大学物理公式 7页

  • 19.33 KB
  • 2022-08-16 发布

大学物理公式

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第一章质点运动学国际基本物理量:长度(m),质量(kg),时间(s),电流(A),热力学温度(K),物质的量(mol),发光强度(cd)量纲:某一物理量借助有关定义或定律用基本量表示时,表达式中各基本量的指数。例:F=ma,则F导出单位为kg*m/(s、2),力对质量,长度量纲为1,对时间量纲为-2。§1.2质点运动描述位矢函数:r=r(t)或r={x(t),y(t),z(t)}其中r=xi+yj+zk,Ir|=V[xA2+yA2+zA2]消去t即可得轨迹方程速度:V=dr/dt=(Vx)i+(Vy)j+(Vz)kIV|=V[(Vx)A2+(Vy)A2+(Vz)A2]加速度:a=dv/dt=(Ax)i+(Ay)j+(Az)kIa|=V[(Ax)A2+(Ay)A2+(Az)A2]自然坐标系E。为切向量,EN为法向量V=(ds/dt)*E=|V|*Eta=(A?+(AN)=(dv/dt)*E廿~A2/#*EN其中p为该点的转弯半径Ia|=V[(dv/dt)A2+(vA2/铲2]加速度与切向夹角a=artan(AN/A)圆周运动角速度:3=dMt角加速度:3=dWdt=(dA2%(dtA2)有V=R3A=R3AN=R亦2V=3XR,求导得a=(A科(AN尸3XR+coXv第二章质点动力学牛顿第一定律:惯性和力牛顿第二定律:P=mv,F=dP/dt=d(mv)/dt=m(dv/dt)=ma牛顿第三定律:F1=F2惯性力:F+Fo=MA’其中Fo=-MAo,Ao为所选参考系相对地面的加速度,A’为目标物体在所选参考系中的加速度功:dA=Fcosodr,A=/F*dr功率:P=dA/dt=F*(dr/dt)=F*v保守力做功:只与初末位置有关平动功能原理:除重力外其他力作功等于平动机械能改变量机械能守恒:保守力做功情况下物体动能与势能相互转换而总合不变动能定理:FF*ds=AEk动量定理:FF*dt=¥动量守恒:F=0(F为合外力,则P1=P2=C(常矢量)质心:质点系中所有质点位矢乘上以该位置质点质量为权重的加权平均值第三章刚体力学转动定律:M=J3,与牛二(F=ma)类比,M为合外力矩,J为转动惯量,相当于m,3为角加速度,相当于a其中,J=/M2*dm回转半径:r=V(J/m)\n物体类型转轴位置对应转动惯量圆划、穿过圆环中心与坏向垂直J=mM2以直径为转轴J=(mM2)/2薄圆盘牙过圆盘中心与盘面垂直J=(mM2)/2圆筒沿圆筒的中心轴J=m(R1A2+R2A2)/2其中R1为止R2为外半径圆柱体沿柱体中心轴J=(mM2)/2穿过柱体中点与中心轴垂直J=(mrA2)/4+(m|A2)/12其中l为柱体长度细棒穿过棒中点与棒垂直J=(m|A2)/12其中l为棒长穿过棒端点与棒垂直J=(m|A2)/3其中l为棒长球体以球体直径为转轴J=[2(mrA2)]/5溥球壳以球壳直径为转轴1J=[2(mrA2)]/3平行轴定理:若质量为m的刚体对过其质心c的某一转轴的转动惯量为Jc则可知此刚体对于平行于该轴、和该轴相距为d的另一转轴的转动惯量J为:J=Jc+mdA2刚体转动动能:Ek=(JJ2)/2类比平动动能:Jcm,coV刚体重力势能:Ep=mgh力矩的功:dA=M*d0A=fM*d0功率:P=dA/