大学物理实验(全) 212页

  • 12.53 MB
  • 2022-08-16 发布

大学物理实验(全)

  • 212页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
大学物理实验实验误差分析与数据处理1测量与误差1.1测量及测量的分类物理实验是以测量为基础的。在实验中,研究物理现象、物质特性、验证物理原理都需要进行测量。所谓测量,就是将待测的物理量与一个选来作为标准的同类量进行比较,得出它们的倍数关系的过程。选来作为标准的同类量称之为单位,倍数称为测量数值。一个物理量的测量值等于测量数值与单位的乘积。在人类的发展历史上,不同时期,不同的国家,乃至不同的地区,同一种物理量有着许多不同的计量单位。如长度单位就分别有码、英尺、市尺和米等。为了便于国际交流,国际计量大会于1990年确定了国际单位制(SI),它规定了以米、千克、秒、安培、开尔文、摩尔、坎德拉作为基本单位,其他物理量(如力、能量、电压、磁感应强度等)均作为这些基本单位的导出单位。1.直接测量与间接测量测量可分为两类。一类是直接测量,是指直接将待测物理量与选定的同类物理量的标准单位相比较直接得到测量值的一种测量。它无须进行任何函数关系的辅助运算。如用尺测量长度、以秒表计时间、天平称质量、安培表测电流等。另一类是间接测量,是指被测量与直接测量的量之间需要通过一定的函数关系的辅助运算,才能得到被测量物理量的量值的测量。如单摆测量重力加速度时,需先直接测量单摆长l和单摆的周期T,再应用公式,求得重力加速度g。物理量的测量中,绝大部分是间接测量。但直接测量是一切测量的基础。不论是直接测量,还是间接测量,都需要满足一定的实验条件,按照严格的方法及正确地使用仪器,才能得出应有的结果。因此实验过程中,一定要充分了解实验目的,正确使用仪器,细心地进行操作读数和记录,才能达到巩固理论知识和加强实验技能训练的目的。2.等精度测量与不等精度测量同一个人,用同样的方法,使用同样的仪器,在相同的条件下对同一物理量进行多次测量,尽管各次测量并不完全相同,但我们没有任何充足的理由来判断某一次测量更为精确,只能认为它们测量的精确程度是完全相同的。我们把这种具有同样精确程度的测量称之为等精度测量。在所有的测量条件中,只要有一个发生变化,这时所进行的测量即为不等精度测量。在物理实验中,凡是要求多次测量均指等精度测量,应尽可能保持等精度测量的条件不变。严格地说,在实验过程中保持测量条件不变是很困难的。但当某一条件的变化对测量结果的影响不大时,乃可视为等精度测量。在本书中,除了特别指明外,都作为等精度测量。1.2误差及误差的表现形式1.误差212\n大学物理实验物理量在客观上有着确定的数值,称为真值。测量的最终目的都是要获得物理量的真值。但由于测量仪器精度的局限性、测量方法或理论公式的不完善性和实验条件的不理想,测量人员不熟练等原因,使得测量结果与客观真值有一定的差异,这种差异称之为误差。若某物理量测量的量值为x,真值为A,则产生的误差Dx为:Dx=x–A任何测量都不可避免地存在误差。在误差必然存在的条件下,物理量的真值是不可知的。所以在实际测量中计算误差时,通常所说的真值有如下几种类型:(1)理论真值或定义真值。如用平均值代替真值,三角形内角何等于180°等。(2)计量约定真值。如前面所介绍的基本物理量的单位标准,以及国际大会约定的基本物理量。(3)标准器相对真值(或实际值)。用比被标准过的仪器高一级的标准器的量值作为标准器相对真值。例如:用0.5级的电流表测得某电路的电流为1.200A,用0.2级电流表测得的电流为1.202A,则后者可示为前者的真值。2.误差的表示形式误差的表示形式有绝对误差和相对误差之分。绝对误差是测量值和真值的数值之差:d=x–A(1-1)根据绝对误差的大小还难以评价一个测量结果的可靠程度,还需要考虑被测量本身的大小,为此引入相对误差,相对误差E定义为绝对误差d与被测量量的真值x的比值,即:(1-2)相对误差常用百分比表示。它表示绝对误差在整个物理量中所占的比重,它是无单位的一个纯数,所以既可以评价量值不同的同类物理量的测量,也可以评价不同物理量的测量,从而判断它门之间优劣。如果待测量有理论值或公认值,也可用百分差来表示测量的好坏。即:(1-3)1.3误差的分类既然测量不能得到真值,那么怎样才能最大限度的减小测量误差并估算出误差的范围呢?要解决这个问题,首先要了解误差产生的原因及其性质。测量误差按其产生的原因与性质可分为系统误差、随机误差和过失误差。1.系统误差在一定条件下(指仪器、方法和环境)对同一物理量进行多次测量时,其误差按一定的规律变化,测量结果都大于真值或都小于真值。系统误差产生的原因可能是已知的,也可能是未知的。产生系统误差的原因主要有:(1)由于仪器本身存在一定的缺陷或使用不当造成的。如仪器零点不准、仪器水平或铅直未调整、砝码未校准等。212\n大学物理实验(2)实验方法不完善或这种方法所依据的理论本身具有近似性。例如用单摆测量重力加速度时,忽略空气对摆球的阻力的影响,用安培表测量电阻时,不考虑电表内阻的影响等所引入的误差。(3)实验者生理或心理特点或缺乏经验所引入的误差。例如有人读数时,头习惯性的偏向一方向,按动秒表时,习惯性的提前或滞后等。2.随机误差同一物理量在多次测量过程中,误差的大小和符号以不可预知的方式变化的测量误差称为随机误差,随机误差不可修正。随机误差产生的原因很多,归纳起来大致可分为以下两个方面:(1)由于观测者在对准目标、确定平衡(如天平)、估读数据时所引入的误差。(2)实验中各种微小因素的变动。例如,实验装置和测量机构在各次调整操作上的变动性,实验中电源电压的波动、环境的温度、湿度、照度的变化所引起的误差。随机误差的出现,单就某一次观测来说是没有规律的,其大小和方向是不可预知的。但对某一物理量进行足够多次测量,则会发现随机误差服从一定的统计规律,随机误差可用统计方法进行估算。1.4测量的精密度、准确度、精确度我们常用精度反映测量结果中误差大小的程度。误差小的精度高,误差大的精度低,这里精度却是一个笼统的概念,它并不明确表示描写的是哪一类误差,为描述更具体,我们把精度分为精密度、准确度和精确度。1.精密度精密度表示测量结果中的随机误差大小的程度。它是指在一定条件下进行重复测量时,所得结果的相互接近程度。它用来描述测量得重复性。精密度高,即测量数据得重复性好,随机误差较小。(i)精密度(ii)准确度(iii)精确度图1-1测量的精密度、准确度、精确度图示(以打靶为例)2.准确度212\n大学物理实验准确度表示测量结果中系统误差大小得程度。用它来描述测量值接近真值得程度。准确度高,即测量结果接近真值得程度高,系统误差小。3.精确度精确度是对测量结果中系统误差和随机误差的综合描述。它是指测量结果的重复性及接近真值的程度。为了形象地说明这三个概念的区别和联系,我们以打靶为例说明(图1-1):(i)精密度高而准确度较差;(ii)准确度高而精密度较差;(iii)精密度和准确度都很高,即精确度很高。212\n大学物理实验2误差的处理误差的产生有其必然性和普遍性,误差自始至终存在于一切科学实验中,一切测量结果都存在误差。本节主要介绍上述两类误差的处理方法。2.1系统误差一个实验结果的优劣,往往在于系统误差是否已经被发现或尽可能消除,所以预见一切可能产生的系统误差的因素,并设法减小它们是非常重要的。一般而言,对于系统误差可以在实验前对仪器进行校准,对实验方法进行改进,在实验时采取一定的措施对系统误差进行补偿和消除,实验后对结果进行修正等。系统误差的处理是一个比较复杂的问题,它没有一个简单的公式,主要取决于实验者的经验和技巧并根据具体情况来处理。从实验者对系统误差掌握的程度来分,又可分为已定系统误差和未定系统误差两类。1.已定系统误差已定系统误差是指绝对值和符号都已确定的,可以估算出的系统误差分量。例如:对一个标准值为50毫克的三等砝码,就无法知道该砝码的误差值是多少。只知道它对测量结果造成的未定系统误差限为±2mg,但如果在使用前用高一级的砝码进行校准,就可得到已定系统误差得值。2.未定系统误差未定系统误差是指符号或绝对值未经确定的系统误差分量。例如,仪器出厂时的准确度指标是用符号D仪表示的。它只给出该类仪器误差的极限范围。但实验者使用该仪器时并不知道该仪器的误差的确切大小和正负,只知道该仪器的准确程度不会超过D仪的极限(例如上面所举砝码中的±2mg)。所以这种系统误差通常只能定出它的极限范围,由于不能知道它的确切大小和正负,故无法对其进行修正。对于未定系统误差在物理实验中我们一般只考虑仪器测量仪器的(最大)允许误差D仪(简称仪器误差)。2.2随机误差的估算随机误差的特点是随机性。也就是说在相同条件下,对同一物理量进行多次重复测量,每次测量的误差的大小和正负无法预知,纯属偶然。但是实践和理论证明,如果测量次数足够多的话,大部分测量的随机误差都服从一定的统计规律。本书只着重介绍随机误差的正态分布。1.正态分布的特征与数学表达遵从正态分布的随机误差有以下几点特征:(1)单峰性。绝对值大的误差出现的可能性(概率)比绝对值小的误差出现的概率小。(2)对称性。绝对值相等的正负误差出现的机会均等,对称分布于真值的两侧。212\n大学物理实验(3)有界性。在一定的条件下,误差的绝对值不会超过一定的限度。(4)抵偿性。当测量次数很多时,随机误差的算术平均值趋于零,即正态分布的特征可用正态分布曲线形象地表达。如图2-1所示。横坐标表示误差d=x1-x0式中x0为被测量量的真值。纵坐标为一个与误差出现的概率有关的概率密度函数f(d)。根据概率论的数学方法可以导出:(2-1)(a)(b)图2-1概率密度函数曲线图测量值的随机误差出现在d到d+dd区间内可能性为即图(a)中阴影所含的面积元。上式中s是一个与实验条件有关的常数,称为标准误差,其值为:(2-2)式中n为测量次数,各次测量的随机误差为。2.标准误差的物理意义由式2-1可知,随机误差的正态分布曲线的形状与s值有关,如图(b)所示,s值越小,分布曲线越尖锐,峰值f(d)越高,说明绝对值小的误差占多数,且测量值的离散性较小,重复性好,测量精密度较高;反之s值越大,则曲线越平坦,该组测量值的离散性大,测量精密度低。标准误差反映了测量值的离散程度。由是测量值随机误差出现在小区间的可能性(概率),即n212\n大学物理实验次测量值误差出现在内的概率为:(2-3)这说明对任一次测量,其测量值误差出现在-s到+s区间内的概率为68.3%。从概率密度分布函数的曲线图来看:设曲线下面积为1即100%,则介于间的曲线下的面积为68.3%。用同样的方法计算可得介于间的概率为95.5%,介于间的概率为99.7%。显然,测量误差的绝对值大于3s的概率仅为0.3%。在通常情况下的有限次测量测量误差超出±3s范围的情况几乎不会出现,所以把3s称为极限误差。3.近真值——算术平均值尽管一个物理量的真值是客观存在的,但由于误差的存在,企图得到真值的愿望仍然不能实现。那么是否能够得到一个测量结果的最佳值,或者说得到一个最接近真值的数值呢?根据随机误差具有抵偿性特点,我们可以求得真值的最佳估计值——近真值。设在相同条件下对一个物理量进行多次没量,测量值分别为,则该没量值的算术平均值:(i=1,2,3,……)(2-4)而各次测量的随机误差为:式中x0为真值,为第i次测量值,对n次测量的绝对误差求和有:等式两边各除以n可得:当测量次数由随机误差具有抵偿性的特点,所以有:故根据以上推导可得:212\n大学物理实验由此可知,测量次数愈多,算术平均值接近真值的可能性愈大。当测量次数足够时,算术平均值是真值的最佳估计值。2.3标准误差的估算——标准偏差由于真值不知道,误差d无法计算,因而按照式2-2标准误差s也无从估算。根据算术平均值是近真值的结论,在实际估算误算时采用算术平均值代替真值,用各次测量值与算术平均值的差值来估算各次测量的误差,差值称为残差。当测量次数n有限时,如用残差来表示误差时,其计算公式为:(2-5)称为任一次测量的标准偏差,它是测量次数有限多时,标准误差的一个估计值。其代表的物理意义为:如果多次测量的随机误差遵从正态分布,那么,任一次测量的测量值误差落在到区域之间的可能性(概率)为68.3%。