统计学实验作业 18页

  • 567.68 KB
  • 2022-08-13 发布

统计学实验作业

  • 18页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第一次上级试验资料的整理与特征数的计算实验目的:熟悉常用统计软件,学习使用excel,spass进行基本特征数的计算实验步骤:(一)次数分布表的编制及统计图制作1、数据输入(1)启动Spss,点击varibleview进入定义变量工作表,用name命令定义变量“血清总胆固醇含量”,小数位(decimal)依题意定义为2(2)Dateview→数据视图工作表→输入100例30~40岁男子的胆固醇含量2、求均数、标准差、最大值、最小值和全矩Analyze-DescriptiveStatistics-Descriptives选中变量“胆固醇含量”,将其键入varible框内,按option→Descriptive→mean,std.deviation、maximum、rang→continue→Descriptive→ok→输出表3、分组分10组,依次为2.70~、3.15~、3.60~、4.05~、4.50~、4.95~、5.40~、5.85~、6.30~、6.76~、7.20~操作如下:(1)transform→compute→targetvarible(次数)→numericexpression(1)→if→computevarible:ifcase→inculdeifcasesatisfies→血清总胆固醇→条件表达框输入“>=2.70&血清总胆固醇含量<3.15”→continue→运行。重复上述步骤,将numericexpression(1)改为numericexpression(2),“>=2.70&血清总胆固醇含量<3.15”改为“>=3.15&血清总胆固醇含量<3.60”。依次类推,完成10组操作4、组段标记:Variableview→次数,value列的单元格,none→……→value框,变量值代码,valuelable框,代码所代表内容→ok5、求各组段次数:Analyze→DescriptiveStatistics→frequenciens→varible框(次数)→ok6、直方图和多边形制作(1)直方图Graphs→histogram→varible框(血清总胆固醇含量)→ok(2)Graphs→line,simpl,summariesforgroupofcase→define,otherStatistics→category(血清总胆固醇含量)→varible框(次数)→ok结果分析某人次数FrequencyPercentValidPercentCumulativePercentValid2.7~11.01.01.03.15~88.08.19.13.60~99.09.118.24.05~2121.021.239.44.50~2424.024.263.64.95~1717.017.280.85.40~66.06.186.95.85~77.07.193.96.30~55.05.199.07.20~11.01.0100.0Total9999.0100.0MissingSystem11.0Total参数估计100100.0\nDescriptiveStatisticsNMinimumMaximumMeanStd.DeviationVariance习题2.6 1001.007.224.7194.92839.862ValidN(listwise)100第二次上级:统计推断,样本平均数的假设检验实验目的:学习使用excel,spass实现样本平均数的假设检验和参数估计,理解统计推断的意义实验步骤及结果分析习题4.61、数据输入(1)启动spass→variableview→name(桃树枝条含氮量),小数位定义为2(2)Dateview(数据输入)2、统计分析:Analyze→comparemeans→one-samplettest,testVariable框(桃树枝条含氮量),testvalue框(2.40)→ok3、结果分析One-SampleTestTestValue=2.40tdfSig.(2-tailed)MeanDifference95%ConfidenceIntervaloftheDifferenceLowerUpper桃树枝条含氮量-.3719.719-.00800-.0567.0407查附表3,df=9,t0.05=2.262,。通过软件得1t1<0.05,p>0.05,故接受H0:u=u0=2.4%即该测定结果与桃树枝条常规含氮量无差别习题4、81数据输入:variableview→定义变量(组别和翅长),小树位数都定义为0,组别取值1表示北方动物,2表示南方动物→Dateview(数据输入)2、统计分析:Analyze→comparemeans→indepdent-samplettest,testvariablen鸟翅长,groupingvariable(组别)→definegroups:group1:1,group2:2→continue→ok4、分析结果IndependentSamplesTestLevene'sTestforEqualityofVariancest-testforEqualityofMeansFSig.tdfSig.(2-tailed)MeanDifferenceStd.ErrorDifference95%ConfidenceIntervaloftheDifferenceLowerUpper鸟翅长Equalvariancesassumed.355.561-.14713.886-.2681.825-4.2123.676\nEqualvariancesnotassumed-.14410.953.888-.2681.865-4.3743.838查附表5,df1=6,df2=7,F0.05=3.87,Fp0.05,两样本鸟翅长的方差是同质的,通过表得到t=-0.147,df=12,t=2.179,︳t︳0.05,故接受H0:u1=u2,所以北方动物比南方动物具有较短的附肢这一假说是错误的习题4.91数据输入variableview→定义变量(治疗前和治疗后),小数位数都定义为0→Dateview(数据输入)2、统计分析Analyze→comparemeans→paired-samplettest:pairedvariable:治疗前-治疗后→ok3、结果分析PairedSamplesTestPairedDifferencestdfSig.