《合成生物学》PPT课件 64页

  • 1.77 MB
  • 2022-08-12 发布

《合成生物学》PPT课件

  • 64页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
香山科学会议 第322次学术讨论会 简介会议主题:合成生物学魏江春2008年06月16日\n背景香山科学会议是由科技部(原国家科委)发起,在科技部和中国科学院的共同支持下于1993年正式创办,相继得到国家自然科学基金委员会、中国科学院学部、中国工程院、教育部、解放军总装备部和国防科工委等部门的资助与支持。上述各单位均为香山科学会议的理事会成员单位。\n背景香山科学会议的宗旨是:创造宽松学术交流环境,弘扬学术民主风气,面向科学前沿,面向未来,促进学科交叉与融合,推进整体综合性研究,启迪创新思维,促进知识创新。\n背景新的学术思想和新方法、分析新学科的生长点以及交叉学科的新问题基础研究的科学前沿问题与我国重大工程技术领域中的科学问题均可作为会议主题。会议侧重于:探讨科学前沿、展望未来发展趋势、讨论最新突破性进展、交流。\n背景香山科学会议实行执行主席负责制,以评述报告、专题发言和深入的自由讨论为基本方式,报告时间与讨论时间的比例大体为1:1至1:2。要求报告人以过去的研究积累为基础,涵盖最新,信息把握最新动向,发表新的见解。同时,鼓励对原有理论提出质疑,提倡发表不同意见,并提出有独创性的思考与见解。\n背景香山科学会议每年分两次公布全年的会议安排,每年1月1日发布上半年的会议安排计划,7月1日发布下半年会议安排计划。申请者可以集体或个人的名义自由申请召开香山科学会议。申请的会议主题经过同行专家评议后,由理事会最后审定。会议主题确立后,该主题的申请人、执行主席与香山科学会议的学术秘书共同磋商,确定会议召开的日期、中心议题、评述报告、专题发言与人员安排。对所有的申请,我们都会在很短的时间内以书面的形式给予答复。\n背景会议宗旨组织机构(理事会、组织委员会)会议主题遵循的原则多样化学术活动学术讨论会会议执行主席与会人员会议申请会议经费\n香山科学会议2008年上半年会议计划表会次会议主题执行主席会议日期318中医药发展思路与继承创新思维和方法陈竺王永炎颜德馨陈可冀刘德培02.23~24319中国全民健康保障问题与对策刘德培孙九林俞梦孙尹岭02.26~283202007/2008国际极地年及未来极地研究的科学前沿孙枢秦大河汪品先严俊杨惠根04.02~04321经济计算与政策模拟林群李善同王铮05.06~08322合成生物学研讨魏江春张春霆TerryHwa汤雷翰孙之荣05.12~13323本草物质组梁鑫淼惠永正蒋华良杨胜利05.20~22324现代科学技术体系总体框架的探索朱照宣戴汝为于景元王众托马蔼乃05.27~29325新一代非易失性的电阻型存储器07.08~09326精密测量物理和方法叶朝辉 李家明罗 俊07.13~15327肿瘤纳米技术与纳米药物10.21~23\n生命1.0版本36亿年前,一个微小的生命细胞在地球的荒野中诞生,它自我复制,它的后代们继续复制自我,就这样,随着遗传基因一代代变异,延续数十亿代。今天,每个生物体——每个人、植物、动物和微生物——都能从第一个细胞找到自己的起源。迄今为止,地球的生物大家族是我们在宇宙发现的唯一存在的一种生命。\n生物大家族中的新成员不过现在,将会有一些新成员加入到这个生物大家族。在过去这些年里,科学家一直在尝试从零开始制造全新的生命形式——用化学物质造出合成DNA(脱氧核糖核酸),由DNA合成基因,再由基因形成基因组,最终在实验室造出全新生物体的分子系统,而这种生物体在自然界从未出现过。\n这些向“造物主”的垄断地位发起挑战的人包括工程师、计算机学家、物理学家和化学家。他们以有别于传统生物学家的视角看待生命,并在2003年开创了一个全新的研究领域——合成生物学。