-excitedcoelenteramide,whichisalsocapableofemittinglight[103].Thefactthattherateofthisreactionisdependentontheconcentrationofcalciumionshasmadeitanattractivecompoundforuseinreportersystems.Whenexposedtosaturatingconcentrations(>100μM),thereactionisalmostinstantaneous,however,whentheconcentrationislower,thereisarelationshipbetweenthefractionalrateofconsumptionandcalciumconcentration.Becauseonlyonephotonisproducedperreactedproteinundercoelenterazinelimitingconditions,thisratecanbeusedtodeterminetheinitialconcentrationofcalciumions[104].AlthoughthisreactionisinhibitedbyMg2+,itcanalsobetriggeredbyEu2+,Sr2+,andBa2+,makingaequorinamultifacetedreporterprotein[105].00.Althoughaequorinmaybethebestcharacterizedofthecalciumdependentphotoproteins,itisbynomeansunique,norisittheonlyphotoproteintobefunctionallyemployedasareporter.Morethan25differentcoelenterateorganismshavebeenshowntopossessthistypeofprotein[101],whilesevenhavebeenisolatedthusfar:thalassicolin,aequorin,mitrocomin,clytin,obelin,mnemiopsin,andberovin[106].Alongwithaequorin,mitrocomin,clytinandtwohomologsofobelinhavepublishedcDNAsequences[101].Allofthesecalciumdependentphotoproteinsaresmall,singlepolypeptideswithmolecularweightsrangingfrom21.4to27.5kDaandallcontainthreecalciumbindingsiteswithaffinities(kd)rangingfrom1to10μM[107].Theconservedstructureandluminescentsystemssharedbetweentheseproteinsgreatlycontributedtothediscoveriesbehindtheirmechanismofaction.Hadresearchersworkingontheluminescentsystemsofdifferentproteinswithsimilarstructuresandmechanismsnotbeenabletosharetheirdiscoveries,theremaynotyethavebeenanexplanationforthemysteriousmeansbehindthisfascinatingphenomenon.01.AequorinbiosensorsandapplicationsHistorically,aequorinhasfounduseasacalciumreporterinavarietyofsystems.Evenrecentlyitisstillbeingemployedinthisfunctiontomonitorhowvariousfactorsaffecttheconcentrationofcalciuminamodelbacterium[32].However,thisdynamicreporterisnotlimitedtojustcalciumdetection.OneofthemoreinterestingdetectionsystemsemployingaequorinistheCellularAnalysisandNotificationofAntigenRisksandYields(CANARY)assay.CulturedBcellswithantigenstovariouspathogenicbacteriaareengineeredtoexpressaequorin.Asaresultofcontactbetweenthecellsurfaceantigensandthebacteriaofinterest,aninternalsignalingcascadeissetoffthatultimatelyreleasescalciumionsandtriggerstheproductionoflightviaaequorin[34].Theassayhasbeenintegratedintoabiosensor-likedevicereferredtoasPANTHER(PathogenNotificationforThreateningEnvironmentalReleases).AnairsamplerbringspathogensincontactwiththeBcellreportersandcorrespondingsignalemissionismeasuredbyaluminometer.Currently,21differentpathogenscanbedetectedwithinathreeminuteassay.02.Aequorinisalsobecomingmorepopularasaquantitativelabelinbindingassays.Thereareseveralattributesthatmakeitattractiveforthisfunction,nottheleastofwhichisthatitprovidesforsensitivitydownto10-21molwhileremainingfreefromthehealthhazardsnormallyassociatedwiththeradioactivelabelspreviouslyemployedinthisfunction.Ithasalsoprovenitselftobequitestableovertimewith85%ofitsoriginalactivityretainedover\nonemonthofstorageat4°Candashelflifeofgreaterthanoneyearfollowinglyophilization.Inaddition,thebioluminescentnatureofaequorin’slightproductionmeansthereisvirtuallynobackgroundinbiologicalsamplescomparedtothelevelofnaturallyfluorescentmoleculespresentinthesesystems[106].Takentogether,theseattributescanmakeaequorintheperfectchoiceforrapiddetectionoflowlevelcompoundsorelementalexposuresinlivingsystems.00.GreenFluorescentProtein(GFP)Greenfluorescentprotein(GFP)wasfirstdiscoveredduringinvestigationintotherelatedchemiluminescentproteinaequorinfromthejellyfishAequoreavictoria[91].SincethattimeithasbeenrealizedthattheAequoreaderivedGFPisjustoneofalargerfamilyofhomologousfluorescentproteinscapableofproducinglightinavarietyofcolorsduetoalterationsinthecovalentstructureoftheirchromophoresordifferencesinthesurroundingnon-covalentenvironment[108].Despiteitsearlydiscovery,theuseofGFPasaresearchtooldidnotbeginuntilafteritwassuccessfullyclonedalmostthirtyyearslater[109].However,soonafterthecDNAwasavailable,itsfunctionwasvalidatedinbothprokaryoticandeukaryoticorganismsbyChalfieetal.