dt=M*dVdt=M*3刚体转动动能定理:A=/M*dy/Jojdo=[J(o2)A2-J(N)A2]/2其中M为合外力矩注意类比平动转动功能原理:MM*d9=mg(H2-H1)+[J(g2)a2-J(的)人2]/2其中M为除重力距外其他力矩之和刚体机械能守恒:mgH+(JJ2)/2=C(常量)角动量:L=Jw类比P=mv角动量定理:MM*dt=L2-L1=AL类比/F*dt=AP角动量守恒:L=Jc^C,转动过程中合外力矩为零适用第六章电荷与电场库仑定律:F=(kq1q2)/rA2其中k=1/(4兀o)真空中的介电常数:so电场强度:E=F/q(试验尸kq(产生电场的电荷)/「人2场强叠加:dE=k(dq)/rA2E=k/[(dq)/rA2]体电荷密度:p=(dq)/(dV)面电荷密度:b=(dq)/(dS)线电荷密度:入=(dq)/(dL)电偶极距:Pe=ql,其中l为-q指向+q的径矢电偶极子中垂线上某点场强:\nE=Pe/(4TtoRA3)=kPe/RA3其中R为该点距中垂线中点距离无限长的均匀带电棒在距其距离为a处的点的场强为Ey=2k乂a,其中入为线电荷密度半无限长的均匀带电棒在距其距离为a处的点的场强为E=[(,2)*k"a,其中入为线电荷密度,方向为x轴,y轴角平分线方向均匀带电圆环轴线上任一点场强为:E=kQx/[(xA2+aA2)A(3/2)]其中Q为圆环带电量,a为圆环半径,x为该点到环心的距离均匀带电圆盘轴线上任一点的场强为:E=([1-x/,(RA2+xA2)]/(2o)其中x为该点到圆盘中心距离,R圆盘半径,b为面电荷密度无限大均匀带电板附近场强:E=(/(2o)电通量:d(=E*dS场强E也可表示为E=d0d(S±)后/E*dS,若S为闭合曲面,则。=E*dS真空中的高斯定理:(()=^E*dS=(Z2q)/o一般取对称高斯面则面上场强E=(Eq)/(oS)半径为R的均匀带电球壳的空间场强分布:r>R时,E=kq/(rA2)rR时,E=2k不rR时,U=kq/rUR时,U=kq/R半径为R的均匀带电(q)细圆环轴线上电势分布:\nU=kq/[V(RA2+xA2)]其中x为该点距圆环中心距离当x>>R时,既点无限远,U=kq/x当x=0时,U=kq/R等势面:(1)与电场线正交(2)电场线方向为电势降落方向(3)电场越强处等势面越密,电场越弱处等势面越疏。静电场中的导体静电平衡状态:导体内部和表面都没有电荷宏观定向运动的状态静电平衡状态下的导体性质:1、导体内部,场强处处为零;导体表面场强垂直导体表面;电场线不进入导体内部,而与导体表面正交。2、导体内、导体表面各处电势相同,整个导体为等势体。静电平衡状态下的导体带电性质:1、导体内部净电荷为零,电荷只分布于导体外表面2、导体表面个点的面电荷密度与表面邻近处场强成正比,即(T=oE表,则导体表面邻近处场强:E表=/o3、导体表面电荷面密度(T与该处曲率有关,曲率越大则(T越大,曲率越小则(T越小静电平衡状态下的空腔导体带电性质:1、腔内无带电体:①空腔内部场强为零,整个腔体为一个等势体②若空腔导体带电,则其电荷只分布与外表面,内表面无电荷2、腔内有带电体:①导体中场强为零②空腔内部的电场取决于腔内带电体,空腔外电场取决于空腔外表面的电荷分布③空腔的内表面所带电荷与腔内带电体所带电荷等量异号电容和电容器电容:C=Q/U电容式反映孤立导体容纳电荷和电能能力的物理量,用单位电势差所容纳的电量来表征,它只与孤立导体本身的