\n由DNA重组技术到合成生物学理念:为细胞编写“基因软件”    自然演化的有机体(即生物学家所谓的“生命1.0版本”)的基因组图谱正在以前所未有的速度被绘制完成,而其中的遗传密码也将被逐渐解开。合成生物学家认为,他们可以利用这些已知信息来设计、打造新生命形式。    在过去,遗传工程一直拘囿于对已有的遗传密码进行简单修补改造,比如从一种细菌中提取一个基因,然后植入玉米或猪的染色体。而合成生物学所要打造的生命种类是全新的——它不是任何一个原始母细胞的后裔,也没有哪个物种是它的祖先。其实在本质上,这是一个逆自然的过程。\n合成生物学如果说1953年DNA双螺旋分子结构的发现让分子生物学家意识到,基因与细胞的关系就像计算机的软件和硬件,那么合成生物学正在做的就是设计新“软件”、开发新“硬件”。\n生物资源研究的三个层次物种资源基因资源①1828年,德国化学家Wohler人工合成了存在于生物体内的一种有机物质-尿素,从而打破了“生命”与“非生命”之间的物质壁垒。②1960,我国科学家首次合成了具有生物活性的蛋白质-胰岛素。③当人类进入基因组和后基因组的二十一世纪的今天,科学家正在为人工合成生命而努力。有活性的X174噬菌体(5386个bp)和脊髓灰质炎(7500个bp)已被科学家先后合成。④Mycoplasmalaboratorium⑤人工生命(以人工设计为主导)合成生物学DNA重组技术物种生物学转基因生物一亿种:140万种(占1.4%)\n全球九大新兴科技展望合成生物学通用翻译纳米导线拜埃斯氏技术T射线核糖核酸干扰分子疗法大电网的控制微射流光纤个人基因组学\nsyntheticbiology合成生物学(syntheticbiology)一词最早出现于1911年7月8日著名医学刊物《柳叶刀》TheLancet.ReviewsandNoticesofBooks.TheLancet,1911.178(4584):97-99.[1]发表的一篇书评中。后来虽然断断续续出现过多次,但在1980年第一次以“基因外科术:合成生物学的开始”为题出现在德文刊物[2]的一篇长篇论文。Hobom,B.[Genesurgery:onthethresholdofsyntheticbiology],MedizinischeKlinik,1980,75(24):834-841.随着人类基因组计划的完成,2000年以后,合成生物学一词在学术刊物及互联网上逐渐大量出现。\n合成生物学论文增长情况\n合成生物学的定义加州大学伯克利分校(UCB)的化学工程教授Keasling说:合成生物学正在用“生物学”进行工程化,就像用“物理学”进行“电子工程”,用“化学”进行“化学工程”一样。哥伦比亚癌症研究中心、测序及基因组科学中心主任Holt说,合成生物学与传统的重组DNA技术之间的界限仍然是模糊的。从根本上说,合成生物学正在利用获得的“元件”进行下一层次的工作———对细胞进行实际的工程化。\n合成生物学的定义哈佛大学医学院遗传学教授、计算遗传学中心主任Church说,主要的出发点是在把合成生物学与现有的领域(例如基因工程或细胞工程)分离开来。我们已经在一次涉及一个“零件”或少量“零件”。合成生物学是利用我们所确信的一些“零件”进行新生物系统的工程。它在利用从系统生物学(systemsbiology)得出的最好分析去加工制作及检验复杂的生物机器.\n合成生物学的定义明尼苏达大学物理系教授Noireaux说,合成生物学的定义是令人困惑的,在很多方面就像生命的定义一样困惑。作为一个物理学家,会喜欢建造机器、机器人。这正是我们试图利用生物分子要做的事情。这看起来像工程,但也面临许多基础问题。\n合成生物学的定义根据上述情况,我们推荐“合成生物学组织”网站[4]上公布的合成生物学的定义,合成生物学包括两条路线:(1)新的生物零件、组件和系统的设计与建造;(2)对现有的、天然的生物系统的重新设计。这两条路线的目的都是为了造福人类社会。\n合成生物学发展的技术基础随着人类基因组计划的胜利完成,一些基本技术,例如基因组测序和DNA从头合成速率,已取得里程碑性的突破。