[110],andsincethattimeithasbeenusedinnumerousapplicationsincludinglocalizationstudies,proteinexpressionmonitoring,asareportergene,asaviabilitymarker,todetecttheonsetofapoptosis,andmanyothers(reviewedin[111]).01.GFPhasbecomeafavoredtoolformolecularstudiesbecauseitisautofluorescentanddoesnotrequiretheadditionofanycofactorstoproperlyfunctioninexogenoussystems[112].However,itdoesrequireactivationbyanexcitationlightsourcebeforeitssignalcanbemeasured.Itisalsoresistanttoheat,alkalinepHfluctuations,chaotropicsalts,organicsolvents,andmanyproteases[113],anditsexpressioninexogenousenvironmentsisprimarilynon-toxic[111]withafewprovenexceptions[114,115]thatmaybeduetoproductionofhydrogenperoxideasaby-productofsynthesis[116].However,GFP’sslowposttranslationalchromophoreformation,oxygenrequirement,andpotentialdifficultyindistinguishingitssignaturefrombackgroundfluorescencecanbeproblematic[111],especiallyinaerobicorganisms.Becauseofthis,alternatefluorescentproteinssuchasthosebasedonflavinmononucleotideareoftenusedwhendevelopingreportersfromanaerobicorganisms[117].Time,though,hasproventhatthebenefitsoutweighthechallengesformostinvestigators,andGFPhastakenitsplaceasoneofthemostpopulartoolscurrentlyavailableforcellularandmolecularsignalingresearch.02.Wild-typeGFPproteinisabletoabsorblightattwodifferentwavelengths.Aminorpeakoccursat475nmwiththemajorpeakat397nm(Figure5).Regardlessofwhichexcitationwavelengthisused,emissionoccursonlyat504nm[118].Thedifferentabsorptionpeakshavebeenattributedtovaryingprotonationstatesofthefluorophore,withtheneutralstatecorrespondingtothemajorabsorptionpeakat397nmandtheanionicformcontributingtotheminorpeakat475nm[119].Thelargeshiftbetweenthemajorabsorptionpeakat397nmandtheemissionat504nmcanbeattributedtoanexcitedstateprotontransferfromthesidechainoftheTyr66residueofthefluorophore[120]tothecarboxylateoxygenofGlu222[111].03.Figure5.ThedualabsorptionpeaksintheGFPspectraaretheresultofdifferentchargestatesintheGFPchromophore.Theneutralstate(left)isresponsibleforthemajorpeakat\n397nmwhiletheanionicform(right)isresponsiblefortheminorpeakat475nm.Regardlessofthechromophorechargestate,emissionoccursat504nm.AdaptedfromScholarpedia.org.00.Basedonthisinterconversionofthefluorophore,athreestatemodelofphotoisomerizationhasbeenputforwardtoexplainthechemicalbasisforshiftsinabsorption.Thismodelstatesthatexcitationoftheneutralstatefluorophorecancauseconversiontotheanionicformviaanintermediate[120].Theintermediateisstructurallysimilartotheneutralformofthefluorophore,buthasbecomedeprotonatedatthephenolgroupofTyr66[111].Excitationoftheanionicformiscapableofdirectlyemittingfluorescence,whiletheneutralstatemustnecessarilyconvertintoanexcitedformofthisintermediatepriortoemission[121].Whileitispossiblefortheneutralformtoconverttotheanionicformfollowingexcitation,thisisnotthemostfavorablereaction.Themajorityofexcited,neutralfluorophoreswillconvertbrieflytotheintermediatestate,wherefluorescencewilloccur,followedbyreversionbacktotheneutralstate[120].Interconversionbetweentheneutralandanionicstatesispossible,butrequiresbothprotontransferandconformationalchangetooccur[111].Similarly,themajorityofanionicfluorophoreswillreverttothegroundstatefollowingfluorescentemission,butcouldinsteadundergoaconformationalchangetotheintermediatestateandthencontinueontoadoptaneutralchargestate[120].01.Inawild-typepopulation,GFPcontainsa6:1ratioofneutraltoanionicfluorophores[116],explainingwhythemajorabsorptionpeakisfoundat397nm.However,uponextendedultraviolet(UV)illuminationthispeakwillbegintodecreaseandtheminorpeakwillincrease[122].Thisbehaviorcorrespondstothephotoisomerizationoftheneutralfluorophoreformresponsibleforthemajorabsorptionpeakbeingconvertedintotheanionicformasdiscussedabove.WhilethephotoisomerizationcharacteristicsofGFPcanproveproblematicforquantification,theydoallowforthestudyofproteinmovementbyexcitationwithintenseUVlightat397nmfollowedbyexcitationat475nminordertotrackthemovementofthephotoisomerizedfluorophores[123].02.FollowingthediscoveryofGFP,itwasquicklyproventhataminoacidsubstitutionswerecapableofalteringitsfluorescentcharacteristics.Sincethattime,versionsofGFPhavebeendevelopedthatfoldmoreefficientlyathighertemperatures[124],avoiddimerizationathighconcentration[125],orfluoresceintheblue[126],cyan[127],oryellow[128]wavelengths.Homologshavesincebeendiscoveredthatfluoresceintheredrangeaswell[129].Thehistoryanddevelopmentofthesevariantsisoutsidethescopeofthisreview,butanexcellentclassificationhasbeenmadebyTsien[116]andabridgedbyZimmer[111]dividingtheknownvariantsintosevenclassesbasedonspectralcharacteristics.Whenappliedinconcert,thesevariantsoftheGFPproteinhavegivenresearcherstheabilitytousemultipleGFP-basedreportersinthesameenvironmentatthesametime,improvingthe\nusefulnessandrangeofthisalreadydynamicprotein.00.GFPbiosensorsandapplicationsSinceitwasfirstdemonstratedthatGFPcouldbeexpressedinE.coli[110],ithasbeenusedincountlessexperimentsinorganismsrangingfrombacteriatoculturedhumancellsandevencommercializedforsaleindesignerpets.Asidefrombasiclocalizationassays,thetwomainusesofGFPasareporterfocusoneithertheinductionorsuppressionofGFPexpressiontoindicateinteractionwithananalyteofinterest.OneofthemorepopularassaysfocusingonthesuppressedexpressionofGFPisthedeterminationofcellviability.BacteriaexpressingGFPareexposedtocompoundsofinterestandtheseverityoftoxicityisdeterminedbymonitoringthedecreaseinfluorescentexpression[17].Thisallowsresearcherstoprocessalargenumberofsamplesveryquicklyinanautomatedfashion.Asthebacteriaarekilledortheirmetabolismisslowedbyinteractionwithtoxicsubstances,theoverallamountoffluorescencewilldecrease.Thistypeofassayhastheaddedadvantageofdeterminingtheamountofagivencompoundthatwillbebioavailabletotheorganismbeingtested.01.TheinverseofthistypeofexperimentistoinducetheexpressionofGFPasapositiveresult.InthiscasethegeneencodingforGFPisplacedunderthecontrolofageneticpromoterthatrespondsspecificallytotheanalyteofinterest.Thisallowsforvisualdetectionwhentheorganismisexposedtothetargetanalyte.Anadvantageofthistypeofexperimentaldesignisthattheamountoffluorescenceproducedcanbecorrelatedtotheconcentrationofanalyte,allowingforanapproximatequantification[130].ItisalsopossibletousethefluorescenceofGFPasamarkertoisolatethosemembersofthecommunityshowingaresponsebyusingfluorescenceactivatedcellsorting(FACS)[131].UsingGFPtoconfirminteractionwithacompoundofinterest,quantifytheamountofexposure,andisolatingexposedcellssimultaneouslyillustratesitsdynamicfunctionalityinmodernbioreporterresearch.02.BiosensorintegrationofGFP-basedbioreporters,however,remainsfairlylimitedduetosignaloutputbyGFPbeingcontingentuponanexcitationlightsource.Thus,theseset-upsrequireoneenergysourcetoexciteGFPandanothertomeasureGFP,andtheassociatedcomplexityandbulkinessareoftennotsuitableforbiosensorapplications.Therehasbeensomeapplicationsuccessusingfiberopticcableswhereonecableisusedforexcitationandanotherforemissionmeasurement.Shettyetal.[19],forexample,constructedaGFP-basedE.colisensitivetothemonosaccharideL-arabinoseandentrappeditwithinadialysismembranetiedtothetipofafiberopticbundle.FibersterminatingatatungstenlampservedastheexcitationsourcewhileseparatefibersterminatingataPMTservedasthedetector.ImmersingtheE.colientrappedsensorendofthefiberbundleinliquidwasthenshowncapableofdetectingL-arabinoseatvaryingconcentrations.Toimprovesensitivity,Knightetal.[21]bypassedfiberopticsbyinterfacingaPMTdirectlywithaflow-cellcontainingayeast-baseGFPbioreportersensitivetoDNAdamaginggenotoxiccompounds03.Anargonlaserprovidedtheexcitationsource.Realizingthenecessityforminiaturizationandlesscomplexity,newfluorescencedetectiontechniquesbasedonsmallfootprintbiosensorcompliantplatformsarebecomingsomewhatavailable.Complementary–metal–oxide–semiconductor(CMOS)photodetectorsbettertunedtothegreenlightsignatureprovideenhanceddetection[132],asdoavalanchephotodiodes,while\ntightlyfocusedlaserbeamsprovideexcitationdowntothesinglecelllevel[133].However,incorporatingallnecessarycomponentsintoatruebiosensorformatremainschallenging.Rothertetal.[23]developeda12cmdiametermicrofluidics-basedlab-on-a-compactdisk(CD)devicethatmicrocentrifugallymovedandmixedmicrolitervolumesofwatertestsampleswithaGFPbioreportersensitivetoarsenic(Figure6).AlthoughsensingwasaccomplishedwithafiberopticprobepositionedabovetheCD,thedevicecouldlikelybeeasilyreconfiguredtoaccommodateachip-basedsensortopromotefurtherminiaturization.00.Figure6.A)Alab-on-a-CDmicrofluidicdeviceusedinconjunctionwithGFPbioreporterssensitivetowardsarsenic.B)Aclose-upviewofthemicrofluidicchannelingthatpermitssampleandbioreportermixing.UsedwithpermissionfromRothertetal.[23].01.AlternativeBioreporterSystemsThereportersystemscoveredindetailinthisreviewrepresentthemajorityandmostpopularsignalingproteinscommonlyusedbyinvestigatorsforopticalbiosensingapplications.Alongwithhomologuestotheproteinsreportedhere,therearemyriadothersystemscapableofeitheractingasareporterorbeingcomplexedtoatransducerforbiosensormonitoring.Theseincludeβ-galactosidase,β-glucuronidase,catechol2,3-dioxygenase,chloramphenicolacetyltransferase,theicenucleationproteinInaZ,UroporphyrinogenIIImethyltransferase[134,135]andmorerecently,engineeredinfrared-basedfluorescentproteins[136].Eachofthesesignalingelementshasitsownadvantages,disadvantages,andrichhistoryofdiscoveryandusejustastheonescoveredinthisreview.We,asinvestigators,arefortunatetoworkinatimewhensomanydiversereportersareavailable.Butsincecenturiesagowhenthefirstworkbeganonthestudyoftheseinterestingsystems,ithasneverstopped.Newdiscoverieswillassuredlyoccurtodevelopnovelreportersystemsandaddtothisalreadyimpressiveanddynamicrangeofbiosensingtools.02.AcknowledgementsThisworkwassupportedbytheNationalScienceFoundationDivisionofChemical,Bioengineering,Environmental,andTransportSystems(CBET)underawardnumberCBET-0853780andtheNationalInstitutesofHealth,NationalCancerInstitute,CancerImagingProgram,awardnumberCA127745-01.ReferencesandNotes1.Bjerketorp,J.;Hakansson,S.;Belkin,S.;Jansson,J.K.Advancesinpreservationmethods:keepingbiosensormicroorganismsaliveandactive.Curr.Opin.Biotechnol.2006,17,43-49.2.Premkumar,J.R.;Lev,O.;Marks,R.S.;Polyak,B.;Rosen,R.;Belkin,S.Antibody-basedimmobilizationofbioluminescentbacterialsensorcells.Talanta2001,55,1029-1038.3.Kandimalla,V.B.;Tripathi,V.S.;Ju,H.X.Immobilizationofbiomoleculesinsol-gels:biologicalandanalyticalapplications.Crit.Rev.Anal.Chem.2006,36,73-106.4.Kuncova,G.;Podrazky,O.;Ripp,S.;Trogl,J.;Sayler,G.;Demnerova,K.;Vankova,R.Monitoringtheviabilityofcellsimmobilizedbythesol-gelprocess.J.SolGelSci.Technol.2004,31,335-342.5.Flickinger,M.C.;Schottel,J.L.;Bond,D.R.;Aksan,A.;Scriven,L.E.Paintingandprintinglivingbacteria:engineeringnanoporousbiocatalyticcoatingstopreservemicrobialviabilityandintensifyreactivity.Biotechnol.Prog.2007,23,2-17.\n6.Yoo,S.K.;Lee,J.H.;Yun,S.S.;Gu,M.B.Fabricationofabio-MEMSbasedcell-chipfortoxicitymonitoring.Biosens.Bioelectron.2007,22,1586-1592.7.Weibel,D.B.;DiLuzio,W.R.;Whitesides,G.M.Microfabricationmeetsmicrobiology.Nat.Rev.Microbiol.2007,5,209-218.8.Salalha,W.;Kuhn,J.;Dror,Y.;Zussman,E.Encapsulationofbacteriaandvirusesinelectrospunnanofibres.Nanotechnology2006,17,4675-4681.9.Chu,Y.F.;Hsu,C.H.;Soma,P.K.;Lo,Y.M.ImmobilizationofbioluminescentEscherichiacolicellsusingnaturalandartificialfiberstreatedwithpolyethyleneimine.Bioresour.Technol.2009,100,3167-3174.10.Yeni,F.;Odaci,D.;Timur,S.Useofeggshellmembraneasanimmobilizationplatforminmicrobialsensing.Anal.Lett.2008,41,2743-2758.11.Lee,J.H.;Gu,M.B.Anintegratedminibiosensorsystemforcontinuouswatertoxicitymonitoring.Biosens.Bioelectron.2005,20,1744-1749.12.Wu,J.Interactionsofelectricalfieldswithfluids:laboratory-on-a-chipapplications.IETNanobiotechnol.2008,2,14-27.13.Hunt,T.P.;Issadore,D.;Westervelt,R.M.Integratedcircuit/microfluidicchiptoprogrammablytrapandmovecellsanddropletswithdielectrophoresis.LabChip2008,8,81-87.14.Date,A.;Pasini,P.;Daunert,S.Constructionofsporesforportablebacterialwhole-cellbiosensingsystems.Anal.Chem.2007,79,9391-9397.15.Mehrvar,M.;Abdi,M.Recentdevelopments,characteristics,andpotentialapplicationsofelectrochemicalbiosensors.Anal.Sci.2004,20,1113-1126.16.Johnson,B.T.Microtoxacutetoxicitytest.InSmall-ScaleFreshwaterToxicityInvestigations,Blaise,C.;Ferard,J.F.,Eds.;Springer:Dordrecht,TheNetherlands,2005;pp69-105.17.Choi,O.;Deng,K.K.;Kim,N.J.;Ross,L.;Surampalli,R.Y.;Hu,Z.Q.Theinhibitoryeffectsofsilvernanoparticles,silverions,andsilverchloridecolloidsonmicrobialgrowth.WaterRes.2008,42,3066-3074.18.Ripp,S.Bacteriophage-basedpathogendetection.InAdvancesinBiochemicalEngineering/Biotechnology:WholeCellSensingSystems,Belkin,S.,Gu,M.B.,Eds.;Springer:NewYork,NY,2009;DOI10.1007/10_2009_7.19.Shetty,R.S.;Ramanathan,S.;Badr,I.H.A.;Wolford,J.L.;Daunert,S.GreenfluorescentproteininthedesignofalivingbiosensingsystemforL-arabinose.Anal.Chem.1999,71,763-768.20.Eldridge,M.L.;Sanseverino,J.;Layton,A.C.;Easter,J.P.;Schultz,T.W.;Sayler,G.S.SaccharomycescerevisiaeBLYAS,anewbioluminescentbioreporterfordetectionofandrogeniccompounds.Appl.Environ.Microbiol.2007,73,6012-6018.21.Knight,A.W.;Goddard,N.J.;Fielden,P.R.;Barker,M.G.;Billinton,N.;Walmsley,R.M.Developmentofaflow-throughdetectorformonitoringgenotoxiccompoundsbyquantifyingtheexpressionofgreenfluorescentproteiningeneticallymodifiedyeastcells.Meas.Sci.Technol.1999,10,211-217.22.Daniel,R.;Almog,R.;Ron,A.;Belkin,S.;Diamand,Y.S.Modelingandmeasurementofawhole-cellbioluminescentbiosensorbasedonasinglephotonavalanchediode.Biosens.Bioelectron.2008,24,882-887.23.Rothert,A.;Deo,S.K.;Millner,L.;Puckett,L.G.;Madou,M.J.;Daunert,S.Whole-cell-reporter-gene-basedbiosensingsystemsonacompactdiskmicrofluidicsplatform.Anal.Biochem.2005,\n342,11-19.24.Engebrecht,J.;Nealson,K.;Silverman,M.,Bacterialbioluminescence:isolationandgeneticanalysisoffunctionsfromVibriofischeri.Cell1983,32,773-781.25.Patterson,S.S.;Dionisi,H.M.;Gupta,R.K.;Sayler,G.