- 255.56 KB
- 2022-08-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第九章振动1.解:(1)由题意,(2).振动方程为.2.解由已知条件可画出该谐振动在t=0时刻的旋转矢量位置,如图所示。由图可以看出所以该物体的振动方程为(1)将T=2s,代入振动方程可得t=0.5s时的质点的位移(2)当物体第一次运动到x=5cm处时,旋转矢量转过的角度为π,如图所示,所以有即(3)当物体第二次运动到x=5cm处时,旋转矢量又转过,如图所示,所以有即3.解由运动方程的速度和加速度表达式且已知:A=0.06,,(1)当所以(2),或(3).(4)当振动动能和势能相等时,E即所以\n4.(1)在位移为处系统受力为.其中为系统平衡时弹簧的伸长量。由力的平衡条件知.故(满足简谐运动的运动学条件)或(满足简谐运动的运动学条件)因此该系统作简谐运动。(2)由上述微分方程可知.时的初始条件为.由小球自由落体遵守机械能守恒和小球与沙盘的完全非弹性碰撞(忽略重力的作用)遵守动量守恒得故.5.解:\n第十章波动1.解:2.解:(1)已知波的表达式为与标准形式比较得=0.05m,=50Hz,=1.0m,==50m/s(2)(3),二振动反相3.解(1)由题设可知A点和B点的振动方程为由于,有,又因\n,所以该平面谐波的波长为波速为(2)因为波是沿X轴正向传播,所以波函数可写为代入相关数值,得4.解:(1)由点的运动方向,可判定该波向左传播.对原点处质点,时所以处振动方程为波动方程为(2)距点100m处质点振动方程是振动速度表达式是5.解:(1)P处质点振动方程为(2)波动方程为\n6.解..P点反射后的振动方程(表示半波损失)反射波的波动方程.满足减弱条件,是减弱的(即该点不振动)。.第十一章光学1.解本题中入射的不是单色光,因此各级明条纹都有一定的宽度。设该蓝绿光的波长范围为,相应于和,它们各自的干涉条纹中第2级明条纹的位置分别为因此,第2级干涉明条纹在屏幕上延展的宽度为将题中数值代入,得到2.解:(1)棱边处是第一条暗纹中心,在膜厚度为处是第二条暗纹中心,依此可知第四条暗纹处中心处,即A处膜厚度\rad(2)由上问可知A处膜厚为,对于的光,连同附加光程差,在A处两反射光的光程差为,它与波长之比为\n,所以A处是明纹.3.解:(1)如图所示。设第k级条纹的牛顿环半径为rk,则该处空气膜的厚度为该处的光程差为对亮条纹有即故(k=1,2,3,…….)条纹是以接触点为中心的同心圆环,在中心处,为暗条纹。(2)当在透镜和平板玻璃间充满n=1.6的透明液体时,在半径为r处有则光程差为左侧右侧若均为明纹,则即左右两边同一级明纹半径大小不等,且左边的接触点为明纹,而右边的接触点为暗纹。故形成一错开的半圆形图象。4.解(1)由已知条件,明纹公式为最高点处,将代入得共有1,2,3,4,5的五条明纹,对应于的油膜厚度为\n.(2)当时为非整数,条纹介于明暗之间,为非明非暗条纹。时为明纹时,为暗纹明暗之间明纹暗纹5.解(1)根据衍射装置上的几何关系,点明条纹的衍射角可以近似由下式求出由上式可知角很小,因而有,由出现明条纹的条件取不同的值代入上式计算的时,;时,因为不可见光,所以入射光波长为。(2)因为,故点明条纹为第1级明条纹,其衍射角为与明条纹对应的半波带数为,故半波带数为3。(3)中央明条纹的角宽度\n6解:由光栅公式得取为整数比取最小的值k1=2,k2=3对应光栅常数7.解当自然光通过偏振片时,有偏振光为对于t时刻,偏振片转过的角度,如图所示。当线偏振光透过偏振片时,有当再通过偏振片时,有即透射光的强度是时间t的函数,随着的旋转,做周期性变化。\nA