如图2所示,基因组测序速率过去10年增加了500倍以上,而测序成本下降了3个数量级以上。据预测,新的测序技术将使人的基因组测序成本降低到1000美元[5]。\n合成生物学发展的技术基础DNA合成速率过去10年增加了700倍以上,每年都在翻番。更为重要的是利用可编程的DNA微芯片,实现了精确的多通道基因合成[6],从而可在短时间合成大的DNA片段,而且错误率很低,组装一个14.6kb的DNA只有两个错误,这就导致DNA的合成成本大大降低。\n合成生物学的研究方法合成生物学的工程本质合成生物学新学科综合应用包括分子生物学、工程学、化学、数学、物理学、信息学等不同学科的知识,进行设计及实现新的细胞行为,这是通过包括新的蛋白质、基因线路、信号级联及代谢网络的构建等种种生物工程努力来达到的。通过元件及基因线路的从头构建,合成生物学的目标是既要改进我们对自然现象的定量理解,又要促进培育一个工程学科以可预测的及可靠的方式得到新的复杂的细胞行为。\n合成生物学的研究方法将合成生物学涉及的生物系统分成DNA、零件、装置、系统这样4个层次。美国普林斯顿大学电子工程系与分子生物学系的Weiss等[10]发表了题为“合成生物学:对于一个刚出现学科的新的工程作用”的综述。他们概括了合成生物学新学科的基本性能以及与其它工程学科相比的独特性;讨论了从生物装置、模块、细胞到多细胞系统各个层次进行设计和建造工程细胞的方法.\n借鉴化学工程及电子工程的思路 进行合成生物学研究合成生物学的核心观念认为生命的所有零件都能由合成(即化学法)而制造,进而通过工程化并组装成实用的生物组织。2000年,斯坦福大学的化学教授Kool等人在美国化学会年会上提出用有机化学及生物化学的合成能力去设计非天然的、合成的分子,进而使这些分子在生命系统中有活性功能。\n大规模集成电路技术通常人们认为DNA遗传密码是指挥控制生命的软件(software),而细胞膜及细胞内所有的生物机器被认为是生命的硬件(hardware,在合成生物学中也常称为wetware)。这种对生命系统软件与硬件的认识可以借助于电子工程(大规模集成电路技术、电子计算机硬件与软件技术等)的研究方法、基本技术与工具。就像技术人员现在用标准化的、现成的电子元件组装成计算机一样,合成生物学工作者预计有一天,工程师可以将充分表征的生物原件组装成健壮的宿主生物体,其具有特定的生物功能。例如:可将生物质转化为生物燃料,或低成本地生产高效药物,或可以检测及去除污染物.\n细胞底盘机架对于合成生物学来说,创建一个细胞底盘机架(cellularchassis)用来安装我们设计的生物零部件是非常重要的。在细胞底盘机架中可以集成来自各个子系统的信号以使其有复杂的细胞功能。细胞底盘机架必须为细胞生长及组件工作提供各种组分,应该有各种标准的连接,而且足够稳定以便能在工业上应用。大肠杆菌可以认为是一个性能优良的微生物,可用作一个细胞底盘机架。\n研究框架的三个层次知识层次主要包括:设计(design)、组合(composability)、表征(characterization)、标准化(standardization)、抽象(abstraction)。技术层次主要包括:零件(parts)、装置(devices)、底盘机架(chassis)。技术集成层次:必须依靠知识层次的基础知识来构建技术层次的零件、装置和底盘机架,而技术层次的发展又会促进知识层次的积累。通过技术层次的积累可以逐渐集成为全功能系统,即包含寻找肿瘤细胞的微生物、制药微生物等系统的第三个层次。\nSynBERC研究框架包括三个层次知识层次技术层次技术集成层次设计组合表征标准化抽象零件装置底盘机架\n国外合成生物学的发展规划人类基因组测序项目完成后,美国能源部启动的GTL(GenomeToLife)计划就涉及“合成基因组研究项目”,包括:“从可编程的DNA微芯片进行精确的、低成本的基因合成”、“构建一个合成的基因组”等。