S.Codonoptimizationofbacterialluciferase(lux)forexpressioninmammaliancells.J.Ind.Microbiol.Biotechnol.2005,32,115-123.26.Zhang,Y.;Phillips,G.J.;Yeung,E.S.Quantitativeimagingofgeneexpressioninindividualbacterialcellsbychemiluminescence.Anal.Chem.2008,80,597-605.27.Chang,S.T.;Lee,H.J.;Gu,M.B.Enhancementinthesensitivityofanimmobilizedcell-basedsoilbiosensorformonitoringPAHtoxicity.Sens.Actuat.B2004,97,272-276.28.Ikariyama,Y.;Nishiguchi,S.;Koyama,T.;Kobatake,E.;Aizawa,M.;Tsuda,M.;Nakazawa,T.Fiber-optic-basedbiomonitoringofbenzenederivativesbyrecombinantE.colibearingluciferasegene-fusedTOL-plasmidimmobilizedonthefiberopticend.Anal.Chem.1997,69,2600-2605.29.Leth,S.;Maltoni,S.;Simkus,R.;Mattiasson,B.;Corbisier,P.;Klimant,I.;Wolfbeis,O.S.;Csoregi,E.Engineeredbacteriabasedbiosensorsformonitoringbioavailableheavymetals.Electroanalysis2002,14,35-42.30.Maehana,K.;Tani,H.;Kamidate,T.On-chipgenotoxicbioassaybasedonbioluminescencereportersystemusingthree-dimensionalmicrofluidicnetwork.Anal.Chim.Acta2006,560,24-29.31.Ripp,S.;Daumer,K.A.;McKnight,T.;Levine,L.H.;Garland,J.L.;Simpson,M.L.;Sayler,G.S.Bioluminescentbioreporterintegratedcircuitsensingofmicrobialvolatileorganiccompounds.J.Ind.Microbiol.Biotechnol.2003,30,636-642.32.Naseem,R.;Holland,I.B.;Jacq,A.;Wann,K.T.;Campbell,A.K.pHandmonovalentcationsregulatecytosolicfreeCa2+inE.coli.BBA-Rev.Biomembranes2008,1778,1415-1422.33.Heitzer,A.;Malachowsky,K.;Thonnard,J.E.;Bienkowski,P.R.;White,D.C.;Sayler,G.S.Opticalbiosensorforenvironmentalon-linemonitoringofnaphthaleneandsalicylatebioavailabilitywithanimmobilizedbioluminescentcatabolicreporterbacterium.Appl.Environ.Microbiol.1994,60,1487-1494.34.Rider,T.H.;Petrovick,M.S.;Nargi,F.E.;Harper,J.D.;Schwoebel,E.D.;Mathews,R.H.;Blanchard,D.J.;Bortolin,L.T.;Young,A.M.;Chen,J.;Hollis,M.A.ABcell-basedsensorforrapididentificationofpathogens.Science2003,301,213-215.35.Polyak,B.;Bassis,E.;Novodvorets,A.;Belkin,S.;Marks,R.S.Bioluminescentwholecellopticalfibersensortogenotoxicants:systemoptimization.Sens.Actuat.B-Chem.2001,74,18-26.36.Meighen,E.A.Molecularbiologyofbacterialbioluminescence.Microbiol.Rev.1991,55,123-142.37.Boyle,R.Newexperimentsconcerningtherelationbetweenlightandair(inshiningwoodandfish).Philos.T.R.Soc.1666,2,581-600.38.McElroy,W.D.;Strehler,B.L.Bioluminescence.Bacteriol.Rev.1954,18,177-194.39.Doudoroff,M.StudiesontheluminousbacteriaII.Someobservationsontheanaerobicmetabolismoffacultativelyanaerobicspecies.J.Bacteriol.1942,44,461-467.40.McElroy,W.D.;Hastings,J.W.;Sonnenfeld,V.;Coulombre,J.Therequirementofriboflavinphosphateforbacterialluminescence.Science1953,118,385-386.\n41.Strehler,B.L.;Harvey,E.N.;Chang,J.J.;Cormier,M.J.Theluminescentoxidationofreducedriboflavinorreducedriboflavinphosphateinthebacterialluciferin-luciferasereaction.Proc.Natl.Acad.Sci.U.S.A.1954,40,10-12.42.Belas,R.;Mileham,A.;Cohn,D.;Hilmen,M.;Simon,M.;Silverman,M.Bacterialbioluminescence—isolationandexpressionoftheluciferasegenesfromVibrioharveyi.Science1982,218,791-793.43.Fisher,A.J.;Raushel,F.M.;Baldwin,T.O.;Rayment,I.Three-dimensionalstructureofbacterialluciferasefromVibrioharveyiat2.4.ANG.resolution.Biochemistry1995,34,6581-6586.44.Thouand,G.;Daniel,P.;Horry,H.;Picart,P.;Durand,M.J.;Killham,K.;Knox,O.G.G.;DuBow,M.S.;Rousseau,M.Comparisonofthespectralemissionofluxrecombinantandbioluminescentmarinebacteria.Luminescence2003,18,145-155.45.Campbell,Z.T.;Weichsel,A.;Montfort,W.R.;Baldwin,T.O.,Crystalstructureofthebacterialluciferase/flavincomplexprovidesinsightintothefunctionofthebetasubunit.Biochemistry2009,48,6085-6094.46.Baldwin,T.O.;Christopher,J.A.;Raushel,F.M.;Sinclair,J.F.;Ziegler,M.M.;Fisher,A.J.;Rayment,I.Structureofbacterialluciferase.Curr.Opin.Struct.Biol.1995,5,798-809.47.Vervoort,J.;Muller,F.;Okane,D.J.;Lee,J.;Bacher,A.,Bacterialluciferase—AC-13,N-15,andP-31nuclearmagneticresonanceinvestigation.Biochemistry1986,25,8067-8075.48.Nemtseva,E.V.;Kudryasheva,N.S.Themechanismofelectronicexcitationinthebacterialbioluminescentreaction.Russ.Chem.Rev.2007,76,91-100.49.Baldwin,T.O.;Chen,L.H.;Chlumsky,L.J.;Devine,J.H.;Johnston,T.C.;Lin,J.W.;Sugihara,J.;Waddle,J.J.;Ziegler,M.M.Structuralanalysisofbacterialluciferase.InFlavinsandFlavoproteins;WalterdeGruyter&Co.:Berlin,Germany,1987;pp621-631.50.Hastings,J.W.;Nealson,K.H.Bacterialbioluminescence.Annu.Rev.Microbiol.1977,31,549-595.51.Kelly,C.J.;Lajoie,C.A.;Layton,A.C.;Sayler,G.S.Bioluminescentreporterbacteriumfortoxicitymonitoringinbiologicalwastewatertreatmentsystems.WaterEnviron.Res.1999,71,31-35.52.Ripp,S.;DiClaudio,M.L.;Sayler,G.S.Biosensorsasenvironmentalmonitors.InEnvironmentalMicrobiology,2nded.;Mitchell,R.,Gu,J.D.,Eds.;JohnWiley&Sons:Hoboken,NJ,USA,2009;pp.219-239.53.Allen,M.S.;Wilgus,J.R.;Chewning,C.S.;Sayler,G.S.;Simpson,M.L.Adestabilizedbacterialluciferasefordynamicgeneexpressionstudies.Syst.Synth.Biol.2007,1,3-9.54.Nivens,D.E.;McKnight,T.E.;Moser,S.A.;Osbourn,S.J.;Simpson,M.L.;Sayler,G.S.Bioluminescentbioreporterintegratedcircuits:potentiallysmall,ruggedandinexpensivewhole-cellbiosensorsforremoteenvironmentalmonitoring.J.Appl.Microbiol.2004,96,33-46.55.Ivask,A.;Green,T.;Polyak,B.;Mor,A.;Kahru,A.;Virta,M.;Marks,R.Fibre-opticbacterialbiosensorsandtheirapplicationfortheanalysisofbioavailableHgandAsinsoilsandsedimentsfromAznalcollarminingareainSpain.Biosens.Bioelectron.2007,22,1396-1402.56.Hakkila,K.;Green,T.;Leskinen,P.;Ivask,A.;Marks,R.;Virta,M.DetectionofbioavailableheavymetalsinEILATox-Oregonsamplesusingwhole-cellluminescentbacterialsensorsinsuspensionorimmobilizedontofibre-optictips.J.Appl.Toxicol.2004,24,333-342.57.Horry,H.;Charrier,T.;Durand,M.J.;Vrignaud,B.;Picart,P.;Daniel,P.;Thouand,G.\nTechnologicalconceptionofanopticalbiosensorwithadisposablecardforusewithbioluminescentbacteria.Sens.Actuat.B-Chem.2007,122,527-534.58.Dorn,J.G.;Mahal,M.K.;Brusseau,M.L.;Maier,R.M.Employinganovelfiberopticdetectionsystemtomonitorthedynamicsofinsituluxbioreporteractivityinporousmedia:systemperformanceupdate.Anal.Chim.Acta2004,525,63-74.59.Vijayaraghavn,R.;Islam,S.K.;Zhang,M.;Ripp,S.;Caylor,S.;Weathers,B.;Moser,S.;Terry,S.;Blalock,B.;Sayler,G.S.Abioreporterbioluminescentintegratedcircuitforverylow-levelchemicalsensinginbothgasandliquidenvironments.Sens.Actuat.B2007,123,922-928.60.Elman,N.M.;Ben-Yoav,H.;Sternheim,M.;Rosen,R.;Krylov,S.;Shacham-Diamand,Y.Towardstoxicitydetectionusingalab-on-chipbasedontheintegrationofMOEMSandwhole-cellsensors.Biosens.Bioelectron.2008,23,1631-1636.61.Eltoukhy,H.;Salama,K.;ElGamal,A.A0.18-umCMOSbioluminescencedetectionlab-on-chip.IEEEJ.Solid-StateCircuit2006,41,651-662.62.Yotter,R.A.;Wilson,D.M.Areviewofphotodetectorsforsensinglight-emittingreportersinbiologicalsystems.IEEESens.J.2003,3,288-303.63.Daniel,R.;Almog,R.;Sverdlov,Y.;Yagurkroll,S.;Belkin,S.;Shacham-Diamand,Y.Developmentofaquantitativeopticalbiochipbasedonadoubleintegratingspheresystemthatdeterminesabsolutephotonnumberinbioluminescentsolution:applicationtoquantumyieldscalerealization.Appl.Optics2009,48,3216-3224.64.Viviani,V.R.Theorigin,diversity,andstructurefunctionrelationshipsofinsectluciferases.Cell.Mol.LifeSci.2002,59,1833-1850.65.Fraga,H.Fireflyluminescence:Ahistoricalperspectiveandrecentdevelopments.Photochem.Photobiol.Sci.2008,7,146-158.66.Lewis,S.M.;Cratsley,C.K.,Flashsignalevolution,matechoice,andpredationinfireflies.Annu.Rev.Entomol.2008,53,293-321.67.McElroy,W.D.Theenergysourceforbioluminescenceinanisolatedsystem.Proc.Natl.Acad.Sci.USA1947,33,342-345.68.Hastings,J.W.;McElroy,W.D.;Coulombre,J.Theeffectofoxygenupontheimmobilizationreactioninfireflyluminescence.J.Cell.Compar.Physl.1953,42,137-150.69.White,E.H.;Field,G.F.;McElroy,W.D.;McCapra,F.Structureandsynthesisoffireflyluciferin.J.Am.Chem.Soc.1961,83,2402-2403.70.White,E.H.;Rapaport,E.;Hopkins,T.A.;Seliger,H.H.Chemi-andbioluminescenceoffireflyluciferin.J.Am.Chem.Soc.1969,91,2178-2180.71.McCapra,F.Chemicalmechanismsinbioluminescence.Acc.Chem.Res.1976,9,201-208.72.White,E.H.;Steinmetz,M.G.;Miano,J.D.;Wildes,P.D.;Morland,R.Chemi-luminescenceandbioluminescenceoffireflyluciferin.J.Am.Chem.Soc.1980,102,3199-3208.73.Conti,E.;Franks,N.P.;Brick,P.Crystalstructureoffireflyluciferasethrowslightonasuperfamilyofadenylate-formingenzymes.Structure1996,4,287-298.74.Gould,S.J.;Subramani,S.Fireflyluciferaseasatoolinmolecularandcellbiology.Anal.Biochem.1988,175,5-13.\n75.Ugarova,N.N.LuciferaseofLuciolamingrelicafireflies—kineticsandregulationmechanism.J.Biolumin.Chemilumin.1989,4,406-418.76.McCapra,F.;Chang,Y.C.;Francois,V.P.Chemiluminescenceofafireflyluciferinanalogue.Chem.Commun.1968,22-23.77.Branchini,B.R.;Magyar,R.A.;Murtiashaw,M.H.;Anderson,S.M.;Zimmer,M.Site-directedmutagenesisofhistidine245infireflyluciferase:Aproposedmodeloftheactivesite.Biochemistry1998,37,15311-15319.78.DeLuca,M.;Wannlund,J.;McElroy,W.D.Factorsaffectingthekineticsoflightemissionfromcrudeandpurifiedfireflyluciferase.Anal.Biochem.1979,95,194-198.79.Denburg,J.L.;Lee,R.T.;McElroy,W.D.Substrate-bindingpropertiesoffireflyluciferase.I.Luciferinbindingsite.Arch.Biochem.Biophys.1969,134,381-394.80.Fontes,R.;Ortiz,B.;deDiego,A.;Sillero,A.;Sillero,M.A.G.Dehydroluciferyl-AMPisthemainintermediateintheluciferindependentsynthesisofAp(4)Acatalyzedbyfireflyluciferase.FEBSLett.1998,438,190-194.81.Airth,R.L.;Rhodes,W.C.;McElroy,W.D.Thefunctionofcoenzyme-Ainluminescence.Biochim.Biophys.Acta1958,27,519-532.82.Wood,K.V.;Lam,Y.A.;Seliger,H.H.;McElroy,W.D.ComplementaryDNAcodingclickbeetleluciferasecanelicitbioluminescenceofdifferentcolors.Science1989,244,700-702.83.DeLuca,M.,Hydrophobicnatureofactivesiteoffireflyluciferase.Biochemistry1969,8,160-166.84.White,E.H.;Branchini,B.R.Modificationoffireflyluciferasewithaluciferinanalog-redlightproducingenzyme.J.Am.Chem.Soc.1975,97,1243-1245.85.McCapra,F.;Gilfoyle,D.J.;Young,D.W.;Church,N.J.;Spencer,P.Thechemicaloriginofcolordifferencesinbeetlebioluminescence.InBioluminescenceandChemiluminescence:FundamentalandAppliedAspects,Campbell,A.K.,Kricka,L.J.,Stanley,P.E.,Eds.;Wiley:Chichester,UK,1994.86.Branchini,B.R.;Murtiashaw,M.H.;Magyar,R.A.;Portier,N.C.;Ruggiero,M.C.;Stroh,J.G.Yellow-greenandredfireflybioluminescencefrom5,5-dimethyloxyluciferin.J.Am.Chem.Soc.2002,124,2112-2113.87.Chiu,N.H.L.;Christopoulos,T.K.Two-siteexpressionimmunoassayusingafireflyluciferase-codingDNAlabel.Clin.Chem.1999,45,1954-1959.88.Gomi,K.;Kajiyama,N.Oxyluciferin,aluminescenceproductoffireflyluciferase,isenzymaticallyregeneratedintoluciferin.J.Biol.Chem.2001,276,36508-36513.89.Doyle,T.C.;Nawotka,K.A.;Purchio,A.F.;Akin,A.R.;Francis,K.P.;Contag,P.R.ExpressionoffireflyluciferaseinCandidaalbicansanditsuseintheselectionofstabletransformants.Microb.Pathog.2006,40,69-81.90.Mei,Q.;Xia,Z.;Xu,F.;Soper,S.A.;Fan,Z.H.Fabricationofmicrofluidicreactorsandmixingstudiesforluciferasedetection.Anal.Chem.2008,80,6045-6050.91.Shimomura,O.;Johnson,F.H.;Saiga,Y.Extraction,purificationandpropertiesofaequorin,abioluminescentproteinfromluminousHydromedusan,Aequorea.J.Cell.Compar.Physl.1962,59,223-239.\n92.Shimomura,O.Thediscoveryofaequorinandgreenfluorescentprotein.J.Microsc.-Oxf.2005,217,3-15.93.Ridgway,E.B.;Ashley,C.C.Calciumtransientsinsinglemusclefibers.Biochem.Biophys.Res.Commun.1967,29,229-234.94.Jones,K.;Hibbert,F.;Keenan,M.Glowingjellyfish,luminescenceandamoleculecalledcoelenterazine.TrendsBiotechnol.1999,17,477-481.95.Shimomura,O.;Johnson,F.H.Regenerationofphotoproteinaequorin.Nature1975,256,236-238.96.Inoue,S.;Sugiura,S.;Kakoi,H.;Hasizume,K.;Goto,T.;Iio,H.Squidbioluminescence.2.IsolationfromWataseniascintillansandsynthesisof2-(para-hydroxybenzyl)-6-(para-hydroxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one.Chem.Lett.1975,141-144.97.Prasher,D.;McCann,R.O.;Cormier,M.J.CloningandexpressionofthecDNAcodingforaequorin,abioluminescentcalciumbindingprotein.Biochem.Biophys.Res.Commun.1985,126,1259-1268.98.Inouye,S.;Sakaki,Y.;Goto,T.;Tsuji,F.I.ExpressionofapoaequorincomplementaryDNAinEscherichiacoli.Biochemistry1986,25,8425-8429.99.Head,J.F.;Inouye,S.;Teranishi,K.;Shimomura,O.Thecrystalstructureofthephotoproteinaequorinat2.3angstromresolution.Nature2000,405,372-376.100.Shimomura,O.;Johnson,F.H.Peroxidizedcoelenterazine,theactivegroupinthephotoproteinaequorin.Proc.Natl.Acad.Sci.USA1978,75,2611-2615.101.Vysotski,E.S.;Lee,J.Ca2+-regulatedphotoproteins:Structuralinsightintothebioluminescencemechanism.AccountsChem.Res.2004,37,405-415.102.McCapra,F.;Chang,Y.C.ChemiluminescenceofaCypridinaluciferinanalogue.Chem.Commun.1967,1011-1012.103.Ohmiya,Y.;Hirano,T.Shiningthelight:Themechanismofthebioluminescencereactionofcalcium-bindingphotoproteins.Chem.Biol.1996,3,337-347.104.Chiesa,A.;Rapizzi,E.;Tosello,V.;Pinton,P.;deVirgilio,M.;Fogarty,K.E.;Rizzuto,R.Recombinantaequorinandgreenfluorescentproteinasvaluabletoolsinthestudyofcellsignalling.Biochem.J.2001,355,1-12.105.Prendergast,F.G.;Allen,D.G.;Blinks,J.R.Calcium-bindingproteinsandcalciumfunction.InPropertiesoftheCalcium-SensitiveBioluminescentProteinAequorin,Wasserman,R.H.,Corradiano,R.A.,Carafoil,E.,Kretsinger,R.H.,MacLennan,D.H.,Siegel,F.L.Eds.;North-Holland:NewYork,NY,USA,1977;pp469-480.106.Lewis,J.C.;Daunert,S.Photoproteinsasluminescentlabelsinbindingassays.FreseniusJ.Anal.Chem.2000,366,760-768.107.Kendall,J.M.;Badminton,M.N.Aequoreavictoriabioluminescencemovesintoanexcitingnewera.TrendsBiotechnol.1998,16,216-224.