通过误差理论可以证明,平均值的标准偏差为:(2-6)上式说明算术平均值的标准偏差是n次测量中的任意一次测量值标准偏差的,小于,因为算术平均值是测量结果的最佳值,它比任意一次测量值xi更接近真值,所以误差要小。的物理意义是在多次测量的随机误差遵从正态分布的条件下,真值处于区间内的概率为68.3%。212\n大学物理实验3不确定度与测量结果的表示3.1测量不确定度由于测量误差的存在,难以确定被测量的真值。测量不确定度是与测量结果相关联的参数,它表征测量真值在某一个量值范围内不能肯定程度的一个估计值。也就是说不确定度是测量结果中无法修正的部分,反映了被测量的真值不能肯定的误差范围的一种评定,测量不确定度包含A类标准不确定度和B类标准不确定度。1.A类标准不确定度由于偶然因素,在同一条件下对同一物理量X进行多次重复测量值,将是分散的,从分散的测量值出发用统计的方法评定标准不确定度,就是标准不确定度的A类评定。设A类标准不确定度为,用统计的方法算出平均值的标准偏差为,不确定度的A类分量就取为平均值的标准偏差,即:(3-1)按误差理论的正态分布,如不存在其他影响,则测量值范围中包含真值的概率为68.3%。2.B类标准不确定度。测量中凡是不符合统计规律的不确定度统称为B类不确定度。在实际计算时,有的依据计量仪器的说明书或鉴定书,有的依据仪器的准确度,有的则粗略的依据仪器的分度值或经验,从中获得仪器的极限误差,D仪(或允许误差或示值误差)此类误差一般可视为均匀分布,则B类评定不确定度为:(3-2)例:使用量程为0—300mm,分度值为0.05mm的游标卡尺,测量长度时,其示值误差在±0.05mm以内,即极限误差为D仪=0.05mm,则由此游标卡尺引入的标准不确定度为:212\n大学物理实验3.合成标准不确定度(1)直接测量结果不确定度的估算物理实验的测量结果表示中,总不确定度u(x)的估算方法行为两类,即多次重重测量用统计方法算出的A类分量和用其它方法估算出的B类分量。用方和根的方法合成为总不确定度u(x):(3-3)例:已知游标卡尺(D仪=0.005cm)的初始读为0.05cm,测量圆环内径数据如下表所示,试求其测量的不确定度。测量次数123456d(cm)3.2553.2503.2603.2553.2503.255计算出:则零点修正后:所以有:(2)间接测量不确定度的估算物理实验的结果一般都通过间接测量获得的,间接测量是以直接测量为基础的,直接测量值不可避免地有误差存在,显然由直接测量值根据一定的函数关系,经过运算而获得的间接测量的结果,必然也有误差存在。怎样来计算间接测量的误差呢?这实质上是要解决一个误差的传递问题,即求得估算间接测量值误差的公式,称为误差的传递公式。设间接测量量N是n个独立的直接测量量A、B、C,…,H的函数,即N=f(A,B,C,…,H)若各直接测量值A、B、C,…,H的不确定度分别为u(A),u(B),u(C),…,u(H),它们使N值也有相应的不确定度u(N),由于不确定度都是微小量,相当于数学中的“增量”212\n大学物理实验,因此间接测量的不确定度公式与数学中的全微分公式基本相同,利用全微分公式,则间接测量的不确定度:(3-4)如果先对函数表达或取对数,再求全微分可得:(3-5)当间接测量量N是各直接测量量A、B、C,…,H的和或差的函数时,则用(3-4)式计算较为方便,当间接测量量N是各直接测量量A、B、C,…,H的积或商的函数时,则用(3-4)式先计算N的相对不确定度,然后再计算u(N)比较方便。在一些简单的测量问题中,有时要求不需太精确的测量问题中可以用绝对值合成方法,即(3-6)(3-7)当然这种绝对值合成的方法所得结果一般偏大。与实际的不确定度合成情况可能也有较大出入。但因其计算比较简,在要求不高,作粗略做算时,往往采用绝对值合成法,但在科学实验中,一般都采用“方和根”合成来计算间接测量结果的不确定度,常用函数的方和根合成与绝对值合成公式见下表:函数表达式方和根合成公式绝对值合成公式,(K为常数)212\n大学物理实验3.2测量结果的一般表示一个完整的测量的结果不仅要给出该量值的大小(数值和单位)同时还应给出它的不确定度。用不确定度来表征测量结果的可信赖程度,于是测量结果应写成下列标准形式:式中为测量值的最佳估计值,对等精度多次测量而言,为多次测量值的算术平均值,u(x)为不确定度,Ur为相对不确定度。212\n大学物理实验4实验中的错误与错误数据的剔除实验中有时会出现错误,尽早发现实验中的错误是实验得以顺利进行的前提保障,数据分析就是发现错误的重要方法。例1:三次单摆摆50个周期的时间,得出98.4s,96.7s,97.7s。从数据可知摆的周期接近2s,但前面两个数据相差1.7s,而后两个相差1.0s,它们都在半个周期以上,显然这样大的差异不能用手按稍表稍或滞后的操作误差去解释,即测量有误差。例2:用静力称衡法测一块玻璃的密度r,所用公式为,式中m1=5.78g为玻璃质量,m2=4.77g为玻璃悬挂在水中的质量。这次测量显然有错误,因为在此m1与m2之差近似为1g;r值接近6g/cm3,没有这样大密度的玻璃。4.1拉依达判据在一组数据中,有一、二个稍许偏大或偏小的数值,如果简单的数据分析不能判定它是否为错误数据,就要借助于误差理论。在前面标准误差的物理意义中已提到对于服从正态分布的随机误差,出现在±d区间内概率为68.3%,与此相仿,同样可以计算,在相同条件下对某一物理量进行多次测量,其任意一次测量值的误差落在-3d到+3d区域之间的可能性(概率)为:(4-1)如果用测量列的算术平均替代真值,则测量列中约有99.7%的数据应落在区间内,如果有数据出现在此区间之外,则我们可以认为它是错误数据,这时我们应把它舍去,这样以标准偏差Sx的3倍为界去决定数据的取舍就成为一个剔除坏数据的准则,称为拉依达准则。但要注意的是数据少于10个时此准则无效。4.2格罗布斯判据对于服从正态分布的测量结果,其偏差出现在±3d附近的概率已经很小,如果测量次数不多,偏差超过±3d几乎不可能,因而,用拉依达判据剔除疏失误差时,往往有些疏失误差剔除不掉。另外,仅仅根据少量的测量值来计算d,这本身就存在不小的误差。因此当测量次数不多时,不宜用拉依达判据,但可以用格罗布斯判据。按此判据给出一个数据个数n相联系的系数Gn,当已知数据个数n,算术平均值和测量列标准偏差Sx,则可以保留的测量值xi的范围为(4-2)Gn系数表n345678910111213Gn1.151.461.671.821.942.032.112.182.232.282.33212\n大学物理实验n14151617181920222530Gn2.372.412.442.482.502.532.562.602.662.74也可用拟合式计算Gn值n<30时取n>30时取例:测得一组长度值(单位:cm)98.2898.2698.2498.2998.2198.3098.9798.2598.2398.25计算出:数据98.97在此范围之外应舍去。舍去后再计算有212\n大学物理实验5有效数字及其运算规则5.1有效数字在物理量的测量中,测量结果都是存在一定的误差,这些值不能任意地取舍,它反映出测量量的准确程度。如何科学地,合理地反映测量结果,这就涉及到有效数字的问题。有效数字在物理实验中经常使用。什么是有效数字,有效位数如何确定,有效数字的运算规则有什么不同,在用有效数字表示测量结果时,如何与误差联系起来。可以说,误差决定有效数字。例如:实验测得某一物理量,其测量列的算术平均值为,算得其不确定度u(x)=0.04cm。从u(x)数值中可知,这一组测量量在小数点后面第二位就已经有误差,所以等于1.674中“7”已经是有误差的可疑数,表示结果时后面一位“4”已不必再写上,上述结果正确的表示应为x=1.67±0.04cm。也就是说,我们表示测量结果的数字中,只保留一位可疑数,其余应全部是确切数。有效数字的定义为:有效数字是由若干位准确数和一位可疑数构成。这些数字的总位数称为有效数字。一个物理量的数值和数学上的数有着不同的意义。例如在数学上0.2500m=25.00mm。但在物理测量上0.2500m≠25.000cm。因为0.2500的有效位数是四位,而25.000cm的有效位数是五位。实际上,这两种不同的写法表示了两种不同精度的测量结果。所以在实验中记录数据时,有效数字不能随意增减。5.2有效数字运算规则有效数字的正确运算关系到实验结果的精确表达,由于运算条件不一样,运算规则也不一样。1.四则运算四则运算,一般可以依据以下运算规则:①参加运算的各数字可以认为仅最后一位数码是有误差的,其他位的数码是无误差的;②无误差的数码间的四则运算结果仍为无误差数码;③有误差的数码参加四则运算结果有误差的数码,进位和借位认为是无误差数码;④最后结果按四舍五入法仅保留一位有误差数码。(1)加减法[例1]5.345+30.2(数字下面“_”是指误差所在位的数码)取:[例2]35.48-20.3212\n大学物理实验取:(2)乘除法[例1]4.178×10.1取:[例2]48216÷123取:用以上竖式才能得到计算结果的四则运算,对我们来讲,不现实,为了提高运算速度,又保证一定精度的误差估计,可把上面加减运算和乘除运算分别总结为如下运算规则:1)加减法运算规则:若干项加减运算时,仍然按正常运算进行;计算结果的最后一位,应取到与参加加减运算各项中某项最后一位靠前的位置对齐。如参加运算的各项最后一位最靠前的是103的个位,其计算结果的最后一位就保留在个位上。2)乘除法运算规则:计算结果的有效数字位数保留到与参加运算的各数中有效数字位数最少的位数相同。如,参加运算的2.7有效数字是两位,为最少,计算结果也就取两位。这一规则在绝大多数情况下都成立,极少数情况下,由于借位或进位可能多一位或少一位。如就多一位。2.函数运算有效数字取位函数运算不像四则运算那样简单,而要根据误差传递公式来计算。[例]已知x=56.7,y=lnx,求y。212\n大学物理实验因x的有误差位是十分位上,所以取Dx≈0.1,利用误差传递公式去估计y的误差位,说明y的误差位在千分位上,故y=lnx=ln56.7=4.038。由上可知函数运算有效数字取位的规则:已知x,计算y=f(x)时,取Dx为x的最后一位的数量级,利用误差传递公式估计y的误差数码位置,y的计算结果最后一位对应Dy的那个位置。212\n大学物理实验6实验数据的处理方法测量获得了大量的实验数据,而要通过这些数据来得到可靠的实验结果或物理规律,则需要学会正确的数据处理方法。本节将介绍在物理实验中常用的列表法、作图法、逐差法和最小二乘法等数据处理的基本方法。6.1列表法在记录和处理实验测量数据时,经常把数据列成表格,它可以简单而明确地表示出有关物理量之间的对应关系,便于随时检查测量结果是否正确合理,及时发现问题,利于计算和分析误差,并在必要时对数据随时查对。通过列表法可有助于找出有关物理量之间的规律性,得出定量的结论或经验公式等。列表法是工程技术人员经常使用的一种方法。列表时,一般应遵循下列规则(1)简单明了,便于看出有关物理量之间的关系,便于处理数据。(2)在表格中均应标明物理量的名称和单位。(3)表格中数据要正确反映出有效数字。(4)必要时应对某些项目加以说明,并计算出平均值、标准误差和相对误差。例用千分尺测量钢丝直径,列表如下:次数初读数(mm)未读数(mm)直径Di(mm)(mm)u(D)(mm)Ur10.0022.1472.1452.1450.0010.06%20.0042.1482.14430.0032.1492.14640.0012.1452.14450.0042.1492.14560.0032.1472.1446.2作图法物理实验中所得到的一系列测量数据,也可以用图线直观地表示出来,作图法就是在坐标纸上描绘出一系列数据间对应关系的图线。可以研究物理量之间的变化规律,找出对应的函数关系,求经验公式的常用方法之一。同时作好一张正确、实用、美观的图是实验技能训练中的一项基本功,每个同学都应该掌握。1.图示法物理实验所揭示的物理量之间的关系,可以用一个解析函数关系来表示,也可以用坐标纸在某一坐平面内由一条曲线表示,后者称为实验数据的图形表示法,简称图示法。图示法的作图规则如下:(1)选取坐标纸212\n大学物理实验作图一定要用坐标纸,根据不同实验内容和函数形式来选取不同坐标纸,在普物实验中最常用的是直角坐标纸。