美国国家自然科学基金2006年投入2000万美元资助建立“合成生物学工程研究中心”(SyntheticBiologyEngineeringResearchCenter-SynBERC),由UCB、哈佛大学、MIT、加州大学旧金山分校等共同组建。\n2005年欧盟发表了 “合成生物学-将工程应用于生物学”[19]的项目报告该报告给出了合成生物学清楚的定义及范围;展望了合成生物学未来10~15年在①生物医药、②小分子药物的体内合成、③生命化学的拓展、④可持续的化学工业、⑤环境与能源、⑥智能材料及生物材料等方面的前景;分析了合成生物学的回报及存在的风险;提出了欧盟应该在研究、支撑基础和教育等方面应该采取的行动。2007年欧盟启动了“合成生物学”涉及上述报告中各方面的18个项目[20]。\n合成生物学国际会议合成生物学国际会议至今已经召开了3次:①2004年在美国MIT召开;②2006年在美国UCB召开;③2007年在瑞士苏黎世联邦理工学院(ETH)召开。\n国际基因工程机器大赛(internationalGeneticallyEngineeredMachinecompetition)国际基因工程机器大赛[21](iGEM)从2004年开始已经举行了4次:①2004年有5个队参赛,②2005年有13个队参赛,③2006年有37个队参赛,④2007年在中国天津大学召开。\n国际基因工程机器大赛的iGEM,包括天津大学、北京大学、清华大学、中国科技大学及香港与台湾地区一些大学的代表队。iGEM的竞赛方式激励性很强,有利于亲身实践及多学科教育。生物学专业学生学会了用工程方法去组织、模拟及组装复杂系统,而学工科的学生则能使自己在应用分子生物学方面得到很好训练。iGEM竞赛的核心是关于标准生物零件的观念:生物零件是详细明确指定的,而且在其它子系统及整个系统中工作得非常好。一旦这些零件的参数被确定及标准化,则生物系统的模拟、设计就会变得更容易、更可靠。\n学术刊物的创刊2007年国际上创办了两个新刊物:一个是SystemsandSyntheticBiology;另一个IETSyntheticBiology。\n国外合成生物学研究进展青蒿素美国UCB化学工程系教授、劳伦斯国家实验室合成生物学中心主任Keasling在从事抗疟疾药的生物合成研究中,始终把细胞当作微生物制药工厂进行设计、加工、集成、组装、控制。体现在合成生物学技术上包括DNA的合成、来自细菌、酵母及植物(青蒿Artemisiaannua)等多种基因及代谢途径的组装、多基因的精密调控等。其研究成果先后发表于2003年[34]和2006年[35]。2003年的工作生产菌为大肠杆菌,通过植物青蒿的amorphadiene合成酶(ADS)密码子优化、共表达SOE4操纵子(编码DXS、IPPHp、IspA)以及引入异源的酵母菌甲羟戊酸途径等途径,提高了amorphadiene的产量。对于酵母菌,主要工作包括改造FPP合成途径,引入植物青蒿的amorphadiene合成酶(ADS)基因,克隆青蒿类植物转化amorphadiene为青蒿酸的细胞色素P450氧化还原酶等。\n改造后的菌株使青蒿酸的合成能力大大提高。上述结果可望以低成本生产抗疟疾药物,用于第三世界地区的疾病治疗。为了尽快使研究成果产业化,Keasling等人专门建立了新的公司AmyrisBiotechnologies,用合成生物学技术进行抗疟疾药及生物能源的生产。\n2005年MIT“技术评论”将“细菌工厂”(BacterialFactories)作为将影响世界的新出现的10大技术之一[36]。由于在生物合成抗疟疾药物的突出成就,Keasling被美国“发现”杂志评选为2006年度最有影响的科学家[37]。该项目已经获得比尔-梅林达盖茨基金会4300万美元的资助,进行进一步的实验室研究、中试、临床实验等后续工作。