(2-tailed)MeanStd.DeviationStd.ErrorMean95%ConfidenceIntervaloftheDifferenceLowerUpperPair1习题4.9-治疗后19.92312.5993.49412.30927.5375.70112.000查附表3,df=12,t0.05=2.179,t>t0.05,故p>p0.05,否定H0:u1=u2,接受HA:u1≠u2,该药不具有降血压的作用习题4.101数据输入variableview→定义变量(病毒A和病毒B),小数位数都定义为0→Dateview(数据输入)2、统计分析Analyze→comparemeans→paired-samplettest:pairedvariable:病毒A-病毒B→ok3、结果分析PairedSamplesTestPairedDifferencestdfSig.(2-tailed)MeanStd.DeviationStd.ErrorMean95%ConfidenceIntervaloftheDifference\nLowerUpperPair1习题4.10-病毒b4.0004.3091.524.3977.6032.6257.034查附表3,df=7,t0.05=2.365,t>t0.05,故p>p0.05,否定H0:u1=u2,接受HA:u1≠u2,说明两种病毒的致病能力有显著差异第三次上级:卡方检验实验目的:熟悉卡方检验原理,掌握卡方检验的实现方法实验步骤及结果分析习题5、31、数据输入variableview→定义变量(性别与只数),小数位数都定义为0→Dateview(数据输入)2、统计分析Date→weightcaseby:frequencyvariable:只数→okAnalyze→nonparametric→x2→statistics:chi-square→contiue→value(1:1)→ok3、结果分析TestStatistics数量Chi-Square5.881adf1Asymp.Sig..015ExactSig..019PointProbability.007a.0cells(.0%)haveexpectedfrequencieslessthan5.Theminimumexpectedcellfrequencyis71.5.据附表4查到,df=1,x20.05=3.84,x2>x20.05,故pp0.05,接受H0,F2代的芒性状表型的试验比率符合9:3:4的理论比率习题5.51、数据输入variableview→定义变量(性别和人数),小数位数都定义为0→Dateview(数据输入)2、统计分析Date→weightcaseby:frequencyvariable:人数→okAnalyze→nonparametrictest→x2→exact→No.3→statistics:chi-square→contiue→value(1:1)→ok3、结果分析TestStatistics数量Chi-Square.041adf2Asymp.Sig..980ExactSig..980PointProbability.003a.0cells(.0%)haveexpectedfrequencieslessthan5.Theminimumexpectedcellfrequencyis116.3.附表4,df=1,x20.05=,3.84,x2>x20.05,故p0.05,故接受H0,即红星苹果和国光苹果这两种苹果耐贮存差异不显著习题5.71、数据输入variableview→定义变量(品种,植株,株数),→Dateview(数据输入)2、统计分析Date→weightcaseby:frequencyvariable:株数→okAnalyze→descriptivestatistics→crosstable:row:品种,columu:植株状况→statisticschi-square→contiue→ok3、结果分析Chi-SquareTestsValuedfAsymp.Sig.(2-sided)PearsonChi-Square5.622a4.229LikelihoodRatio5.5354.237NofValidCases547a.0cells(.0%)haveexpectedcountlessthan5.Theminimumexpectedcountis8.78.结论:df=4,n=547,x2=5.622,p=0.229大于0.05,接受Ho,叶片衰老与灌溉方式无关第四次上机:统计推断方差同质检验非参数检验实验目的:理解方差同质性检验的目的与方法,熟悉非参数检验方法实验步骤及结果分析习题6.41、数据输入variableview→定义变量(氯化钠溶液处理浓度,分组,芽长),→Dateview(数据输入)2、统计分析Analyze→comparemeans→one-wayANOVAdependent:芽长,factor:氯化钠溶液处理浓度→option:descripvehomogeneityofvariabletest→continue→posthoc:lsdsnkDuncan→ok3、结果分析ANOVA芽长SumofSquaresdfMeanSquareFSig.\nBetweenGroups22.60937.53615.225.001WithinGroups3.9608.495Total26.56911F=15.225,表明4种不同浓度的氯化钠溶液处理种子的发芽情况呈极显著差异芽长习题6.4NSubsetforalpha=0.0512Student-Newman-Keulsa10035.1335036.2001037.867038.633Sig..100.219Duncana10035.1335036.2001037.867038.633Sig..100.219Meansforgroupsinhomogeneoussubsetsaredisplayed.a.UsesHarmonicMeanSampleSize=3.000.