再根据所测得数据的有效数字和对测量结果的要求来定坐标纸的大小,原则上是以不损失实验数据的有效数字和能包括所有实验点作为选择依据,一般图上的最小分格至少应是有效数字的最后一位可靠数字。(2)定坐标和坐标标度通过以横坐标表示自变量,纵坐标表示因变量。写出坐标轴所代表的物理量的名称和单位。为了使图线在坐标纸上的布局合理和充分利用坐标纸,坐标轴的起点不一定从变量的“0”开始。图线若是直线,尽量使图线比较对称地充满整个图纸,不要使图线偏于一角或一边。为此,应适当放大(或缩小)纵坐标轴和横坐标轴的比例。在坐标轴上按选定的比例标出若干等距离的整齐的数值标度,标度的数值的位数应与实验数据有效数字位数一致。选定比例时,应使最小分格代表“1”、“2”或“5”,不要用“3”、“6”“7”、“9”表示一个单位。因为这样不仅使标点和读数不方便,而且也容易出错。(3)标点根据测量数据,找到每个实验点在坐标纸上的位置,用铅笔以“×”标出各点坐标,要求与测量数据对应的坐标准确地落在“×”的交点上。一张图上要画几条曲线时,每条曲线可用不同标记如“+”、“⊙”、“△”等以示区别。(4)连线用直尺、曲线板、铅笔将测量点连成直线或光滑曲线,校正曲线要通过校正点连成折线。因为实验值有一定误差,所以曲线不一定要通过所有实验点,只要求线的两旁实验点分布均匀且离曲线较近,并在曲线的转折处多测几个点,对个别偏离很大的点,要重新审核,进行分析后决定取舍。(5)写出图纸名称要求在图纸的明显位置标明图纸的名称,即图名、作者姓名、日期、班级等。2.图解法图解法就是根据实验数据所作好的图线,用解析法找出相应的函数形式,如线性函数,二次函数、幂函数等,并求出其函数的参数,得出具体的方程式。特别是当图线是直线时,采用此法更为方便。(1)直线图解法①取点在直线上任取两点A(x1,y1),B(x2,y2),其坐标值最好是整数值。用“D”符号表示所取的点,与实验点相区别。一般不要取原实验点。所取两点在实验范围内应尽量彼此分开一些,以减小误差。②求斜率k在坐标纸的适当空白的位置,由直线方程y=kx+b,写出斜率的计算公式:(6-1)将两点坐标值代入上式,写出计算结果。③求截距b如果横坐标的起点为零,其截距b为x=0时的y值,其直线的截距即由图上直接读出。如果起点不为零,可由下式求出截距:212\n大学物理实验(6-2)例:已知电阻丝的阻值R与温度t的关系为:其中R0、a是常数。现有一电阻丝,其阻值随温度变化如下表所示。请用作图法作R-t直线,并求R0、R0a的值。t(℃)15.020.025.030.035.040.045.050.0R(Ω)28.0528.5229.1029.5630.1030.5731.0031.62解:由上表可知(℃)(Ω)即温度t的变化范围为35℃,而电阻值R的变化范围为3.57Ω。根据坐标纸大小的选择原则,既要反映有效数字又能包括所有实验点,选40格×40格的图纸。取自变量t为横坐标,起点为10℃,每一小格为1℃;因变量R为纵坐标,起点为28Ω,每一小格为0.1Ω,描点连线图,得R-t直线如图6-1,所示。图6-1在直线上取两点(19.0,28.40),(43.0,30.90)则:(Ω/℃)(Ω)212\n大学物理实验故有(Ω)(2)曲线的改直在实际工作中,许多物理量之间的函数关系形式是复杂的,并非都为线性,但是可以经过适当变换后成为线性关系,即把曲变成直线,这种方法叫曲线改直。例如:①PV=C,C为常数由作图得直线,斜率即为C。②为常数。两边除以t得:,作图为直线,其斜率为,截距为。③,其中a,b为常数两边取对数,得,以lgy为横坐标,lgy为纵坐标作图得一直线,截距为lga,斜率为b。3.作图法的优点直观:这是作图法的最大优点之一,可根据曲线形状,很直观很清楚地表示在一定条件下,某一物理量与另一物理量之间的相互关系,找出物理规律。简便:在测量精度要求不高时,由曲线形状探索函数关系,作图法比其他数据处理方法要简便。可以发现某些测量错误:若在曲线上个别点偏离特别大,可提醒人们重新核对。在图线上,可以直接读出没有进行测量的对应于某x的y值(内插法)。在一定条件下,也可以从图线的延伸分部读出测量数据范围以外的点(外推法)。但也应看到作图法有其局限性。特别是受图纸大小的限制,不能严格建立物理量之间函数关系,同时受到人为主观性进行的描点、连线的影响,不可避免地会带来误差。6.3逐差法逐差法是对等间距测量的有序数据进行逐项或相等间隔项相减得到结果的一种方法。它计算简便,并可充分利用测量数据,及时发现差错,总结规律,是物理实验中常用的一种数据处理方法。1.逐差法的使用条件(1)自变量x是等间距离变化的。(2)被测的物理量之间的函数形式可以写成x的多项式,即。2.逐差法的应用以拉伸法测弹簧的倔强系数为例,说明如下:212\n大学物理实验设实验中等间隔地在弹簧下加砝码(如每次加1克),共加9次,分别记下对应的弹簧下端点的位置L0,L1,L2,…,L9,则可用逐差法进行以下处理。(1)验证函数形式是线性关系把所测的数据逐项相减,即看DL0,DL1,DL2,…,DL9是否基本相等。而当DLi均基本相等时,就验证了外力与弹簧的伸长量之间的函数关系是线性的,即用此法可检查测量结果是否正确,但注意的是必须要逐项逐差。(2)求物理量数值现计算每加1克砝码时弹簧的平均伸长量:从上式可看出,中间的测量值全部低消了,只有始末二次测量值起作用,与一次加9克砝码的测量完全等价。为了保证多次测量的优点,只要在数据处理方法上作一些组合,仍能达到多次测量来减小误差的目的。因此一般使用逐差法的规则应用如下方法:通常可将等间隔所测量的值分成前后两组的,前一组为L0、L1、L2、L3、L4,后一组为L5、L6、L7、L8、L9,将前后两组的对应项相减为再取平均值由此可见,与上面一般求平均值方法不同,这时每个数据都用上了。但应注意,这里的是增加5克212\n大学物理实验砝码时弹簧的平均伸长量。故对应项逐差可以充分利用测量数据,具有对数据取平均和减小的效果。6.4最小二乘法由一组实验数据找出一条最佳的拟合直线(或曲线),常用的方法是最小二乘法。所得的变量之间的相关函数关系称为回归方程。所以最小二乘法线性拟合亦称为最小二乘法线性回归。本章只讨论用最小二乘法进行一元线性回归问题,有关多元线性回归和非线性回归,请参考其他书籍。1.一元线性回归最小二乘法所依据的原理是:在最佳拟合直线上,各相应点的值与测量值之差的平方和应比在其他的拟合直线上的都要小。假设所研究的变量只有两个:x和y,且它们之间存在着线性相关关系,是一元线性方程(6-3)实验测量的一组数据是需要解决的问题是:根据所测得的数据,如何确定(6-3)式中的常数A0和A1。实际上,相当于作图法求直线的斜率和截距。由于实验点不可能都同时落在(6-3)式表示的直线上,为使讨论简单起见,限定:①所有测量值都是等精度的。只要实验中不改变实验条件和方法,这个条件就可以满足。②只有一个变量有明显的随机误差。因为xi和yi都含有误差,把误差较小的一个作为变量x,就可满足该条件。假设在(6-3)式中的x和y,是在等精度条件下测量的,且y有偏差,记作把实验数据代入(6-3)式后得:其一般式为:(6-4)的大小与正负表示实验点在直线两侧的分散程度,的值与A0、A1的数值有关。根据最小二乘法的思想,如果A0、A1的值使最小,那么,(6-3)式就是所拟合的直线,即由式212\n大学物理实验(6-5)对A0和A1求一阶偏导数,且使其为零得:(6-6)令为x的平均值,即,为y的平均值,即,为x2的平均值,即,为xy的均值,即代入(6-6)式中得:解方程组得:(6-7)2.把非线性相关问题变换成线性相关问题在实际问题中,当变量间不是直线关系时,可以通过适当的变量变换,使不少曲线问题能够转化成线性相关的问题。需要注意的是,经过变换等精度的限定条件不一定满足,会产生一些新的问题。遇到这类情况应采取更恰当的曲线拟合方法。下面举几例说明(1)若函数为,其中C为常数,令:则有:(2)若函数为,其中a、b为常数,将原方程化为,令:则有:3.相关系数r212\n大学物理实验以上所讨论的都是实验在已知的函数形式下进行时,由实验的测量数据求出的回归方程。因此,在函数形式确定以后,用回归法处理数据,其结果是唯一的,不会像作图法那样因人而异。可见用回归法处理问题的关键是函数形式的选取。但是当函数形式不明确时,要通过测量值来寻求经验公式,只能靠实验数据的趋势来推测。对同一组实验数据,不同的工作者可能会取不同的函数形式,得出不同的结果。为了判断所得结果是否合理,在待定常数确定以后,还需要计算一下相关系数r。对于元线性回归,r定义为:(6-8)相关系数r的数值大小反映了相关程度的好坏。可以证明|r|的值介于0和1之间,|r|值越接近于1,说明实验数据能密集在求得的直线附近,x、y之间存在着线性关系,用线性函数进行回归比较合理。相反,如果|r|值远小于1而接近0,说明实验数据对求得的直线很分散,x、y之间不存在线性关系,即用线性回归不妥,必须用其他函数重新试探。在物理实验中,一般当|r|≥0.9时,就认为两个物理量之间存在较密切的线性关系。[例]用本节作图法例子中电阻丝电阻值随温度变化的实验数据,结合最小二乘法做以下内容:(1)线性拟合,并写出直线方程:(2)求出电阻温度系数a和0℃时的电阻R0。(3)求出相关系数r,评价相关程度。解:金属导体的电阻和温度的关系为,令:上式可变为:例中的实验数据填入下表,并进行计算,结果见下表:115.0225.028.05786.8420.8220.0400.028.52813.4570.4325.0625.029.10846.8727.5430.0900.029.56873.8886.8535.0122530.10906.01054640.0160030.57934.51223645.0202531.00961.01395750.0250031.62999.81581平均值32.51187.529.815890.269982.219212\n大学物理实验由上表可得:代入(6-7)式中得:故函数关系为其中:(Ω),(1/℃)又由(6-8)式可得:由r值可见,R与t之间有较好的线性关系,即相关程度较好。用最小二乘法与用作图法求得的R-t之间的关系有一定的差别,说明作图法有一定的随意性。212\n大学物理实验习题1.指出下列情况属于随机误差还是系统误差:(1)视差。(2)天平零点漂移。(3)游标卡尺零点不准。(4)照相底板收缩。(5)水银温度计毛细管不均匀。(6)电表的接入误差。(7)雷电影响。(8)振动。(9)电源不稳。2.求下列各组的、值。(1)4.113,4.198,4.152,4.147,4.166,4.154,4.132,4.170(cm);(2)2.904,2.902,2.900,2.903,2.900,2.904(cm);(3)4.496,4.504,4.538,4.504,4.498,4.490(cm);(4)2.010,2.010,2.011,2.012,2.009,1.980(cm)。3.用单摆测得重力加速度,用自由落体仪测得重力加速度已知当地的g的标准值为,问:(1)g1、g2中哪一个存在系统误差?(2)如果不知道g0,从g1和g2能得出什么结论?4.一个铅圆柱体,测得直径,高度,质量(1)计算铅的密度r;(2)计算r的不确定度和相对不确定度;(3)正确表示结果。5.写出下列函数的不确定度传递公式。6.指出下列各量有几位有效数字7.按照误差理论和有效数字运算规则,改正下列错误。(1)(2)0.2870有五位有效数字,而另一种说法为三位有效数字,请纠正,并说明理由。(3)28cm=280mm,280mm=28cm212\n大学物理实验(4)(5)0.0221×0.221=0.00048841(6)8.试利有效数字运算规则计算下列各式。9.写成科学表达式10.计算下列函数有效数的结果。11.实验测得在容器体积不变的情况下,不同温度的气体压强如下表,请用图示法表示。温度T(℃)20.030.040.050.060.070.080.090.0压强P(cm/Hg)82.085.090.094.097.0100.0103.0106.612.用伏安法测电阴数据如下,试用直角坐标纸作图,并求出R值。