\n108.Giepmans,B.N.G.;Adams,S.R.;Ellisman,M.H.;Tsien,R.Y.Review-Thefluorescenttoolboxforassessingproteinlocationandfunction.Science2006,312,217-224.109.Prasher,D.C.;Eckenrode,V.K.;Ward,W.W.;Prendergast,F.G.;Cormier,M.J.PrimarystructureoftheAequoreavictoriagreenfluorescentprotein.Gene1992,111,229-233.110.Chalfie,M.;Tu,Y.;Euskirchen,G.;Ward,W.W.;Prasher,D.C.Greenfluorescentproteinasamarkerforgeneexpression.Science1994,263,802-805.111.Zimmer,M.Greenfluorescentprotein(GFP):Applications,structure,andrelatedphotophysicalbehavior.Chem.Rev.2002,102,759-781.112.Naylor,L.H.Reportergenetechnology:Thefuturelooksbright.Biochem.Pharmacol.1999,58,749-757.113.Ehrmann,M.A.;Scheyhing,C.H.;Vogel,R.F.Invitrostabilityandexpressionofgreenfluorescentproteinunderhighpressureconditions.Lett.Appl.Microbiol.2001,32,230-234.114.Liu,H.S.;Jan,M.S.;Chou,C.K.;Chen,P.H.;Ke,N.J.Isgreenfluorescentproteintoxictothelivingcells?Biochem.Biophys.Res.Commun.1999,260,712-717.115.Hanazono,Y.;Yu,J.M.;Dunbar,C.E.;Emmons,R.V.B.Greenfluorescentproteinretroviralvectors:Lowtiterandhighrecombinationfrequencysuggestaselectivedisadvantage.HumanGeneTher.1997,8,1313-1319.116.Tsien,R.Y.Thegreenfluorescentprotein.Annu.Rev.Biochem.1998,67,509-544.117.Drepper,T.;Eggert,T.;Circolone,F.;Heck,A.;Krauss,U.;Guterl,J.K.;Wendorff,M.;Losi,A.;Gartner,W.;Jaeger,K.E.Reporterproteinsforinvivofluorescencewithoutoxygen.Nat.Biotechnol.2007,25,443-445.118.Patterson,G.H.;Knobel,S.M.;Sharif,W.D.;Kain,S.R.;Piston,D.W.Useofthegreenfluorescentproteinanditsmutantsinquantitativefluorescencemicroscopy.Biophys.J.1997,73,2782-2790.119.Niwa,H.;Inouye,S.;Hirano,T.;Matsuno,T.;Kojima,S.;Kubota,M.;Ohashi,M.;Tsuji,F.I.ChemicalnatureofthelightemitteroftheAequoreagreenfluorescentprotein.Proc.Natl.Acad.Sci.U.S.A.1996,93,13617-13622.120.Chattoraj,M.;King,B.A.;Bublitz,G.U.;Boxer,S.G.Ultra-fastexcitedstatedynamicsingreenfluorescentprotein:Multiplestatesandprotontransfer.Proc.Natl.Acad.Sci.U.S.A.1996,93,8362-8367.121.Jung,G.;Wiehler,J.;Zumbusch,A.Thephotophysicsofgreenfluorescentprotein:Influenceofthekeyaminoacidsatpositions65,203,and222.Biophys.J.2005,88,1932-1947.122.Cubitt,A.B.;Heim,R.;Adams,S.R.;Boyd,A.E.;Gross,L.A.;Tsien,R.Y.Understanding,improvingandusinggreenfluorescentproteins.TrendsBiochem.Sci.1995,20,448-455.123.Yokoe,H.;Meyer,T.SpatialdynamicsofGFP-taggedproteinsinvestigatedbylocalfluorescenceenhancement.Nat.Biotechnol.1996,14,1252-1256.124.Crameri,A.;Whitehorn,E.A.;Tate,E.;Stemmer,W.P.C.ImprovedgreenfluorescentproteinbymolecularevolutionusingDNAshuffling.Nat.Biotechnol.1996,14,315-319.\n125.Zacharias,D.A.;Violin,J.D.;Newton,A.C.;Tsien,R.Y.Partitioningoflipid-modifiedmonomericGFPsintomembranemicrodomainsoflivecells.Science2002,296,913-916.126.Heim,R.;Prasher,D.C.;Tsien,R.Y.Wavelengthmutationsandposttranslationalautooxidationofgreenfluorescentprotein.Proc.Natl.Acad.Sci.U.S.A.1994,91,12501-12504.127.Heim,R.;Tsien,R.Y.Engineeringgreenfluorescentproteinforimprovedbrightness,longerwavelengthsandfluorescenceresonanceenergytransfer.Curr.Biol.1996,6,178-182.128.Ormo,M.;Cubitt,A.B.;Kallio,K.;Gross,L.A.;Tsien,R.Y.;Remington,S.J.CrystalstructureoftheAequoreavictoriagreenfluorescentprotein.Science1996,273,1392-1395.129.Matz,M.V.;Fradkov,A.F.;Labas,Y.A.;Savitsky,A.P.;Zaraisky,A.G.;Markelov,M.L.;Lukyanov,S.A.FluorescentproteinsfromnonbioluminescentAnthozoaspecies.NatureBiotechnol.1999,17,969-973.130.Gvakharia,B.O.;Bottomley,P.J.;Arp,D.J.;Sayavedra-Soto,L.A.ConstructionofrecombinantNitrosomonaseuropaeaexpressinggreenfluorescentproteininresponsetoco-oxidationofchloroform.Appl.Microbiol.Biotechnol.2009,82,1179-1185.131.Bumann,D.;Valdivia,R.H.Identificationofhost-inducedpathogengenesbydifferentialfluorescenceinductionreportersystems.Nat.Protocols2007,2,770-777.132.Yotter,R.A.;Warren,M.R.;Wilson,D.M.OptimizedCMOSphotodetectorstructuresforthedetectionofgreenluminescentprobesinbiologicalapplications.Sens.Actuat.B-Chem.2004,103,43-49.133.Wells,M.Advancesinopticaldetectionstrategiesforreportersignalmeasurements.Curr.Opin.Biotechnol.2006,17,28-33.134.Daunert,S.;Barrett,G.;Feliciano,J.S.;Shetty,R.S.;Shrestha,S.;Smith-Spencer,W.Geneticallyengineeredwhole-cellsensingsystems:couplingbiologicalrecognitionwithreportergenes.Chem.Rev.2000,100,2705-2738.135.Leveau,J.H.J.;Lindow,S.E.Bioreportersinmicrobialecology.Curr.Opin.Microbiol.2002,5,259-265.136.Shu,X.K.;Royant,A.;Lin,M.Z.;Aguilera,T.A.;Lev-Ram,V.;Steinbach,P.A.;Tsien,R.Y.Mammalianexpressionofinfraredfluorescentproteinsengineeredfromabacterialphytochrome.Science2009,324,804-807.2009bytheauthors;licenseeMolecularDiversityPreservationInternational,Basel,Switzerland.Thisarticleisanopen-accessarticledistributedunderthetermsandconditionsoftheCreativeCommonsAttributionlicense(http://creativecommons.org/licenses/by/3.0/).

相关文档