通过s-n-k法比较4浓度之间对种子处理发芽情况的差异:100ug/g与50ug/之间的差异不显著,100ug/g与10ug/g和0ug/g之间呈显著差异,50ug/g与10ug/g之间差异不显著,通过srr法比较4种浓度对种子发芽情况的影响的差异与s-n-k法得出的结论相同gMultipleComparisonsDependentVariable:芽长(I)习题6.4(J)习题6.4MeanDifference(I-J)Std.ErrorSig.95%ConfidenceIntervalLowerBoundUpperBoundLSD010.7667.5745.219-.5582.091502.4333*.5745.0031.1093.7581003.5000*.5745.0002.1754.825100-.7667.5745.219-2.091.558501.6667*.5745.020.3422.9911002.7333*.5745.0011.4094.058\n500-2.4333*.5745.003-3.758-1.10910-1.6667*.5745.020-2.991-.3421001.0667.5745.100-.2582.3911000-3.5000*.5745.000-4.825-2.17510-2.7333*.5745.001-4.058-1.40950-1.0667.5745.100-2.391.258Dunnettt(2-sided)a100-.7667.5745.446-2.421.888500-2.4333*.5745.007-4.088-.7791000-3.5000*.5745.001-5.154-1.846*.Themeandifferenceissignificantatthe0.05level.a.Dunnettt-teststreatonegroupasacontrol,andcompareallothergroupsagainstit.通过lsd法得p(sig)>0.05,差异不显著,p<0.05差异显著,p<0.01差异极显著,故由此可得出不同浓度处理发芽间的差异:0ug/g与10ug/g之间差异不显著,0ug/g与50ug/g和100ug/g之间呈极显著差异,10ug/g与50ug/g呈显著差异,10ug/g与100ug/g呈极显著差异,50ug/g与100ug/g之间差异不显著习题6.51、数据输入variableview→定义变量(母猪品种和仔猪断奶时体重),→Dateview(数据输入)2、统计分析Analyze→comparemeans→one-wayANOVAdependent:仔猪断奶时体重,factor:母猪品种→option:descripvehomogeneityofvariabletest→continue→posthoc:lsdsnkDuncan→ok3、结果分析ANOVA体重SumofSquaresdfMeanSquareFSig.BetweenGroups153.530276.76521.515.000WithinGroups74.929213.568Total228.45823由表F=21.515母猪对仔猪体重效应的差异极显著MultipleComparisonsDependentVariable:体重(I)习题6.5(J)习题6.5MeanDifference(I-J)Std.ErrorSig.95%ConfidenceIntervalLowerBoundUpperBoundLSD122.7143*.9776.011.6814.74736.0000*.9179.0004.0917.90921-2.7143*.9776.011-4.747-.68133.2857*.9519.0021.3065.265\n31-6.0000*.9179.000-7.909-4.0912-3.2857*.9519.002-5.265-1.306Dunnettt(2-sided)a21-2.7143*.9776.021-5.032-.39731-6.0000*.9179.000-8.176-3.824*.Themeandifferenceissignificantatthe0.05level.a.Dunnettt-teststreatonegroupasacontrol,andcompareallothergroupsagainstit.通过lsd法比较不同种母猪与同一公猪交配所产仔猪断奶时体重之间的差异1与2之间差异呈显著,2与3之间呈极显著差异,1与3之间呈极显著差异体重习题6.5NSubsetforalpha=0.05123Student-Newman-Keulsa3916.5002719.7861822.500Sig.1.0001.0001.000Duncana3916.5002719.7861822.500Sig.1.0001.0001.000Meansforgroupsinhomogeneoussubsetsaredisplayed.a.UsesHarmonicMeanSampleSize=7.916.