形状、大小和周围电介质有关,而与其是否带电无关计算电容器一般步骤:1、假设所求电容器两极板各带+q和-q电荷2、求出其板间电场E的分布,并由U=/E*dl计算两极板间的电势差3、由定义C=Q/U求得两个靠的很近(可将两板看成无限大),相距为d,面积为S,板间为真空的平行金属板组成的平板电容器:E=/o,U=(qd)/(gS),Co=(oS)/d当板中充满各向同性均匀电介质时,电容C将增大,有:C/Co=rEr称为电介质的相对介电常数则两个靠的很近(可将两板看成无限大),相距为d,面积为S,板间充满各向同性均匀且相对介电常数为Er的电介质的平行金属板组成的平板电容器:C=彳*Co两半径分别为R1和R2(R2>R1)的同心金属球壳(壳间为真空)组成的球形电容器的电容为:\nCo=(R1*R2)/[k*(R2-R1)]对于长为l,半径分别为R1,R2(R2>R1)两同轴圆柱面组成的圆柱形电容器(面间为真空)淇电容为:Co=l/[2k*In(R2/R1)]n个电容器串联,有如下等量关系:Q1=Q2==QnV=EVi,i=1,2……,n1/C=V/q=(汇Vi)/q=汇(1/Ci)n个电容器并联,有如下等量关系:Q=EQiV=V1=V2=…尸VnC=ECi多个电容串联的总电容可与多个电阻并联的总电阻类比多个电容并联的总电容可与多个电阻串联的总电阻类比电介质中某处电极化强度矢量:P=(汇Pe)/AV,其中Pe为该处附近的电介质分子电偶极矩矢量,V为该处体积当外电场不太强(没有发生电介质击穿现象),某处电极化强度矢量P与该处的总场强E(E=Eo+E')成正比:P=)eecE其中xe称为电介质的电极化率电介质外表面某处的极化电荷元电量dQ'在量值上等于该处面元dS的电极化强度矢量P的元通量,即:dQ’=P*dS电介质中的场强:E=Eo+E’其中Eo为外电场(自由电荷产生场强),E'为极化电荷产生的附加场强电介质的电极化率xe,相对介电常数er之间有如下等量关系:r=1+xe在电容器那一节中定义过介电常数£=£r*£o则可得:=e产ec=(1+/e)*eo其中真空中的介电常数e。为已知量,知道er,e,%e中任意两个即可求得第三个。sr,s,忠均为表征电介质性质的物理量,即它们的数值随电介质的不同而不同。当电介质存在时,静电场环流定理仍成立,形式不变,高斯定理也成立,但形式变为:fE*dS=汇(Qo+Q')/o其中Qo和Q分别为所取高斯面包围的自由电荷和极化电荷,E为空间所有自由和极化电荷在所取高斯面上各点所产生的合场强。电位移矢量D=o*E+P=g*E+依e(£=£f£(*E=*E高斯定理可化为更简洁的形式:DD*dS=EQo点电荷系统的电能:W=(1/2)汇Qi*Ui其中Ui为除去第i个点电荷外所有其他点电荷产生电场在第i个点电荷位置产生的电势电容器能量:We=(QA2)/(2C)=(CVA2)/2=Q/(2V)电场能量:dWe=[(*EA2)/2]*dVWe=/dWe第七章电流与磁场比奥-萨法尔定律:dB=[(kIsin@/(rA2)]*dl矢量式:dB=[k*(Idl)xr]/(r人3)用以判断方向\n其中Idl为所取电流元,。