V(V)1.002.003.004.005.006.007.008.00I(mA)2.004.016.057.859.7011.8313.7516.0213.用最小二乘法求出中的A0、A1并检验线性。(1)i1234567xi2.04.06.08.010.012.014.0yi14.3416.3518.3620.3422.3924.3826.33(2)i1234567xi20.030.040.050.060.070.080.0yi5.455.665.966.206.456.867.01212\n大学物理实验第一部分基础实验实验一长度测量【实验目的】1.掌握游标及螺旋测微原理。2.正确使用米尺、游标卡尺、螺旋测微器、移测显微镜测量长度。【实验仪器】米尺、游标卡尺、螺旋测微器、移测显微镜。【实验原理】1.米尺米尺的最小分度值一般为1mm,使用米尺测量长度时,可以准确读到毫米这一位上,米尺以下的一位要凭视力估读。使用米尺测量时,为了避免因米尺端边磨损而引入的误差,一般不从“0”刻度线开始;为了避免因米尺具有一定厚度,观察者视线方向不同而引入的误差,必须使待测物与米尺刻度线紧贴;为了减少因米尺刻线不均匀而引入的误差,可以选择不同的测量起点对待测物作多次测量。2.游标卡尺图1-1图1-1212\n大学物理实验米尺不能进行精度较高的测量,为了提高测量精度,可以使用游标卡尺。游标卡尺主要由主尺和游标两部分构成,如图1-1所示。游标紧贴着主尺滑动,外量爪用来测量厚度和外径,内量爪用来测量内径,深度尺用来测量槽的深度,紧固螺钉用来固定量值读数。使用游标卡尺时应一手拿物体,另一手持尺,轻轻将物体卡住。应特别注意保护量爪不被磨损,不允许用游标卡尺测量粗糙的物体,更不允许被夹紧的物体在卡口内移动。测量前应注意游标零线是否和主尺零线对齐,如果没有对齐,则表示有初读数。当游标的零线在主尺零线的左边时,初读数取负数,反之取正值。实际测量时应将游标卡尺的读数减去初读数,才得到物体的真实长度。游标卡尺测量长度时读数方法为:先从主尺上读出游标“0”刻度线所在的整数分度值l(mm),再看游标上与主尺对齐的刻度线的序数(格数)n,于是物体长度为L=l+n·Dx式中,Dx为游标卡尺的最小分度值(精度值),为使读数方便,游标上并不标出刻度线的序数n,而标上n·Dx值。如图1-2所示,读数为:50.24(50.00+12×0.02)mm。对齐图1-2456789012345678910测量砧台测量螺杆螺母套筒微分套筒棘轮弓架绝热板锁紧手柄3.螺旋测微器图1-3螺旋测微器是由一根精密螺杆和与它配套的螺母部分组成。螺杆后连接一个可旋转的微分套筒,如图1-3所示。微分套筒每旋转一周,螺杆前进(或后退)一个螺距。若微分套筒上刻有n个分度,螺距为amm,则每转动一个分度,螺杆移动的距离为a/nmm。在图1-3中螺距为a=0.5mm,微分套筒圆周上刻有50个分度,每转动一个分度,螺杆移动距离为0.5/50=0.01mm。测量长度时,倒转棘轮,将待测物体放在测量砧台和测量螺杆之间,然后再转动棘轮,听到“咯、咯……”声音时(表示待测物体已被夹紧)即停止转动。读数时,先读出螺母套筒上没有被微分套筒的前沿遮住的刻度值;再读出螺母套筒上横线所对准的微分套筒上的读数,并读出估读数,二者之和即为最后的读数。因为螺母套筒上的刻度线有一定宽度,当螺母套筒上横线所对准微分套筒上的读数在“0”上下时极易读错,务必特别注意。通常微分套筒上的“0”212\n大学物理实验线在横线上方时,尽管螺母套筒上的一条刻度线似乎已经看到,但读数时不能考虑进去,否则读数将误加0.500mm。螺旋测微器在使用一段时间后,零点会发生变化。所以测量时必须先记下初读数。具体方法是:在测量砧台和螺杆之间不放入任何物体,旋转棘轮,当听到“咯、咯……”响声时停止转动(每次测量咯咯声应保持一致,两声或者三声)。此时微分套筒上的“0”刻度线不一定与螺母套筒上的横线对准。这时的读数称为初读数。应注意初读数有正负之分。初读数是系统误差,测量物体长度时所读出的数值应减去这个初读数后,才是物体的长度。如图1-4所示,(a)的读数为:4.686(4.500+0.186)mm;(b)的读数为:5.188(5.000+0.188)mm;(c)的读数为2.478(2.000+0.478)mm。(a)(b)(c)图1-44.移测显微镜移测显微镜是螺旋测微器与显微镜组合在一起的精密的长度测量仪器。它主要有机械部分和光具部分。光具部分是一个长焦距显微镜(由目镜、叉丝、物镜三部分组成),它的测微螺旋的螺距为1mm,鼓轮一周等分为100个分格,每转一个分格,显微镜将移动0.01mm。具体使用步骤如下:(1)调节目镜,看清十字叉丝;(2)让叉丝交点对准待测物上的一点,读数;(3)转动鼓轮,让叉丝对准待测物上的另一点,再读数;(4)两次读数之差,即为所测二点间的距离。【实验内容】1.米尺测量某一物体的长度,进行多次测量。2.用游标卡尺测量金属圆环的外径、内径和高,进行多次测量,并计算其体积。3.用螺旋测微器测量小钢球的直径,在不同直径处进行多次测量,并计算体积。【思考题】1.螺旋测微器的零点读数的正负号怎么确定?怎样对测量值进行修正?2.使用移测显微镜的时候要注意哪些问题?212\n大学物理实验实验二 单摆【实验目的】1.掌握用单摆测定重力加速度的方法,学会使用秒表和数字毫秒计。2.研究单摆的周期和摆长以及周期与摆角的关系。3.用图解法得到实验结果。【实验仪器】单摆装置、秒表、钢卷尺、游标卡尺、数字毫秒计。图2-1单摆装置(如图2-1所示)的调节:调节底座的水平螺丝,使摆线与立柱平行,即立柱铅直;调节摆幅测量标尺高度与镜面位置,使得标尺的上弧边中点与顶端悬线夹下平面间距离为50cm;调节标尺平面垂直与顶端悬线夹的前伸部分;调节标尺上部平面镜平面与标尺平面平行,镜面上指标线处于仪器的对称中心。秒表一般有指针式和数字式两种,其精度有0.01s、0.1s、0.2s等多种。实验室常用的秒表是数字式秒表,其精度是0.01s,秒表的使用方法参见使用说明书。数字毫秒计的使用方法参见使用说明书。【实验原理】1.单摆测重力加速度单摆是由一个不能伸长的轻质细线和悬在此线下端体积很小的金属球所构成,在摆长远大于摆球的直径,摆球质量远大于细线质量的条件下,将摆球自平衡位置拉至一边(摆角小于5°)释放,摆球即在平衡位置左右往返作周期性摆动,如图3-2所示。设摆球的质量为m,其质心到摆的支点O的距离为l(摆长)。作用在摆球上的切向力的大小为mgsinq。它总指向平衡点O′。当角很小时,则sinq≈q,切向力的大小为mgq,按照牛顿第二定律,质点的运动方程为图2-2(2-1)这是一简谐运动方程,可知简谐振动角频率w的平方等于g/l,由此得出212\n大学物理实验(2-2)式中T为单摆的周期。实验中,若测出摆长l和周期T,则重力加速度g即可由上式求得。上式也可以写成(2-3)图2-3这里T2和l之间具有线形关系,为其斜率。如果测出各种摆长及其对应的周期,便可作出一个图线,由该图线的斜率即可求出g值。测量摆长时,用游标卡尺测量摆球直径d,用钢卷尺测量摆线长,记录起末位置坐标和,则由图3-3可知摆长。测量单摆周期时,为了减小测量单个周期的相对误差,我们一般是测量连续摆动n个周期的时间t,则。2.单摆的摆角与周期在摆角不太小时,按照振动理论,振动周期和摆角的关系为(2-4)取零级近似取二级近似或写成(2-5)212\n大学物理实验如果测出不同摆角下的周期T,作图线,即可验证上式。【实验内容】1.重力加速度g的测定(1)仪器调整。在熟悉单摆装置的仪器结构性能后,按规定要求调整好仪器;了解所使用的秒表的结构和功能,进行几次计时、停止、复零的练习。(2)做摆长约为1m的单摆,用钢卷尺测量摆线长,记录起末位置坐标和,用游标卡尺测量摆球直径d,这样各进行3次,求平均值,计算摆长l。(3)使单摆的摆角不要太大(≤5°),测量摆动50次所用的时间t,要求测3次求平均值,计算周期T。在测周期时,应选择摆球通过最低位置时计时。此时可以通过观察镜尺,当摆线、摆线在镜尺中的像以及镜尺刻线三者重合时计时。(4)改变摆长,每次缩短约10cm,按上述方法测量每一摆长的周期,共测5个点,作出图线,并由图线的斜率求出g值。2.研究单摆的摆角与周期关系对某一摆长,取不同的摆角测其对应的周期。这时,如果采用前面的方法测周期,就会由于空气阻力等因素造成摆角的不断减小而影响实验结果,因此,实验中改用数字毫秒计测周期。数字毫秒计采用档,此档的功能是:第一次遮光时开始记时,第二次遮光不计,第三次遮光时计时结束。光电门放置在摆球通过的路径的最低点处,靠近摆球遮光。每个摆角下的周期测3次。摆角的大小可以通过标尺直接读出。要求至少测5组数据,用所得数据作图线,由图线的截距和斜率检验式(2-5)的的系数是否等于1/4。【思考题】1.测量单摆周期时,为什么时间起止点都选在摆球运动的最低点处?2.试比较直接用公式计算g值和利用图线求g值两种方法的优缺点。3.自己设计实验,研究摆线质量和空气浮力对测量重力加速度g的影响。212\n大学物理实验实验三自由落体法测重力加速度【实验目的】1.学习用光电测量系统测量短时间的方法。2.用自由落体仪测定重力加速度。3.比较用自由落体法测重力加速度与用单摆测重力加速度的优缺点。【实验仪器】图3-1自由落体仪、多功能数字式测定仪、米尺、钢球。自由落体仪如图5-1所示。在底座I上竖直固定一立柱K,电磁头D、上光电门E1、下光电门E2和接球器G皆可在立柱K上移动和固定。实验时,将电磁头D通电,则被磁化的电磁铁芯C可吸住钢球F;断开电磁头电源,钢球自由下落。当经过上光电门E1时,多功能数字式测定仪J开始计时,经过下光电门E2时,计时停止,因此,多功能数字式测定仪可以记录并显示钢球落下两光电门间的高度所需要的时间。【实验原理】建立坐标系ox,方向铅直向下(参见图3-1),取落球(钢球)静止时的高度位置为原点,光电门E1、E2的坐标分别为x0和x1,落体下落h1高度(h1=x1-x0)所需要的时间为t1,则有(3-1)式中v0为落体在x0处的速度,g为重力加速度。若固定E1,移动E2使其坐标变为x2,则两光电门之间的距离为h2=x2–x1,落体下落h2高度所需要的时间为t2,同理可得(3-2)由以上二式消去v0,可得(3-3)实验时,我们固定E1位置不变,等间距(例如每增加10cm)移动E2,取h1,h2,…,h10共10个数值进行实验,分别测出相应的时间t1,t2,…,t10,再由逐差法计算g:212\n大学物理实验(3-4)【实验内容】1.调节立柱铅直(1)将光电门E1置于电磁铁芯C下方附近,E2固定于接球器上方,用细线将重锤挂在电磁铁芯下部,旋转底座上的调节螺丝H,使铅垂线正好穿过两光电门的中心。(2)取下重锤,并打开电磁头电源吸住钢球,在确信立柱不晃动时断开电源,观察钢球是否正好穿过光电门E2的中心。要求钢球从底部开始遮光且不能打着光电门,否则,微调底座螺丝直至达到要求。在实验中,若钢球不落入接球器G内以至滚跑,可用手在E2下方将球接住。2.测光电门之间距离h和下落时间t(1)用米尺测h,多功能数字式测定仪测时间t对每一个h,测六次t,取其平均值,同时注意钢球是否正好挡光。(2)固定E1位置不变,移动E2使h分别为40,50,…,130cm共10个数值进行实验,用逐差法处理数据。【思考题】1.由测量结果知,的数值总的来说偏小,你能指出可能是何种原因造成的吗?2.试说明,若作图,则得到一直线,由其斜率和截距可分别求出g和初速度v0。问是否可以适当选择变量,得到一直线,由其斜率求出v0,而由截距得到g?212\n大学物理实验实验四液体粘度的测定【实验目的】1.了解斯托克斯定律。2.掌握用落球法测定液体的粘滞系数(粘度)。【实验仪器】盛油玻璃量筒(内置蓖麻油),螺旋测微计,秒表,水银测温计,小钢球【实验原理】当流体运动时,不同流层之间的速度不同,在相邻两层之间因为相对运动而产生切向力。快的一层给慢的一层以拉力,慢的一层给快的一层以阻力,这对力就称内摩擦力或粘滞阻力。流体的这种性质称为粘滞性。vy图4-1实验表明,流体内部相邻两层流体之间的内摩擦力f,除了正比于两层之间的接触面积,还正比于该处的速度梯度(即沿垂直于速度方向上,每单位长度上的速度增量):(4-1)比例系数h称为粘滞系数,只与流体本身的性质有关。流体的粘滞系数h与温度有关。