通过s-n-k法比较不同种母猪对仔猪体重效应的差异显著性,1与2呈显著差异,2与3呈显著差异,1与3呈显著差异习题6.61、数据输入variableview→定义变量(品种,室温,每100mg血液中葡萄糖含量),→Dateview(数据输入)2、统计分析Analyze→generallinearmodel→univariable:dependenvariablet:每100mg血液中葡萄糖含量,fixedfactor:品种,室温→continue→option:descripvestatistics→continue→posthoc:lsdsnkDuncan→ok3、结果分析习题6.6TestsofBetween-SubjectsEffectsDependentVariable:血糖值SourceTypeISumofSquaresdfMeanSquareFSig.CorrectedModel13288.607a91476.51216.084.000Intercept373296.0361373296.0364066.511.000\n品种2758.3933919.46410.016.000室温10530.21461755.03619.119.000Error1652.3571891.798Total388237.00028CorrectedTotal14940.96427a.RSquared=.889(AdjustedRSquared=.834)有方差分析得F=10.02,各种家兔血糖值之间呈极显著差异,室温间F=19.12,室温对家兔的影响极显著差异血糖值习题6.6NSubset123Student-Newman-KeulsaⅣ7102.29Ⅰ7110.57110.57Ⅱ7120.43120.43Ⅲ7128.57Sig..123.070.129DuncanaⅣ7102.29Ⅰ7110.57110.57Ⅱ7120.43120.43Ⅲ7128.57Sig..123.070.129Meansforgroupsinhomogeneoussubsetsaredisplayed.Basedonobservedmeans.TheerrortermisMeanSquare(Error)=91.798.a.UsesHarmonicMeanSampleSize=7.000.品种Ⅰ与Ⅱ之间差异不显著,Ⅰ与Ⅳ之间差异不显著,Ⅱ与Ⅲ之间差异不显著,Ⅰ与Ⅲ之间差异显著,Ⅳ与Ⅱ、Ⅲ之间差异显著血糖值室温NSubset1234Student-Newman-Keulsa20489.25\n15491.50254107.50104120.00120.00304122.50122.5054130.00354147.50Sig..744.096.3251.000Duncana20489.2515491.50254107.50104120.00120.00304122.5054130.00354147.50Sig..744.082.1791.000Meansforgroupsinhomogeneoussubsetsaredisplayed.Basedonobservedmeans.TheerrortermisMeanSquare(Error)=91.798.a.UsesHarmonicMeanSampleSize=4.000.通过s-n-k比较不同室温对家兔血糖值得影响之间的差异显著性20℃与15℃之间差异不显著,25℃与30℃之间差异不显著,30℃与5℃之间差异不显著,25℃与10℃之间差异不显著,30℃与10℃之间差异不显著,10℃与5℃之间差异不显著,20℃与25℃、10℃、30℃、5℃、35℃之间差异显著,15℃与25℃、10℃、30℃、5℃、35℃之间差异显著,25℃与20℃、15℃、5℃、35℃之间差异显著,10℃与20℃、15℃、5℃、35℃之间差异显著,30℃与20℃、15℃、35℃之间差异显著,5℃与20℃、15℃、25℃、10℃、5℃、30℃之间差异显著习题6.71、数据输入variableview→定义变量(原料,温度,生长情况),→Dateview(数据输入)2、统计分析Analyze→generallinearmodel→univariable:dependenvariablet:生长情况,fixedfactor:原料,温度,室温→continue→option:descripvestatistics→continue→posthoc:lsdsnkDuncan→ok3、结果分析TestsofBetween-SubjectsEffectsDependentVariable:结果\nSourceTypeIIISumofSquaresdfMeanSquareFSig.CorrectedModel5513.500a8689.18811.233.000Intercept37636.000137636.000613.445.000原料1554.1672777.08312.666.000温度3150.50021575.25025.676.000原料*温度808.8334202.2083.296.025Error1656.5002761.352Total44806.00036CorrectedTotal7170.00035a.RSquared=.769(AdjustedRSquared=.701)结果习题6.7NSubset12Student-Newman-KeulsaA11223.58A21234.00A31239.42Sig.1.000.102DuncanaA11223.58A21234.00A31239.42Sig.1.000.102Meansforgroupsinhomogeneoussubsetsaredisplayed.Basedonobservedmeans.TheerrortermisMeanSquare(Error)=61.352.a.UsesHarmonicMeanSampleSize=12.000.通过s-n-k法比较不同原料对物质生长影响之间的差异显著性:A1与A2之间差异显著,A1与A3之间差异显著,A2与A3之间差异不显著结果温度NSubset123Student-Newman-Keulsa401220.17\n351233.92301242.92Sig.1.0001.0001.000Duncana401220.17351233.92301242.92Sig.1.0001.0001.000Meansforgroupsinhomogeneoussubsetsaredisplayed.Basedonobservedmeans.TheerrortermisMeanSquare(Error)=61.352.a.UsesHarmonicMeanSampleSize=12.000.