为Idl与径矢r的夹角,k=®/(4力,q为真空中磁导率电流为I的无限长导线在距其距离为a处的点产生的磁感应强度为B=2kI/a(类比电场强度类似模型的结论)电流为I的半无限长导线在过其端点且垂直于导线的空间直线上某点产生的磁感应强度B=kI/a,为上个结论数值的一半,其中a为该点距导线的距离电流为I的圆环电流轴线上任一点磁感应强B=(2k*I*S)/[(RA2+xA2F(3/2)]=(2k*I*S)/(rA3)其中R为圆环半径,x为点到环心距离,r=V(RA2+xA2)易得环心处B=(⑻)/(2R)=(2k*dI)/R,当x>>R时,B=2k*I*S/(xA3)载流线圈磁矩:Pm=N*I*[S(En)],其中I为回路电流,S为圆电流回路面积,En为回路平面法线方向,N为线圈匝数无限长载流直螺线管内部轴线上的磁感应强度:B=2*n*I其中n为单位长度线圈匝数,I为螺线管电流半无限长载流直螺线管内部轴线上(端面中心)的磁感应强度:B=((io*n*l)/2为上个结论数值的一半磁通量:d(fm=B*dS磁感应强度B也可表示为B=d»d(S1)后/B*dS恒定磁场中的高斯定理:$B*dS=0真空中恒定磁场的安培环路定理:$B*dl=⑷汇li无限长载流圆柱形导体(半径为R)的磁场分布:r=0,B=0rR,B=(2k*I)/r其中r为点到圆柱轴线的距离无限长载流圆柱面(半径为R)的磁场分布:rR,B=(2k*I)/r无限长载流直螺线管内部轴线上的磁感应强度:B=2*n*I其中n为单位长度线圈匝数,I为螺线管电流密绕载流螺绕环的磁场分布:环管内,B=⑷*n*I环管外,B=0洛伦兹力:矢量式F=qvxB安培力:矢量式dF=IdlxBF=I*B*l*sin0其中0为电流I与磁场B的夹角在匀强磁场中的载流线圈受到的磁力矩M=N*I*B*S*sin0。为线圈发现方向与磁场B的夹角(取锐角),S为线圈面积\n平行载流直导线间的互相作用力:设长为(lA)导线A通的电流为I1,导线B通的电流为I2,则导线A单位长度受力为:d(FA)/d(lA)=(2k*I1*I2)/a,其中a为两导线间距磁力或磁力矩的功:A=F*Ax=I*Am当电流变化时,A=/I*d(((m)第八章电磁场与麦克斯韦方程组N匝线圈感应电动势:s=-N*[(d@/(dt)]感应电流:I=/R=-[(dW(dt)]/R感应电量:q=/Idt=-(A»R动生电动势:e=/(vXB)*dl=BLvL为导线切割等效长度,v为切割速度长为L的铜棒在一平面内绕穿过其端点的固定轴作角速度为3的转动,有匀强磁场垂直于其旋转平面,则整个铜棒上的动生电动势为:f(co*B*LA2)/2长为l的金属棒与一通以电流I的导线垂直且共面,棒以速度v平行于与导线作切割运动,则棒上产生的动生电动势为:F2k*I*v*ln[(a+l)/a]其中a为导线到棒上与其最近端点的距离感生电动势:£=-d(/B*dS)/dt自感:L,回路电磁惯性的量度,与全磁通少有如下等量关系:卡L*I自感电动势:£=-L*(dI/dt)求自感系数步骤:1、设线圈电流I.2、求I在线圈内部产生白^磁场分布。3、求穿过线圈的全磁通小。4、代入L=加长为I,截面积为S单位长度匝数为n,管内充满磁导率为科的均匀磁介质的长直螺线管的自感系数:B=f*n*l,犷NBS=nI*^nl*S=工V*I*nA2L=弧=加*门人2电缆(由两个无限长同轴圆柱面组成,两面间充满磁导率为科的磁介质,内半径为R1,外半径为R2)单位长度的自感系数:L=[或2诩*[ln(R2/R1)]互感两长直共轴空心螺线管内半径为R1,外半径为R2,自感系数分别为L1,L2,则它们的互感系数为:M=(R1/R2)*[V(L1*L2)]磁场能量:Wm=(L*IA2)/2磁场能量密度:we=Wm/V=(B*H)/2

相关文档