对流体来说,粘滞系数随温度升高而减小;对气体则相反,随温度升高而增大。在温度不变时,压强不特别大(如几百个大气压)的情况下,压强对液体的h影响极小。超流动性:液氦在温度低于2.16K时,具有无摩擦的在毛细管内流动的特性,其h几乎为零。这种性质称为超流动性。测液体粘滞系数的方法很多,本实验用斯托克斯公式测量给定液体的粘滞系数。当小球在无限大的液体中运动,且速度v0不大,同时又没有旋涡产生时,小球所受的粘滞阻力:(r为小球半径),上式即为斯托克斯定律。实验采用近似的斯托克斯定律条件,采用有限的液体,即盛放在量筒中的蓖麻油作为待测液体。小球在液体中自由下落时,受到三个力的作用:重力G、浮力F和粘滞阻力f,三个力都在竖直方向上,重力向下、浮力和粘滞力向上。阻力随小球的速度增加而增加。以静止开始下落的小球,先作加速运动。当下落速度达到一定值时,小求所受三力平衡,开始匀速下落,此时:其中:212\n大学物理实验=,是钢制小球的密度r为蓖麻油的密度(用密度计测量)v0为小球匀速运动时的速度最后液体的粘滞系数为:(4-2)lFGf图4-2v0可通过如下方法测量:(采用米尺测量,t采用秒表测量)。由于在实际测量时液体是盛放在有限的容器中的,不满足无限宽广的条件,这时实际测得的速度v和上述理想条件下的速度v0之间存在如下关系:(4-3)因此,液体的粘度应修正为(4-4)式中,R为量筒的内半径,H为液体的深度。由于斯托克斯公式是在无涡流的理想状态下导出的,而实际小球下落时并不是这样的理想状态,因此还要进行修正,粘性力取一级近似为f=6πηνr(1+)(4-5)式中,雷诺系数Re=2ρ0νr/η,则修正后的粘度为(4-6)【实验内容】1.使盛有待测液体(蓖麻油)的量筒的中心轴处于铅直方向;选取标线N1、N2。2.用米尺测量液体深度H及标线间距离h,用游标卡尺测量量筒内径D。3.用螺旋测微器选择10个小球,使它们的半径在误差允许范围内可认为相同。分别测量每个小球的半径。4,用镊子将小球放置在液体表面,使其沿中心轴线下落,用秒表分别测出每个小球通过标线N1N2所用的时间t,取平均值,则v=h/t。5.利用公式计算η值并求出标准不确定度。212\n大学物理实验【思考题】1.实验中,为什么不从小球落入液面时就开始计时?为何要取标线N1N2?2.如果投入的小球偏离中心轴线,将会有什么影响?3.如果用实验的方法求补正项的系数2.4,应如何进行?4.试推导η的单位是“Pa•s”。212\n大学物理实验实验五杨氏模量的测量胡克(R.Hooke1635-1702)于1678年从实验中总结出,对于有拉伸压缩形变的弹性体,当应变较小时,应变与应力成正比,即图5-1称为胡克定律。因,,故胡克定律又可表示为式中比例系数E称为杨氏模量。由于为纯数,故杨氏模量和应力有相同的单位:称为“帕斯卡”,可简称为“帕”,国际符号为“Pa”。杨氏模量是表征材料本身弹性的物理量,由胡克定律可知,应力大而应变小,杨氏模量较大;反之,杨氏模量较小。杨氏模量反映材料对于拉伸或压缩变形的抵抗能力。对于一定的材料来说,拉伸和压缩的杨氏模量不同,但通常二者相差不多。仅当形变很小时,应力应变才服从胡克定律。若应力超过某一限度,到达一点时,撤消外力后,应力回到零,但有剩余应变ep,称为塑性应变。塑性力学便是专门研究这类现象恶毒。当外力进一步增大到某一点时,会突然发生很大的形变,该点被称为屈服点。在达到屈服点后不久,材料可能发生断裂,在断裂点被拉断。【实验目的】1.学会用拉伸法测量金属丝的杨氏模量。图5-21.平面镜2.后足3.前足2.掌握用光杠杆装置测量微小长度变化量的原理。3.学会用逐差法处理数据。【实验仪器】杨氏模量测量仪、光杠杆、望远镜直尺组、螺旋测微器、米尺、钢卷尺、砝码等。杨氏模量测量仪如图5-1所示。A、B为钢丝两端的螺丝夹,在B的下端挂有砝码的托盘,调节仪器底部的螺丝J可以使平台水平,且使B刚好悬于平台的圆孔中间。在平台上放有光杠杆G,光杠杆前两足放在平台的槽内,后足尖放在螺丝夹B上。当钢丝伸长时,可通过望远镜直尺组测量光杠杆的偏转角,从而求出钢丝的微小伸长量。212\n大学物理实验光杠杆由平面反射镜、前足、后足组成,如图5-2所示。镜面倾角及前、后足之间距离均可调。望远镜直尺组由刻度尺和望远镜组成,如图5-3所示。转动望远镜目镜可以清楚地看到十字叉丝。调整望远镜调焦手轮并通过光杠杆的平面镜可以看到刻度尺的像,望远镜的轴线可以通过望远镜轴线调整螺钉调整,松开望远镜、刻度尺紧固螺钉,望远镜、刻度尺能够分别沿立柱上下移动。图5-31.刻度尺;2.望远镜调焦手轮;3.望远镜轴线调整螺钉;4.望远镜紧固螺钉;5.缺口;6.准星;7.刻度尺紧固螺钉【实验原理】对于一根长为l,横截面积为S的钢丝,在外力F的作用下伸长了Dl,则由胡克定律可得(5-1)式中E为杨氏模量。设钢丝的直径为d,则S=pd2/4,将其代入式(1)并整理可得(5-2)实验中,我们测出拉力F,钢丝长l、直径d和微小伸长量Dl,即可代入式(5-2)求得杨氏模量E。因为Dl不易测量,所以测量杨氏模量的装置都是围绕如何测量微小伸长量而设计的。本实验利用光杠杆装置去测量微小伸长量l,拉力F用逐次增加砝码的方式读出,钢丝长l用钢卷尺测出,直径d用螺旋测微器测出。DlDama0q2q图5-4Da光杠杆装置的原理图如图5-4所示。假设平面镜的法线和望远镜的光轴在同一直线上,且望远镜光轴和刻度尺平面垂直,刻度尺上某一刻度发出的光线经平面镜反射进入望远镜,可在望远镜中十字叉丝处读下该刻度的像,设为a0,若光杠杆后足下移Dl,即平面镜绕两前足转过角度q时,平面镜法线也将转过角度q,根据反射定律,反射线转过的角度应为2q,此时望远镜十字叉丝应对准刻度尺上另一刻度的像,设为am。因为Dl很小,且Dl<>R,上式变为:这样在负载电阻两端的电压正比于分压器的分压比,与负载电阻r的具体数值无关。利用变阻器也可接成限流电路(接成限流电路的变阻器又称限流器),如图7-1a所示。2.电路的连接和操规程(1)连接电路在看懂电路的基础上,先将实验仪器和用具基本上按电路图的位置摆好,其中开关和要调节的仪器应放在操作方便的位置。弄清各仪器的规格,选好仪器的量程或各旋钮的位置,然后按电路图连线。先连接各仪器,后连接电源,并且使电路中的开关断开。(2)通电前的准备①检查电路连接是否正确,电源和电表等有正负极的器件有无接反。②根据电路的要求,检查电阻箱阻值、电表量程和电源电压等是否符合要求。③分析各仪表的最小分度值,读数应读到哪一位。(3)通电212\n大学物理实验经教师检查后接通电源。通电时,要密切注视各仪表的反应,若发现电表指针猛然打倒满刻度或反向偏转、导线过热或发现冒烟、闻到焦糊味等反常现象,要立即打开开关,重新检查电路。(4)规整实验完毕,先断开开关和电源,然后拆除电路,理好导线;仪器的有关档位拨到安全位置;仪器上的接线柱轻轻扭紧后放回原处,盖上防尘罩布或防尘罩,以养成良好的习惯。【实验内容】1.根据操作规程,按图7-1a连接电路。改变变阻器滑动头的位置,观察电流表和电压表的变化,记录几组电流值和电压值。读表时要准、要快、尽量减小视差。图7-42.保持r不变,按图7-1b连接电路。改变变阻器滑动头的位置,观察电流表和电压表的变化,记录几组电流值和电压值。3.用两个电阻箱作为负载r1和负载r2,连接成如图7-4所示电路。改变变阻器滑动头的位置,记录几组电流值和r1、r2两端电压值V1、V2。4.记下所用仪器的主要规格。5.根据数据计算电阻值r、r1和r2。【思考题】1.电阻箱和变阻器都可作可变电阻使用,它们的主要区别是什么?2.在图7-1a中,当滑动头从A→B时,电流表示值是增加还是减小?为什么?3.在图7-1b中,当滑动头从A→B时,电压表示值是增加还是减小?为什么?示值为零和最大时,滑动头在何处?4.变阻器在电路中作可变电阻使用和分压器使用时,在连接上有何特点?212\n大学物理实验实验八用电流场模拟静电场【实验目的】1.学习用模拟法研究静电场。2.加深对静电场概念的理解。【实验仪器】静电场描绘仪、静电场描绘仪电源、游标卡尺、记录纸、导线若干。【实验原理】在研究静电场时,除了具有一定对称性的规则带电体所形成的场以外,大都不易用理论的方法计算其分布。即使可以,计算结果与实际场的分布也难以很好相符。因此,为了较为简捷、准确地获知静电场的分布,在工程上一般采用实验的方法。但是,在对静电场进行实际测量时,由于所使用的测量仪器上的探针必然是良导体,这样,在将其放入场中探测时,探针上会感生出电荷,这些电荷产生的电场最终使得原静电场的分布改变。这个困难可以用一种间接的测量方法来解决。这种方法的特点是:仿造一个与原静电场具有相似分布的场,并且,当用探针测量的时,该电场不受干扰。因此,通过对这个电场的测量就可以间接获得原静电场的分布。图8-1我们知道,恒定电流场和静电场是两种不同性质的场,它们的区别在于产生电场的电荷运动与否。虽然产生恒定电流场的电荷是在连续不断地流动着,但若让其保持动态平衡,它的分布是不随时间变化的。因而,场中空间各点的电场强度E和电势U也不随时间变化,恒定电流场产生的宏观效应与静电场是一样的。因此,测量恒定电流场的分布就可以模拟出静电场的分布。本实验用共轴电缆线间的恒定电流场来模拟相应的静电场。由于该场的轴向分布是完全相同,所以只需模拟与轴相垂直的横截面上的分布即可。实验中使用中间为圆柱形导体A(半径为r1)、外部为与A共轴的圆环B(内半径为r2)构成上述戴面。A和B是建立恒定电流场所必需的两个电极(见图8-1),它们相当于产生静电场的带有等量异号电荷的两个带电体。如果在两电极间置于添土碳粉的导电纸,并使其与电极保持良好接触,接通电源后,便会在导电纸上形成恒定电流场。由图8-1可知,从电极A通过导电纸流向电极B的电流强度为:(8-1)212\n大学物理实验式中UE是电源电压,R为两电极间的等效电阻。又由欧姆定律的微分形式推知(8-2)式中k是由导电纸决定的常量,r为P点距轴的距离,Er是P点处的电场强度。比较以上两式可得(8-3)我们注意到,上式与相应的静电场的电场强度与半径的函数关系具有相同的形式,即。可见,用恒定电流场模拟静电场的分布是可行的。由式8-3,并根据恒定电流场的边界条件Ur(r1)=UE、Ur(r2)=0,可得电势Ur的分布为:(8-4)由上式知,共轴电缆线横截面间的恒定电流场中任一点的电势Ur与该点位置r的自然对数1nr成线性关系。实验中我们将验证这一关系的正确性。本实验用水作为导电介质,信号源输出为交流电压。实验结果与上述结论是一致的。【实验内容】1.连接静电场描绘仪电源输出端至A、B两极接线柱,将A、B之间加水,水与探针良好接触。2.将mV表接至A、B端,调节信号源输出电压使mV表指示为6伏。3.mV表接至探针接线柱和圆环接线柱,移动探针,根据mV表显示的读数,在水槽内分别做6条等势线,每条等势线均匀取8—10个测量点。4.将记录纸上各点相连,做出等势线和电场线,用游标卡尺测量r1、r2、各点半径ri(mm)并列表填写数据,在坐标纸上作出图线,确定其斜率和截距,将K实验值与K理论值相比较,求出相对误差。【思考题】1.试分析实验中产生的系统误差。212\n大学物理实验实验九磁场描绘【实验目的】1.研究载流线圈轴线上磁场的分布,加深对毕奥---萨伐尔定律的理解。2.掌握感应法描绘载流线圈产生磁场的磁感线的方法。3.考查亥姆霍兹线圈磁场的均匀区。【实验仪器】磁场描绘仪、磁场描绘仪信号源、万用表、探测线圈、针头。【实验原理】电流强度为I的N匝圆线圈,在过线圈中心O且垂直于线圈平面的XOY平面内任一点P的磁感应强度B,可由毕奥——萨伐尔定律求得:式中:图9-1其中R为圆线圈的半径(见图9-1)。若P在圆线圈轴线OX上,磁感应强度可简化为,式中B0为O点磁感应强度的大小,于是有:212\n大学物理实验(9-1)两个匝数相等,间距等于其半径,并通以同向、等值电流的共轴线圈,称为亥姆霍兹线圈。亥姆霍兹线圈中央区哉内磁感应强度的不均匀性很小。根据理论计算,在中央区域内作一母线长为0.2R,直径为0.1R的圆柱体,在这个圆住体所占的空间范围内,磁感应强度值的不均匀性小于0.02%。描绘磁场的方法很多,本实验用感应法。1.