通过s-n-k法比较不同温度对物质生长影响之间的差异显著性:B3与B2之间差异显著,B2与B1之间差异显著,B3与B1之间差异显著第五次上机直线回归与相关分析实验目的;理解线性回归与相关分析得基本原理,熟悉使用spass实现线性回归相关的统计方法实验步骤及分析结果习题7、4-1、数据输入variableview→定义变量(4月下旬平均气温x,5月上旬50株棉蚜虫数y),→Dateview(数据输入)2、统计分析Analyze→regression→linear-dependent:5月上旬50株棉蚜虫数y,independent:4月下旬平均气温x→statistics:descriptives→continue→ok3、结果分析CoefficientsaModelUnstandardizedCoefficientsStandardizedCoefficientstSig.BStd.ErrorBeta1(Constant)-283.68063.872-4.441.001四月下旬平均气温x18.0843.387.8605.339.000a.DependentVariable:五月上旬50株棉蚜虫数ya=18.084,b=-283.680,y=18.084x-283.680ANOVAbModelSumofSquaresdfMeanSquareFSig.\n1Regression55.842155.84228.510.000aResidual19.587101.959Total75.42911a.Predictors:(Constant),五月上旬50株棉蚜虫数yb.DependentVariable:四月下旬平均气温xF=28.510.所以否定H0,接受HA,说明五月上旬50株棉蚜虫数与四月下旬平均气温之间有极显著的直线回归关系习题7.51、数据输入variableview→定义变量(进食量,增重量,小数位数都定义为0),→Dateview(数据输入)2、统计分析Analyze→regression→linear-dependent:增重量,independent:进食量→statistics:descriptives→continue→ok3、结果分析CoefficientsaModelUnstandardizedCoefficientsStandardizedCoefficientstSig.BStd.ErrorBeta1(Constant)-47.35351.605-.918.394进食量.261.065.8544.018.007a.DependentVariable:增重量CoefficientsaModel95%ConfidenceIntervalforBLowerBoundUpperBound1(Constant)-173.62778.921进食量.102.420a.DependentVariable:增重量a=0.261,b=-47.353,y=0.261x-47.353,回归系数的95%置信区间为(0.102,0.420)相关系数为0.854,t值为4.018,p=0.007<0,.01即线性回归系数为0.261,是极显著,表明增重量与进食量存在极显著的线性关系协方差分析习题10.21、数据输入variableview→定义变量(肥料,梨树的起始干周x,梨树的单株产量y),→Dateview(数据输入)2、统计分析Analyze→generallinearmodel→univariable:dependenvariablet:梨树的单株产量y,fixed\nfactor:肥料,covariate:梨树的起始干周x→continue→option:descripvestatistics→displymeansfor:肥料→comparemaineffect→continue→ok3、结果分析TestsofBetween-SubjectsEffectsDependentVariable:单珠产量SourceTypeIIISumofSquaresdfMeanSquareFSig.CorrectedModel3086.893a4771.72318.312.000Intercept3280.47413280.47477.841.000肥料2507.7773835.92619.835.000梨树的起始干周475.9931475.99311.295.002Error1475.0073542.143Total168658.00040CorrectedTotal4561.90039a.RSquared=.677(AdjustedRSquared=.640)F=19.835,说明肥料对梨树单株产量的影响差异达到显著水平PairwiseComparisonsDependentVariable:单珠产量(I)习题10.2(J)习题10.2MeanDifference(I-J)Std.ErrorSig.a95%ConfidenceIntervalforDifferenceaLowerBoundUpperBoundA1A26.849*2.927.025.90712.791A315.670*2.919.0009.74321.596A420.558*2.906.00014.65926.458A2A1-6.849*2.927.025-12.791-.907A38.821*2.904.0042.92514.716A413.710*2.913.0007.79519.624A3A1-15.670*2.919.000-21.596-9.743A2-8.821*2.904.004-14.716-2.925A44.8892.908.102-1.01610.793A4A1-20.558*2.906.000-26.458-14.659A2-13.710*2.913.000-19.624-7.795A3-4.8892.908.102-10.7931.016\nBasedonestimatedmarginalmeans*.Themeandifferenceissignificantatthe.05level.a.Adjustmentformultiplecomparisons:LeastSignificantDifference(equivalenttonoadjustments).