\n2005年11月24日出版的Nature杂志,为了庆祝成长很快的合成生物学新领域[38],在同一期中刊登了多篇合成生物学的文章(包括两篇编辑的概述以及以“合成生物学”为题所作的封面专栏结构介绍)。Voigt等[39]设计了一个细菌系统,可以由红光触发该系统在不同状态之间开关。该系统由一种合成的传感激酶组成,使得细菌的菌苔能像生物胶片一样起作用,当接受一类光投射到菌体后,可产生高清晰度的二维化学图像。\n这种具有图像处理功能的新型基因线路的创造,证明了在新生的合成生物学中,可以利用的工具及方法的巨大能力及可用性。经编程的光调控原理将能使单个细胞或群体细胞的基因表达可在时间上和空间上进行控制,这在细菌微晶成像、生物复合材料生产及多细胞信号网络的研究中有潜在的应用。由于这项技术的广泛影响,年仅30岁的Voigt被MIT的“技术评论”评为2006年35岁以下35名(TR35)重大技术创新奖[40]。Sprinzal和Elowitz发表了“基因线路重建”的述评[41],主要包括自然的与合成的基因线路图范例、合成基因线路中的模块化组分、\n从合成基因线路中学到的启示、合成基因线路面临的挑战及未来的方向。Endy[8]以“工程生物学的基础”为题发表的综述,用工程师的方法将合成生物学看作技术(例如基因工程技术、生物技术)的延伸,包括对生物学进行工程化的基础、标准化、解耦、观念抽象化、生殖生物机器的进化或设计等。一篇关于合成生物学生物安全的评论[42],强调了安全第一,睁大警戒的眼睛,并从基因治疗接受教训。该期还以“设计生命”为题用两页的篇幅对刚刚结束的iGEM进行了详细报道与评述[43]。\n重新设计并构建新的生物体T7Endy研究组[44]为了更容易理解及操作生物系统,他们在假定生物体中有许多重叠的对生物来说不是必须的遗传元件的基础上,对噬菌体T7进行了重新设计及操作:用工程化的DNA(12179bp)取代野生噬菌体T7基因组(39937bp)中的一些非必需遗传元件(11515bp),产生了一个与预想一致的新的生物体,它的基因组编码了一个活的噬菌体,其保留了原野生噬菌体T7的关键性能。结果表明,编码自然生物系统的基因组可以进行系统的重新设计,并构建新的生物体,以用于对生物系统的科学理解或用于为人类服务的目的。\n设计构建简单高效大肠杆菌基因组2006年SCIENCE发表了Blattnerj研究组[45]的论文:“减少了大肠杆菌基因组所出现的性质。”该研究用合成生物学方法,通过有计划地精确地删除,使所设计的菌种基因组减少高达15%,但却保留了好的生长状态和蛋白质生产。基因组减少还导致了没有料想到的有益性质:高的电穿孔效率、重组基因和质粒的精确繁殖,而这些质粒在其它菌种中是不稳定的。该研究为设计构建简单高效菌株奠定了很好的基础。\n细菌可以感觉其环境、在细胞类型之间做出区分、并将蛋白释放到真核细胞。Anderson等人[46]用工程化的方法对细菌与癌细胞之间的相互作用进行了研究。他们表征了取自假结核耶尔森氏菌的侵袭素作为一个输出模块,这使得大肠杆菌能侵入诱导癌的细胞株。为了能从环境上约束这种侵入,他们将这种模块置入异源合成传感器的控制中。用特定数目的费氏弧菌lux基因传感线路、响应于低氧的fdh启动子或可诱导阿拉伯糖的araBAD启动子,则细菌可以在一定的条件下侵入并通过合成的侵袭素杀死癌细胞。\n结果表明,编码传感、线路和执行机构的遗传模块的组合提供的一个总体平台,其治疗作用可以编程到细菌中。由于该技术是通过合成生物学的“模块”技术来实现的,所以这些合成“零件”或“模块”具有很好的通用性。该技术受到学术界及产业界的高度评价,今年31岁的Anderson被MIT的“技术评论”评为2007年TR35重大技术创新奖获得者[47]。\n基因组的种间取代SCIENCE最近发表了人类基因组测序创始人之一Venter研究组的论文[48],“在细菌中的基因组移植:将一种物种变为另一种物种”。作为走向合成基因组的一个步骤,通过转移一个整个的基因组(作为裸DNA),他们用另一个物种的基因组完全取代了一个细菌细胞的基因组。