圆形线圈轴线上磁感应强度相对值的测量在圆形线圈中通以交流电,并在其轴线上放一探察线圈,使探察线圈的定位也对准待测点,改变探察线圈的方向,直到探察线圈中的感应电动势最大为止,此时通过探察线圈的磁通量为探察线圈中的感应电动势为式中N、S、w和Bm分别为探察线圈的匝数、戴面积、交流电的角频率和轴线上P点磁感应强度的最大值。若探察线圈两端接在MF-20型多用表交流毫伏档,其读数U应为即轴线上一点磁感应强度的最大值Bm与O点磁感应强度的最大值Bom之比,即磁感应强度的相对值,应为于是有(9-2)2.磁感应强度方向的测定将探察线圈的定位孔对准XOY212\n大学物理实验面上的待测点,改变探察线圈的方向,直到探察线圈中感应电动势最小为止。此时过定位孔且与探察线圈法线方向相垂直的方向,即定位了孔与测量孔连线的方向,就是待测点的磁感强度方向。3.描绘磁力线(a)将探测线圈放在图纸上,笔形定位针插进测量孔,并固定在作图纸上,以此为中心旋转探测线圈,直至毫伏表为极小值时止。(见图9-2a)(b)将笔形定位针拔出(注意:不能改变探测线圈的位置)插入另一测量孔。见图9-2b。并以此为中心旋转探测线圈,至毫伏表再次出现极小值时止。见图9-2c虚线位置。(c)将笔形定位针拔出插入原先的测量孔重复上述(a)、(b)步骤。如图9-2d。这样周而复始的连续做下去,便可在图纸上留下一系列的小针眼。每两个针眼的联线的中心,即为探测线圈的几何中心,也就是磁力线的切点,光滑的连接这些切点,即可描绘出一条磁力线。但因探测线圈针眼间距远小于磁力线的曲率半径,故作图时,只要光滑地连接针眼即可。【实验内容】1.在坐标纸上画上中心线及坐标原点,然后将坐标纸放入圆形线圈中,使坐标原点与线圈几何中心重合,坐标纸上中心线(X轴)与线圈几何轴线重合,四周固定。2.连接电路,将单刀双掷开关置“1”,磁场描绘仪信号源接到右一线圈B,调节输出电压,使O点的最大感应电动势为Uom=15mV。3.在轴线上从O点开始,每隔20.0mm,用探测线圈测出每一点的最大感应电动势。图9-24.求出轴线上这些点的磁感应强度的相对值及其相对误差:5.用感应法在线圈几何轴线两侧每隔20mm,各描绘三条磁感线。6.将单刀双掷开关置“2”,A、B,两线圈同向串联,调节磁场描绘仪信号源输出电压,212\n大学物理实验使亥姆霍兹线圈中心处Q点最大感应电动势为10mV,定出和UQ相差不超过±1%的区域。图9-3【思考题】1.如何测定磁感应强度的方向?为什么不根据探测线圈中磁感应电动势最大来确定磁感应强度的方向?2.什么叫亥姆霍兹线圈?它产生的磁场有何特点?212\n大学物理实验第二部分力热实验实验十分析天平的使用【实验目的】1.掌握分析天平的使用方法。2.熟悉精密称衡中的系统误差修正。3.掌握分析天平的常用称衡方法——摆动法、复秤法。【实验仪器】分析天平、被测物。【实验原理】图10-1天平是用来称衡质量的仪器。所谓称衡,就是被称物质量与砝码质量相比较。多数天平是一种等臂杠杆,在天平梁上对称地在同一平面上排列三个刀口B1、B0、B2,梁(包括指针)的质心C在中央刀口的稍下方。当天平偏向某一方时,则作用在梁的质心处的梁的重力m0g将产生相反方向的恢复力矩,使天平出现左右摆动。表示天平性能的指标中,最大载量和灵敏度是主要的。最大载量由梁的结构和材料决定,天平灵敏度则由臂长、指针长度、梁的质量m0和质心到中央刀口的距离决定。灵敏度是天平两侧的负载相差一个单位质量时指针偏转的分格数(div),它反映了天平觉察两侧质量差异的能力。灵敏度的倒数是感量,其大小与砝码读数的分度值相适应。摆动法就是利用摆动中的指针进行称衡的方法。这样既可以节省时间也能克服微小干扰。比如,当指针在中线“10”附近左右摆动时,连续读出指针左右极限位置共奇数个数值,取其平均值就可以认为是指针待停点,如图10-1所示。e=[(a1+a2+a3)+(b1+b2)]212\n大学物理实验准确度要求更高的称衡,须对横梁两臂长度可能不完全相等而造成的影响加以修正,这就是复称法。假设天平横梁的左右两臂有稍许差异,左侧长l1,右侧长l2,将质量m的物体置于左盘上称衡,右盘上加砝码m1时横梁水平,将物体置于右盘上称量时,左盘上加砝码m2时横梁水平,则必定有:mgl1=m1gl2,m2gl1=mgl2二式相除消去g、l1和l2得出:即:m2=m1m2所以:m=实际上m1和m2相差甚小。为了计算简便,令m2=m1+∆m,代入上式得:m=m1展开上式,取一级近似得:m=m1=(m1+m2)(10-1)在精密称衡时,有时还需消除由于空气浮力引入得系统误差。假设天平是等臂的,当天平平衡时,由于砝码密度ρ1与被测物密度ρ2一般不等,所以物体质量m2与砝码质量m1并不相等,这时成立:m2g-ρ0g=m1g-ρ0g式中,ρ0为空气密度,g为重力加速度,整理后得m2=m1由于ρ1和ρ2均远大于ρ0,故近似式为m2=m1[1+()ρ0](10-2)计算时取ρ0=1.210−3g/cm3,国家规定砝码标称密度ρ1为8.0g/cm3。【实验内容】1.测量物体质量m(1)检查天平安装是否正确,转动底角螺丝,将立柱后圆形气泡和水准仪中气泡调到中央,此即调水平。(2)从柜外操纵游码挂钩,将游码置于游码标尺“0”212\n大学物理实验处,用止动旋钮支起横梁,以摆动法测零点e0(空载时的停点),要求e0偏离中央线1分格,否则,调整调平螺丝f,此即调零点。(3)将物体放在左盘内,暂设其质量为ml,右盘加砝码m2,测停点e1,要求e1和e0相差不过一分格,否则要调整砝码,因为e1≠e0,所以砝码质量m1≠m2。设此时天平灵敏度为C,则:∆m=│m1-m2│=││(4)根据e1和e0大小进行判断。当e1>e0时,即m1m2,用游码使右侧增加1mg,测停点e2,则:C=│e1−e2│此即负载为m1时的灵敏度,则:∆m=││(5)取下被称物和砝码(游码复零位),再测零点,用前后二次零点的平均值代入上式去计算。(6)当e1e0时,ml′=m2-∆m。2.将被称物放在右盘上进行复称,又设被称物质量为mr。3.最后被称物质量在消除不等臂误差后为:m′=(ml+mr)消除空气浮力影响后的质量为:m0′=m′[1+()ρ0]式中,ρ1为砝码的密度,ρ2为被测物的密度,ρ0为空气密度(ρ0=1.210−3g/cm3)。当被测物体积V已知时,则:m0′=m′−ρ1+Vρ0212\n大学物理实验实验十一牛顿第二定律的验证【实验目的】1.了解气垫导轨的结构,学会用数字智能测时器测量速度和加速度。2.验证牛顿第二定律。【实验仪器】气垫导轨、滑块、光电门、砝码、数字智能测时器等。1.气垫导轨气垫导轨是力学实验的基本仪器。它由导轨、滑块和光电门组成的,如图11-1所示。1.进气口2.标尺3.滑块4.挡光片5.光电门6.导轨7.滑轮8.测压口9.底座10.垫脚11.支角12.发射架13.端盖图11-1(1)导轨导轨的主体是一根长度在1.5m~2m的空芯“”形铝合金管制成的。一端用堵头封死,另一端装有进气嘴,可向管内送入压缩气体。在导轨的两表面上钻有很多排列整齐的小孔,通入的压缩空气由小孔喷出,在滑块和导轨之间形成厚度在100mm~200mm之间的薄薄空气层(气垫),滑块就漂浮在气垫上。由于气垫的存在,滑块可以在气垫上作近乎无摩擦的运动。导轨与桌面支撑处装有调节导轨水平的螺丝,导轨的一端装有气垫滑轮。为了避免碰伤导轨,在导轨的两端装有缓冲弹簧。另外在导轨的一侧装有长度标尺,以便读取两光电门之间的距离。(2)光电门光电门由光源(红外发光二极管或聚光灯)和光敏管组成。利用光敏管受光照和不受光照时的电势变化,产生的脉冲信号来控制计时器“计”和“停”,进行计时。光电门在导轨上的位置由定位指针读出。(3)滑块212\n大学物理实验滑块是在导轨上运动的物体。它由铝合金制成,它的两表面和导轨两表面精密吻合。根据实验需要,其上可安装各种附件,如不同的挡光片、重块、小砝码等。滑块的两端一般装有缓冲弹簧,但也可以装尼龙搭扣以实现完全非弹性碰撞。其它附件还有斜度垫块、弹簧、小砝码盘等等。2.数字智能测时器配合光电门的数字智能测时器,根据不同宽度的挡光片,选择不同的功能挡,可以测量一个时间间隔、两个时间间隔、一个速度、两个速度、加速度、周期等,使用方便。其具体使用方法参见说明书。图11-2【实验原理】如图11-2所示,质量为M的滑块(包括其本身的质量M0。其上所加小砝码的质量m1),通过细绳跨过滑轮和质量为m的砝码盘相连(包括砝码盘本身质量m0和其上所加小砝码m2)。当滑块运动时,可以通过数字智能测时器测出滑块的加速度a。把砝码盘、小砝码和滑块等看作一个系统,则系统中各物体的加速度大小是相等的。忽略空气阻力及气垫对滑块的粘滞阻力,并设细绳中张力为T,那么由牛顿第二定律可得:(11-1)解得:(11-2)令,,则上式可写成:(11-3)由2-3式可以看出,当保持不变时,a与F成正比。实验中,逐次将滑块上的小砝码m1移到砝码盘中(保持系统总质量不变,改变F的大小),利用11-2式测出系统相应的加速度的大小,即可验证11-2式中总质量保持不变时,a与F成正比。【实验内容】1.调整气垫导轨先目测,调节导轨下的三个底脚螺丝,使导轨大致水平。打开气源开关,对导轨送气,然后将滑块轻轻放在导轨上进行导轨水平调节。导轨水平调节可先进行“静态”平衡调节,然后进行“动态”平衡调节。所谓“静态”212\n大学物理实验平衡是指气垫导轨本身完全平直放置水平,则滑块可静止在导轨的任何位置上。若滑块由静止释放后,总是向导轨的一个方向运动,则说明导轨不水平。调整导轨底角螺丝,直到滑块基本保持静止(因为导轨不可能完全平直,所以滑块很难调整在任何位置上都能静止不动)。接下来利用“动态”平衡调节,所谓“动态”平衡是指导轨完全水平,则用手轻推滑块向左(向右)运动时,滑块通过两光电门的时间应相等或相差甚微。若不满足上述要求时,说明导轨仍不水平,则继续调整导轨底角螺丝,直至合乎要求。2.置两光电门之间距离约为50cm左右,用天平称出滑块的质量M、砝码盘的质量m,挡光片选择开口挡光片,数字智能测时器选择功能5。然后用细绳或尼龙搭扣跨过滑轮把滑块和砝码盘连接起来,最后在滑块上加4个小砝码(小砝码质量分别为1g,2g,2g和5g)。3.将滑块在导轨上某个位置由静止开始释放,使之作匀加速运动,记录滑块运动的加速度,重复5次。4.分5次,每次移动2g砝码至砝码盘中,重复步骤3。从而验证总质量保持不变时,加速度与外力成正比关系。5.根据测量的数据分别作a~F和a~1/M曲线,用作图法验证牛顿第二定律的正确性。【注意事项】1.导轨未通气时,不得将滑块放在其上滑动。2.导轨和其上滑块的内表面都是经过精细研磨加工而制成,两者配套使用,不得与其他实验台上的滑块任意调换。实验中严禁敲碰、划伤导轨表面。调整挡光片时应将滑块取下操作。实验结束后,勿将滑块放在导轨上,以免导轨变形。3.导轨表面有污物时,可用棉花沾酒精擦洗,小孔堵塞时,可用钢丝扎通。实验完毕,应将导轨表面擦净,用罩子盖好。4.只有在需要滑块在导轨上运动时,才可使气源工作。不用时应随手关上气源开关,以免因电机过热而烧毁。5.实验中,滑块由静止释放时,动作一定要轻,以防滑块左右滑动。与滑块相连的砝码盘在滑块释放时应使之静止不动。另外,每次实验中要保证细绳在滑轮上,每次释放滑块应保证从同一位置。【思考题】1.怎样调平导轨,如导轨没有调平,对实验有什么影响?2.试设计出另一种在气垫导轨上验证牛顿第二定律的方法。3.a-F图线是否一定通过原点,为什么?4.验证a与F成正比关系时,实验中是如何保持总质量不变的?212\n大学物理实验实验十二固体液体密度的测定【实验目的】1.熟悉物理天平(或分析天平)的使用方法。2.掌握测量物质密度的测量方法。【实验仪器】物理天平、比重瓶、烧杯、温度计。待测物:固体:蜡块、玻璃块、臂金属块等。液体:酒精、盐水等。物理天平:其结构与分析天平类似,多在称衡准确度要求不高的情况下使用。【实验原理】1.由静力称衡法求固体密度。设被测物体不溶于液体且能完全浸入液体中,其质量为m1,用细绳将其悬吊在液体中的称衡值为m2,若当时温度下液体密度为ρ0,物体体积为V,则由阿基米德定律有:ρ0Vg=(m1−m2)gg为当地的重力加速度,整理后得计算体积的公式为:V=又质量为m1,密度为ρ的某一物体的体积:V=(12-1)则固体的密度:ρ=ρ0(12-2)若该物体密度ρ小于液体密度ρ0,则须附加一密度大于液体得重物将其拉入液面下进行称量(如图12-1b所示),称得其相当质量为m2,然后保持重物在液体中而将物体拉出液面(如图12-1c),称得其相当质量为m3,则:(m3−m2)g=ρ0Vg得到物体密度为:ρ=ρ0           (12-3)2.