各肥料的校正,梨树的单株产量y的比较结果表明,肥料A与A2之间其校正梨树单株产量平均值间存在显著差异,与A3,、A4间存在极显著差异,A2与A3、A4之间其校正梨树单株产量平均值间存在极显著差异,A3与A4间无显著差异EstimatesDependentVariable:单珠产量习题10.2MeanStd.Error95%ConfidenceIntervalLowerBoundUpperBoundA174.819a2.06370.63179.007A267.970a2.06063.78972.152A359.150a2.05654.97763.322A454.261a2.05450.09158.431a.Covariatesappearinginthemodelareevaluatedatthefollowingvalues:梨树的起始干周=23.68.习题10.31、数据输入variableview→定义变量(区组,品种,豆菜干物重的百分率x,维生素c含量y),→Dateview(数据输入)2、统计分析Analyze→generallinearmodel→univariable:dependenvariablet:维生素c含量y,fixedfactor:区组,品种,covariate:豆菜干物重的百分率x→continue→option:descripvestatistics→displymeansfor:区组,品种,豆菜干物重的百分率x→comparemaineffect→continue→ok3、结果分析TestsofBetween-SubjectsEffectsDependentVariable:维生素C含量SourceTypeIIISumofSquaresdfMeanSquareFSig.CorrectedModel20176.031a63362.67261.281.000Intercept5706.35915706.359103.993.000品种1094.5135218.9033.989.014豆荚干中百分率1497.81611497.81627.296.000Error932.8341754.873Total197891.20024CorrectedTotal21108.86523a.RSquared=.956(AdjustedRSquared=.940)Estimates\nDependentVariable:维生素C含量习题10.3MeanStd.Error95%ConfidenceIntervalLowerBoundUpperBoundA191.679a3.71683.83899.520A268.293a6.58854.39382.194A377.733a3.72669.87185.595A479.782a4.26370.78788.777A599.033a6.29985.744112.322A698.430a4.39389.161107.699a.Covariatesappearinginthemodelareevaluatedatthefollowingvalues:豆荚干中百分率=34.629.PairwiseComparisonsDependentVariable:维生素C含量(I)习题10.3(J)习题10.3MeanDifference(I-J)Std.ErrorSig.a95%ConfidenceIntervalforDifferenceaLowerBoundUpperBoundA1A223.386*7.340.0057.90038.872A313.946*5.287.0172.79125.100A411.897*5.540.046.20823.585A5-7.3557.524.342-23.2298.520A6-6.7515.879.267-19.1555.653A2A1-23.386*7.340.005-38.872-7.900A3-9.4407.859.246-26.0217.141A4-11.4896.211.082-24.5931.615A5-30.740*11.773.018-55.579-5.902A6-30.137*9.405.005-49.980-10.293A3A1-13.946*5.287.017-25.100-2.791A29.4407.859.246-7.14126.021A4-2.0495.813.729-14.31410.216A5-21.300*7.027.008-36.126-6.474A6-20.697*5.590.002-32.491-8.902A4A1-11.897*5.540.046-23.585-.208A211.4896.211.082-1.61524.593A32.0495.813.729-10.21614.314\nA5-19.251*8.909.045-38.047-.456A6-18.648*6.889.015-33.182-4.114A5A17.3557.524.342-8.52023.229A230.740*11.773.0185.90255.579A321.300*7.027.0086.47436.126A419.251*8.909.045.45638.047A6.6035.907.920-11.86013.067A6A16.7515.879.267-5.65319.155A230.137*9.405.00510.29349.980A320.697*5.590.0028.90232.491A418.648*6.889.0154.11433.182A5-.6035.907.920-13.06711.860Basedonestimatedmarginalmeans*.Themeandifferenceissignificantatthe.05level.a.Adjustmentformultiplecomparisons:LeastSignificantDifference(equivalenttonoadjustments).各区组校正Vc平均含量的双重比较结果表明,区组1与区组2、3、4间差异不显著,区组2与区组3、4间差异显著,区组3与区组4间差异不显著;

相关文档