该文发表以后,在学术界及社会上引起巨大反响。NATURE[49]为此在“NEWS&VIEWS”栏目的合成生物学专栏内以“为了设计生命”为题发表的文章指出:一种细菌的基因组已经成功地被另一种不同细菌的基因组取代了,将一种物种转化为另一种物种,这种发展是整个基因组工程用于最终实际应用的先兆。\n对于噬菌体进行基因改造PNAS[51]最近发表了Lu和Collin通过合成生物学方法利用基因改造后的噬菌体成功清除了含有有害细菌的生物膜,杀菌能力比未经改造的噬菌体高出百倍。这一方法可望用于食品和医疗行业的器械消毒,也可以用于预防及治疗家畜疾病。\n高效低成本地生产氢气合成生物学的一个主要目标是将来自天然生物体的可互换的零件组装到非天然的系统并具有功能[52]。最简单的合成生物学例子是对酶进行组装,使其完成一个非天然过程。“PLoSONE”最近发表了Zhang等人的论文[53]。他们利用合成生物学原理,由13个已知酶创建了一条非天然酶催化途径,可以由具有高能量密度载体的淀粉及水在温和的反应条件下高效低成本地生产氢气。该技术与燃料电池的集成,有望解决与氢气的储存、销售有关的难题,因而在汽车中的应用具有巨大的潜力。“经济学家”杂志[54]在“合成生物学”栏目以“给汽车加油”(GassedUp)为题报道了这种新的绿色制氢方法。\n体外多酶全合成途径生产抗菌素2007年9月“自然化学生物学”发表了Cheng等[55]构建了体外多酶全合成途径,在一个反应器内两个小时合成出天然抗生素-肠道菌素。这是世界上首次对一条完全的II型聚酮化合物合成酶催化的天然产物途径的组装。预期该方法在合成生物学中会有重要应用。\n美国LS9可再生石油公司[56]是2005年由哈佛大学医学院遗传学及基因组学教授Church和斯坦福大学植物学教授Somerville发起、由美国“旗舰”风险投资公司投资成立的生物技术公司。他们结合了工业生物技术与合成生物学的核心,正在寻求用合成生物学技术生产生物燃料。该公司的Berry2000年在MIT获得学士学位。2004年他在获得哈佛医学博士之后,仅用一年时间又获得MIT生物工程博士,2005年加盟LS9公司。目前,他正在率领研究团队设计接近于像来自于石油一样的燃料。由于专利原因,他们研发的技术只是在最近的工业微生物协会会议上才有所报道:\n诱导微生物生产原油、柴油、汽油 或基于烃的化学品他们利用来自多种生物(包括细菌、植物、动物等)的基因及用来生产脂肪酸的生化途径,用合成生物学方法创造出一些代谢模块,插入微生物后,通过不同的组合,这些模块可以诱导微生物生产原油、柴油、汽油或基于烃的化学品。他们通过计算,设计制造出微生物以所希望的方式生产并分泌出长度及分子结构符合公司要求的烃分子。该过程如图4所示:用合成生物学方法创造的微生物进入发酵罐培养生长,生产的石油烃将浮到发酵罐上层,因而易于分离提取;而发酵罐下层主要是营养混合物水溶液,因而不需要复杂的培养技术。\n与目前的燃料乙醇生产技术相比,由于不需要能耗非常高的乙醇精馏技术,从而可使能耗降低65%。由于采用了合成生物学与系统生物学创造微生物这种尖端技术,而且这种石油烃是可再生的、清洁的、国内可生产的、成本可竞争的、与现有的汽车发动机及汽油供应系统是可兼容的,所以29岁的Berry获得了MIT“技术评论”2007年TR35的最高奖(2007InnovatoroftheYear)[57]。\n\n人们对酶催化理解的最好的检验是从头设计一个酶。Kuhlman等[58]用从头设计法设计了一个具有新的折叠结构的小蛋白,并用X-射线结晶学方法证实了其晶体结构。Dwyer等[59]通过实验证实了对已知结构的蛋白质酶活的计算机设计。他们预测了一些突变:将磷酸丙糖异构酶插入核糖结合蛋白(其通常是缺少酶活的受体),\n结果导致该设计含有18-22个突变,比未催化的反应有105~106倍的速率增强,并且具有生物活性及极好的动力学性质。有这些研究为基础,关于人工蛋白的特定催化活性的设计似乎是可以办到的。