用静力称衡法测液体的密度设物体质量为m1,将其悬吊在被测液体中的称衡值为m2,悬吊于已知液体中称衡值为m3,则参照上述讨论,可得液体密度ρ等于212\n大学物理实验ρ=ρ0(12-4)图12-13.用比重瓶法测液体的密度。如图12-2所示为常用比重瓶,它在一定的温度下有一定的容积,将被测液体注入瓶中,多余液体可由塞中的毛细管溢出。图12-2设比重瓶的质量为m1,充满密度为ρx的被测液体时的质量为m2,充满同温度的蒸馏水时的质量为m3,则:ρx=;V=由以上二式可得:ρx=ρw(12-5)【实验内容】1.用流体静力称衡法测蜡块的密度(1)用物理天平测固体在空气中的质量m1,重复五次。(2)将盛有水的烧杯放在天平左边的支架盘上,然后用细绳将蜡块挂在天平左挂钩上,并全部浸入盛有蒸馏水的烧杯中,称得相当质量为m2,重复五次。注意,蜡块或铁块不能接触杯底,且设法消除附着在固体上底气泡。(3)将蜡块提离水平,铁块留在水中,称得相当质量为m3,重复五次。(4)记下此时的水温t和相应的水密度ρ0。(5)利用公式(12-3)计算固体密度ρ,并用不确定度表示结果。2.用流体静力称衡法测液体的密度接上面实验,称得铁块在空气中的质量为m,测五次,在蒸馏水中的相当质量为m1,在待测液体中的相当质量为m4,由式(4)计算ρ。3.用比重瓶法测液体的密度(1)接上面实验,称得干燥得比重瓶质量为m,测五次。(2)用移液管将待测液体注入比重瓶中,称得质量为m2,测五次。212\n大学物理实验(3)将待测液倒出,用蒸馏水冲洗几次后再注入蒸馏水,称得质量为m3,测五次。(4)比重瓶、待测液体、蒸馏水均为室温,由式(12-5)计算ρx。【思考题】1.如何用比重瓶法测空气的密度、测颗粒状固体得密度?212\n大学物理实验实验十三示波器的使用【实验目的】1.了解示波器的主要组成部分以及示波器的波形显示原理。2.学习用示波器观测电信号和李萨如图形。3.学习利用比较法测量电信号的方法。【实验仪器】双踪示波器、信号发生器等。信号发生器提供示波器观察波形用的各种信号电压。一般均输出正弦波,有的可输出各种波形(例如方波、三角波等);对同一种波形又可输出各种不同频率。信号发生器的型号不同,面板上的旋钮也不相同,使用时要看清面板上标明的符号,弄清各旋钮与接线柱的作用后,再按仪器规定的要求使用。【实验原理】示波器是一种用途广泛的电子仪器,用它可以直接观察电信号的波形,也能测定电压信号的幅度、周期和频率等参数。用双踪示波器还可以测量两个电信号之间的时间差或相位差。配合各种传感器,它还可以用来观察各种非电量的变化过程。由于电子射线的惯性很小,因此示波器可以在很高的频率范围内工作,采用高增益的放大器可以观察微弱信号。1.灯丝2.阴极3.栅极4.第二阳极5.第一阳极6.Y轴偏转板7.X轴偏转板图13-1示波管及示波器电路方框示波器具有多种类型和型号,它们的基本原理是相同的。示波器的具体电路比较复杂,需要具备一定的电子学基础知识方能掌握,不是本实验的讨论范围。本实验仅限于学习示波器的基本使用方法。1.示波器的基本结构示波器动态显示物理量随时间变化的基本思路是将这些变化量转换成随时间变化的电压,加在电极板上,极板间形成相应的变化电场,使进入这变化电场的电子运动情况相应地随时间变化,最后把电子运动的轨迹用荧光屏显示出来。212\n大学物理实验示波器主要由示波管和复杂的电子线路组成。这里只介绍示波器的基本结构和扫描整步功能。示波器包括:示波管、扫描和整步系统、电压放大和电源系统。(1)示波管示波管是示波器的心脏,其内部结构如图13-1所示,主要由安装在高真空玻璃管中的电子枪、偏转板和荧光屏3个部分组成,全部密封在玻璃外壳内,里面抽成高真空。电子枪由灯丝、阴极、控制栅极、第l阳极和第2阳极等5部分组成。电子枪用来发射电子束;偏转板用来控制电子束运动;电子束打到荧光屏上使荧光屏发光,显示出要观察的电压波形。荧光屏上光点的亮度取决于电子束中电子的数量,光点的粗细则由电子束的粗细决定。偏转板对电子束的作用:①当X,Y轴偏转板上的电压Ux=0,Uy=0时,电子束打在荧光屏中央。②当X,Y轴偏转板上的电压Ux>0,Uy=0时,电子束将受到电场作用力,使电子束向正极板偏转,光点将由荧光屏中央移动到右边;当Ux<0,Uy=0时,光点将移动到左边。③当Ux=0,Uy>0时,光点向上移动。当Ux=0,Uy<0时,则光点向下移动。光点移动的距离与偏转板上所加的电压成正比,即光点沿Y轴方向上下移动的距离正比于Uy;沿X轴方向左右移动的距离正比于Ux。④若在Y轴偏转板上加正弦电压(Uy=U0sinwt),X轴偏转板不加电压(Ux=0),光点将沿Y轴方向振动。Uy由于是按照正弦规律变化的,所以光点在Y轴方向移动的距离也按正弦规律变化;因为Ux=0,所以光点在X轴方向无移动,在荧光屏上只能看到一条Y轴方向的直线(如图13-2所示),而不是正弦波形。如何才能使荧光屏上展现正弦波形?这需要将光点沿X轴方向展开,即必须在X轴偏转板上也加上电压。由于Y轴上加的电压的波形是随时间变化的,所以希望X轴光点的移动代表时间t,而且X轴上的电压(Ux)随时间的变化关系应是线形的(如图13-2)。图13-2扫描原理我们用比较直观的作图法将电子束受Ux和Uy,的电场力作用后的轨迹表示如图13-2。在示波管的X,Y轴偏转板上分别同时加上线形电压和正弦电压,若它们的周期相同,将一个周期分为相同的四个时间间隔,Ux和Uy的值分别对应光点在X轴和Y轴偏离的位置,将Ux212\n大学物理实验和Uy的各投影光点连起来,即得被测电压的波形(正弦)。完成一个波形后的瞬间,光点立刻返回到原点,完成一个周期,这根反跳线称为回扫线。因这段时间很短,线条比较暗,有的示波器采取措施(消隐电路)将其消除。(2)扫描与整步光点沿X轴变化及反跳的过程称为扫描。电压称Ux为扫描电压(锯齿波电压),它是示波器内的扫描发生器(锯齿波发生器)产生的。这样,电子束不仅受到Uy电场力使其上下运动,同时受到Ux作用使其展开成正弦波。上面讨论的波形因Ux和Uy的周期相等,荧光屏上出现一个正弦波。若:fy=nfx(n=1,2,3…)(13-1)式中n为荧光屏上所显示的完整波形的数目。或者将式(13-1)表示为:Tx=nTy(n=1,2,3…)(13-2)则荧光屏上将出现一个、二个,三个……稳定的正弦波形。只有当fy为fx的整数倍时,波形才稳定。但fy是由被测电压决定的,而fx由示波器内扫描发生器决定的,两者相互无关。某些型号的示波器,为了得到稳定的波形,采用整步的方法,即将Y轴输入信号电压接至扫描发生器的电路中,强迫fx随着信号频率的变化而变化(内整步),从而保证fy=nfx,荧光屏上的波形即可稳定。触发扫描:在示波器中,为了在荧光屏上得到稳定不动的信号波形,采用被测信号来控制扫描电压的产生时刻,称为触发扫描。调节触发电平的高低,使被测信号达到某一定值时,扫描电路才开始工作,产生一个锯齿波,将被测信号显示出来。由于每次被测信号都达到这一定值时,扫描电路才开始工作,产生锯齿波,所以每次扫描显示的波形相同。这样,在荧光屏上看到的波形就稳定不动。图13-3表示了触发扫描的原理。图13-3触发扫描原理(3)电压放大系统由于示波管本身偏转板的偏转灵敏度不高,为了便于观察较小的电信号就需要预先将输入信号加以放大,再加到X或Y偏转板上。只需加以衰减而设置衰减器。212\n大学物理实验放大后的电压加在示波管中相应的偏转板上,用来控制光点在相应方向上的位移。在保持放大倍数不变的条件下,光点对中心偏转距离Y与输入信号的电压Uy成正比,即Y=AyUy式中Ay为比例系数。(4)电源系统电源系统的作用是供给以上三部分工作所需要的各种电压。2.示波器的应用(1)电压的测量在测量时一般把“Volts/DIV”开关的微调装置以顺时针方向旋至满度的校准位置,这样可以按“Volts/DIV”的指示值直接计算被测信号的电压幅值。由于被测信号一般都含有交流和直流两种成分,因此在测试时应根据下述方法操作:①交流电压的测量当只需测量被测信号的交流成分时,应将Y轴输入耦合方式开关置“AC”位置,调节“Volts/DIV”开关,使波形在屏幕中的显示幅度适中,调节“电平”旋钮使波形稳定,分别调节“垂直位移”和“水平位移”,使波形显示值方便读取。根据“Volts/DIV”的指示值和波形在垂直方向上的坐标(DIV),按下式读取:VP-P=V/DIV×Y(DIV);(13-3)②直流电压的测量当需测量被测信号的直流或含直流成分的电压时,应先将Y轴耦合方式开关置“GND”位置,调节“垂直位移”使扫描基线在一个合适的位置上,再将耦合方式开关转换到“DC”位置,调节“电平”使波形同步。根据波形偏移原扫描基线的垂直距离,用上述方法读取该信号的各个电压值。(2)频率的测量在测量时一般将“SeC/DIV”开关的微调装置以顺时针方向旋至满度的校准位置,这样可以按“SeC/DIV”的指示值直接被测信号的频率。①测出一个周期的水平距离×(DIV),读出扫描时间因数“SeC/DIV”,即可求出f。T=“SeC/DIV”×X(DIV)②利用扫描频率求未知频率由扫描原理可知,只有当输入信号频率为扫描频率的整数倍时,波形才是稳定的。利用这个关系,可以求得未知频率。示波器能精确直接得到扫描频率:T′=“SeC/DIV”×10(DIV)这种方法实质上也是一种比较法,应用这种比较法的条件是波形必须稳定。③李萨如图形的观察与频率的测量212\n大学物理实验当X轴输入扫描信号时,示波器显示Y轴输入电信号的瞬变过程;当X轴输入正弦信号,而Y轴输入另一正弦信号,而两个正弦信号的频率相等或成简单整数比时,观察到的是电子束受两个相互垂直的谐振运动的合成图形。荧光屏上亮点的合成轨迹为一稳定的闭合曲线,称为李萨如图形,如图13-4。图13-4将“SeC/DIV”扫描速率旋钮置于“X-Y方式”,此时由“CH1orX”端口输入X轴信号,由“CH2orY”端口输入Y轴信号。当fx和fy分别代表在X方向和Y方向正弦型号的频率,如荧光屏上显示出稳定的李萨如图形时,在水平和垂直方向分别作两直线与图形相切或相交,数出此两直线与图形的切点数或交点数,则:或:212\n大学物理实验如图13-5(a)水平直线与图形的相切点数为1点(a);垂直直线与图形的相切点数为2点(b,c)。(13-4)如图13-5(a)水平直线与图形的相切点数为1点(a′);垂直直线与图形的相切点数为2点(b′,c′)。在荧光屏上数得水平直线与图形的切点数(或相交点数)和垂直直线与图形的切扇(或相交点数),就可以从一已知频率fx(或fy)求得另一频率fy(或fx)。(a)(b)图13-5【实验内容】1.熟悉示波器面板上各旋钮的作用和调节方法(1)调节“位移”、“水平位移”、“辉度”处于中间位置,“扫描速率SeC/DIV”置“X-Y方式”,然后接通电源,待荧光屏上出现光斑后,调节“辉度”,使光斑亮度较暗。(2)调节“聚焦”,使光斑成一小圆点,然后调节“垂直位移(右边一个)”和“水平位移”,使光点在荧光屏上的位置适中。(3)按下扫描方式下的“自动”,调节“扫描速率SeC/DIV”指向“0.2S/DIV”,按下垂直方式下的“CH1和CH2”观察两路信号在“断续”及“交替”方式下的工作情况。(4)调节“扫描速率SeC/DIV”旋钮使亮点变成水平扫描线。2.观察波形(1)调节低频信号发生器,使“Output”输出端输出频率f=50Hz,按下“正弦信号~”。(2)把“Output”输出信号从“CH1或CH2”通道输入,调节“扫描速率”及相应通道的“灵敏度选择Volts/DIV开关”使波形大小适中。(3)调节“扫描速率及扫描微调开关”,若波形还是不够稳定,可调“电平”212\n大学物理实验,使光屏上出现1~3个稳定的波形。(4)将f改为100Hz、500Hz、5KHz、50KHz,调出稳定的正弦波形。(5)取f=50Hz,调节低频信号发生器上的“AMPLIUDE”旋钮,使Y=60格或80格,记录Y值并画出波形,按下信号发生器上的“-20dB”,调节“电平”使波形稳定,画出变化后的波形,并记录变化后的Y=?,再按下“-40dB”观察波形。(6)依次按下“方波”及“三角波”,观察波形。