该成就是通往合成生物学的一个里程碑,在医学和生物技术等应用领域会有巨大的潜力[60]。\nArnold研究组[61]借助于计算机结构模拟与设计,创造了包含约3000个P450血红素蛋白的家族,这些蛋白能够正确折叠,并可在所选的7个位置通过重组3个天然的细胞色素P450而结合1个血红素辅因子,从而使结构破坏最小。这种可创造几千个人工蛋白质组成的家族而不受自然选择种种限制的技术平台,为探索蛋白质结构与功能的决定因素提供了新的巨大的机会。\n天然的及工程化的RNA零件可以执行多种功能,包括杂交成靶标、结合配体、经历程序化的构型变化及催化反应。这些RNA零件可进一步组装成合成的基因线路以调控基因表达。Davidson和Ellington[62]从零件及线路两方面对合成RNA线路进行了综述及展望。Win和Smolke[63]最近发表了“一个模块的及可扩展的基于RNA的基因调控平台”的研究论文,该平台可用来工程化细胞的功能。他们在工作中执行并验证了该技术平台的5个工程设计原理:规模可改变的能力(scalability)、轻便性(portability)、实用性(utility)、组合能力(compos-ability)、可靠性(reliability)。这些在合成生物学、生物技术、卫生健康及医药领域的应用具有很大的潜力。\n国内合成生物学的研究发展目前从国内中文期刊数据库以“合成生物学”为关键词还没有检索到有关研究论文,只有两篇综述短文[64,65]。与合成生物学密切相关的研究(如基因工程、代谢工程、生物信息学、系统生物学及各种组学研究)已经有很好研究基础并正在迅速发展。\n合成生物学发展前景展望近几年来,作为合成生物学技术基础的基因组测序技术及DNA合成技术正以指数增长速率发展,这正如大规模集成电路与计算机技术的发展一样,于是人们认为合成生物学将会像信息技术一样得到迅速发展,并将在能源、化学品、材料、疫苗等医药领域得到广泛应用,具有巨大的社会效益及经济效益。同时,在对人类认识生命、揭示生命的奥秘、重新设计及改造生命等方面具有重大的科学意义。2006年Fu[66]及Pleiss[67]分别发表了综述文章,展望了合成生物学的远景。Henkel等[68]结合Amyris生物合成公司迅速发展的情况对合成生物学的经济学进行了分析。\n合成生物学发展前景展望在美国能源部资助下,美国生物经济研究协会[69]2007年发表了“基因组合成和设计未来:对美国经济的影响”的研究报告。报告分析了合成生物学及基因组工程支撑技术的迅速发展;从技术的发明、创造、结合、重组、传播、推广的角度,分析了生物工程革命的经济影响范围及大小;展望了合成生物学与基因组工程的应用前景。图5是重组DNA技术发展速率与预期的合成生物学技术发展速率的比较,从图中可以看出,在未来几年,合成生物学技术将会比重组DNA技术发展更快。报告预计合成生物学将在生产化学品、能源、疫苗及医药等方面有极为重要的应用前景,具有重大的经济意义及社会意义。\n\n合成生物学与生物安全、伦理道德及知识产权合成生物学的发展引起了合成生物学研究者及社会各界的广泛关注,在各种科学刊物及学术会议上有关合成生物学与生物安全、伦理道德及知识产权也是经常讨论的重要议题。上述生物经济研究报告均涉及这些问题。最近,MIT的Endy与合成生物学界的著名学者、企业执行官、安全专家等十几人发表了题为“DNA合成与生物安全”的文章[70],提出了由合成公司、研究机构及政府管理机构相互配合共同遵守的框架。\n合成生物学与生物安全、伦理道德及知识产权关于合成生物学与知识产权的多篇文章也已经在科学刊物及法律刊物上发表[71-73]。总之,合成生物学的研究比当前的转基因技术、基因工程等更为前卫,产生的社会效益与风险也是一把双刃剑,弄得不好就会产生负面影响。我们必须早做准备,在生物安全、伦理、知识产权等方面从一开始就要建立必要的法规和制度,以保证具有重要科学意义及应用价值的合成生物学健康快速发展。

相关文档