3.测定正弦交流信号的电压和频率(1)使f=500Hz,调节“AMPLIUDE”旋钮,使Y=40格~70格。(2)调节示波器上的“灵敏度选择微调档”及“扫描频率的微调档”。顺时针旋足为校准位置,此时可根据荧光屏上的Y轴坐标刻度,利用灵敏度选择开关的“Volts/DIV”档级标称值,直接求出信号波形的峰-谷电压值VP-P。由测得的峰-谷值可计算交流信号的电压有效值:(13-5)(3)根据荧光屏上的X轴坐标刻度,读出被测交流信号的周期,由,其中T=“SeC/DIV”×X(DIV),求得其频率。4.李萨如图形的观察与记录(1)观察李萨如图形把“SeC/DIV”置“X-Y方式”,将信号发生器的50Hz正弦信号的输出端接至示波器的“CH1”(X轴通道),将“Output”输出端正弦信号接至示波器的“CH2”(Y轴通道),调节其频率,使其依次为f=25Hz,观察图形。(2)画出fy:fx=1:2、1:1、3:2、2:1和3:1某一瞬间的图形。注意:实际操作时适当调节X轴及Y轴“灵敏度选择开关Volts/DIV”和信号发生器的“AMPLIUDE”使图形适中。由于fy:fx不可能调节成准确的简单整数比,因此两个振动的相位差将发生缓慢的改变,图形难以完全温定,调到图形变化最缓慢的时间即可。【注意事项】1.为了保护荧光屏不被灼伤,使用示波器时,光点亮度不能太强,而且也不能让光点长时间停在荧光屏的一点上。在实验过程中,如果短时间不使用示波器,可将“辉度”旋钮逆时针方向旋至尽头,截止电子束的发射,使光点消失。不要经常通断示波器的电源,以免缩短示波器的使用寿命。2.示波器上所有开关与旋钮都有一定强度与调节角度,使用时应轻轻地缓慢旋转,不能用力过猛或随意乱旋。3.由于信号发生器上输出端的“50Hz正弦信号固定输出端”及“Output”输出的显示值fy,均不会完全准确,故在观察李萨如图形时,当需要调节fy=50Hz时图形不一定最稳定,可继续增加或减小fy使图形变化最缓慢时即可。212\n大学物理实验实验十四碰撞研究【实验目的】1.验证动量守恒定律。2.了解完全弹性碰撞与完全非弹性碰撞的特点。【实验仪器】气垫导轨、滑块、光电门、数字智能测时器。【实验原理】如果某一方面系统所受合外力为零,则系统的总动量保持不变,此即动量守恒定律。若物体系所受合外力在某方面的分量为零,则物体系在该方向上的动量也守恒。本实验是在气垫导轨上验证两个滑块在碰撞前后的动量保持不变。即:(14-1)其中,m1、m2分别为两滑块的质量,v1、v2,和v1′、v2′是两滑块碰撞前后的速度。取某一方向为正方向,速度值以正负值代入。此公式对完全弹性碰撞和非弹性碰撞均成立。若v2=0,则式(14-1)可简化为:(14-2)碰撞的性质用恢复系数e表示,其定义为碰撞后相对速度与碰撞前后相对速度之比。即:(14-3)若v2=0,则上式可简化为:(14-4)e=1,则碰撞为完全弹性碰撞;e=0,碰撞为完全非弹性碰撞;0>b>>c。比如,若在t1至t2范围测得一a1值:再在t2至t3范围测德一a2值:从上二式求出a与b,代入式(19-4)即得a(t);t1,t2,t3可以分别到室温、100℃及200℃。显然,这是一种虽简单但不严格的方法。为测定a、b,较为严格的方法是:由式(19-1)及(19-4)得:对应t1→t2,有,将代入上式,得:(19-5)同样,对应t2→t3有:(19-6)上二式联立求得:(19-7)212\n大学物理实验为方便起见,从式(19-5)与(19-6)求a21和a32时,可用l替l0。同时,在安排实验步骤时,应考虑到逐差法处理数据的要求。关于微小伸长量的测定方法,还有螺旋测微法等,虽然很简便,但不及光杠杆法精确,这里不再介绍了。【实验内容】1.根据公式(19-3),测定金属棒从室温到约100℃的平均线膨胀率,并分析误差。在预习时自拟实验步骤。2.根据公式(19-4),测定同一金属棒材料的。【思考题】1、在用光杠杆法d时,问:(1)为什么一定要仔细测准a1,a2?(2)若不小心在实验中碰到了光杠杆,应怎么办?(3)你实验中的光杠杆装置被测量d放大了多少倍?2、有一个各向同性体职为V的物体,受热后体积的相对增加量与温度的变化成正比,即,比例系数b称为该物体材料的体膨胀率。试证明。212\n大学物理实验实验二十固体比热容的测定【实验目的】1.用混合法测定金属的比热容。2.掌握基本的量热方法——混合法。【实验仪器】量热器、温度计(0~50ºC两支、0~100°C一支)、物理天平、待测金属块、加热器或电炉、冰、停表等。量热器:又称卡计,是测量热量的仪器。简单的量热器如图所示,m1为内筒,筒内贮有一定量的纯水m0,T为温度计,m2为搅拌器,为了将由内筒及其盛的物质构成的热学系统看成为孤立系统,故将内筒置于外筒C并由绝热架I2支撑,上面盖上绝热盖I1,同时,将内外筒的表面电镀或打磨得十分光亮以减少由于辐射而产生得热传递。【实验原理】温度不同得物体混合后,热量将由高温物体传递给低温物体。如果在混合过程中和外界没有热交换,最后将达到均匀稳定的平衡温度,在这过程中,高温物体放出的热量等于低温物体所吸收的热量,此称为热平衡原理。本实验即根据热平衡原理用混合法测定固体的比热。将质量为m、温度为T1的金属块投入量热器的水中。设金属块、水、量热器内筒、搅拌器和浸入水中的温度计的比热分别为c、c0、c1、c2和c3,质量分别为m、m0、m1、m2和m3,待测物投入水中之前的水温为T2。在待测物投入水中以后,其混合温度为θ,则在不计量热器与外界的热交换的情况下,将存在下列关系:mc(T1−θ)=(m0c0+m1c1+m2c2+m3c3)(θ−T2)即:式中,温度计插入水中的部分的热容量为m3c3=1.9{V}cm³,V为温度计插入水中部分的体积,{V}cm³表示V以cm3为单位的数值,具体算法参照书后附。212\n大学物理实验上述讨论是在假定量热器与外界没有热交换时的结论。实际上,只要有温度差异就必然会有热交换存在,因此,必须防止或进行修正热散失的影响。热散失的途径主要有三:第一是加热后的物体在投入量热器水中之前散失的热量,这部分热量不易修正,应尽量缩短投放时间。第二是在投下待测物后,在混合由外部吸热和高于室温后向外散失的热量。在本实验中,由于测量的是导热良好的金属,从投下物体到达混合温度所需时间较短,可以采用热量出入相互抵消的方法,消除散热的影响。即控制量热器的初温T2,使T2低于环境温度T0,混合后的末温θ则高于T0,并使(θ−T0)大体上等于(T0−T2)。第三要注意量热器外部不要有水附着(可用干布擦净),以免由于水的蒸发损失较多热量。由于混合过程中量热器与环境有热交换,先是吸热,后是放热,致使由温度计读出的初温T2和混合温度θ都与无热交换时的新温度和混合温度不同。因此必须对T2与θ进行修正,可用图解法进行(如图示)。图20-2实验时,从投物前5~6分钟开始测水温,每10s测一次,记下投物的时刻t与温度T2´,记下达到室温T0的时刻τt0,水温达到最高点后继续测五、六分钟,在图中,过τt0作一竖置线MN,过T0作一水平线,二者交于O点。然后描出投物前的吸热线AB与MN交于B点,混合后的放热线CD与MN交于C点。混合过程中的升温线EF分别与AB、CD交于E和F。因水温达到室温前,量热器一直在吸热,故混合过程的新温度应是与B点对应的T2,此值高于投物时记下的温度。同理,水温高于室温后,量热器向环境散热,故混合后的最高温度是C点对应的温度θ,此值高于温度计显示的最高温度。在图中,吸热用面积BDE表示,散热用面积COF表示,当两面积相等时,说明实验过程中对环境的吸热与放热相消,否则,实验将受环境影响。实验中力求使两面积相等。此外,要注意温度计本身的系统误差。【实验内容】1.用物理天平称量质量m、m0、m1、m2,内筒中水深取筒深的2/3~3/4。2.将待测金属块置于被加热的水或水蒸气中,用0~100°C的温度计测高温T2,两支0~50ºC的温度计分别用来测定T0和量热器的水温。3.调节由m、m0、m1、m2和m3组成系统的温度(在此系统中,加冰适量约2~3克212\n大学物理实验,用搅拌器不停地徐徐搅动),使之温度低于室温2~3ºC,等系统温度趋于稳定并有微弱上升时,开始记录时间和温度。每30s记一次温度,延续5分钟;然后将加热好地金属块迅速投入到量热器内筒水中(注意不要溅出水来,特别注意不要碰到温度计),盖上绝热盖,记下物体放入量热器的时刻和温度。继续搅拌并观察温度计示值,每10s记一次,当温度几乎不变时,每30s记一次温度,延续5~6分钟。不要忘记在实验过程中要进行均匀地、柔和地、不停地搅拌。4.按图绘t−τ图线,求出混合前的温度T2和混合温度θ。5.查出c0、c1、c2的值,对温度计的热容m3c3可取1.9VJ/ºC。代入(1)式计算C及其标准不确定度。水的热容为4.187×10³J·kg−1·ºC−1,量热器(包括搅拌器)是钢制的,其比热容为0.385×10³J·kg−1·ºC−1。【注意事项】1.量热器中温度计位置要适中,不要试它靠近放入的高温物体,因为未混合好的局部温度可能很高。2.t1的温度不宜比室温低得过多(控制在2~3ºC),因为温度过低可能使量热器附近的温度降到零点,致使量热器外侧出现凝结冰,而在温度升高后,这凝结冰蒸发时将散失较多的热量。3.搅拌时,不要过快,以防止有水溅出。【思考题】1.如果用混合法测液体的比热,说明实验怎样安排?【附】温度计插入水中的部分的热容可如下求出:已知水银的密度为13.6g/cm−3,比热容为0.139J·g−1·ºC−1,其中1cm3的热容为1.89J·cm−3·ºC−1。而制造温度计的玻璃的密度为2.58g/cm−3,比热容为0.83J·g−1·ºC−1其1cm3的热容为2.14J·cm−3·ºC−1,它和水银的很相近,因为温度计插入水中的部分的体积不大,其热容在测量中占次要地位,因此可认为它的1cm3的热容是相同的,设温度计插入水中部分的体积为V(以cm3为单位),则该部分的热容C´的数值可取为{C´}T·ºc-1=1.9{V}cm³,V可用量筒测量。212\n大学物理实验实验二十一冰的熔化热的测定【实验目的】1.测定冰的熔化热。2.进一步熟悉和掌握修正系统散热的方法。【实验仪器】量热器、物理天平、水银温度计、秒表、量筒、烧杯、冰、水、干布等。【实验原理】1.混合法测定冰的熔化热在大气压强下,单位质量的冰在0ºC时,吸收热量变成同温度的水,这个热量就称为冰的熔化热,通常用符号L表示。实验时,将质量为M、温度为0ºC的冰(冰水中的冰)投入量热器内,使它与质量为m1、温度为T1的水混合,则冰会使水温降低直至系统达到平衡温度T2,然后新的系统温度将不再降低而是从空气中吸热开始回升。假设冰的比热为C,水的比热为c1,铜的比热为c2,量热器内筒及搅拌器质量为m2,温度计浸入水中部分的热容量为0.46V卡/度(V为温度计浸入水中部分的体积),则热平衡方程式为:ML+MC(T2−0)=(m1c1+m2c2+0.46V)(T1−T2)(21-1)由此可得冰的熔化热L为L=(m1c1+m2c2+0.46V)(T1−T2)-CT2(21-2)图21-1温度和时间的关系曲线T1T2BCTT1T0T2t2.修正散热在实验过程中,系统与外界环境进行热量交换总会存在热量得失,可以通过修正水212\n大学物理实验的初温和终温来进行“补偿”:如果水的初温取得高于环境温度,混合后又低于环境温度,那么在混合过程中,系统一开始向环境放热,后来又从环境吸热,若这两项热量基本相等就相互抵消了,如图21-1所示。从混合前一段时间到混合后一段时间均记下温度和时间的关系,绘制T-t曲线。图中B点对应的T1为水的初温,C点对应的T2温度为系统的平衡温度(即水的终温),G点对应的T0为室温,由G点作一条直线垂直于t轴,它与BGC线组成两个小面积BGE和CGF,若这两个阴影部分面积相等,则热量得到“补偿”。【实验内容】1.用物理天平称量m1和m2,记下室温。注意水深在内筒深度的2/3为宜,水温高于室温5℃左右。2.选取适量的冰,用干布吸干冰块外部的水分,准备投入到量热器中。3.在未置冰前就开始记录水的温度,每隔一分钟记一次,置冰时的温度T1一定要记下,置冰后每隔十五秒记录一次水的温度,待温度不再下降时,记下此时的平衡温度T2,之后仍每隔一分钟记一次,持续八至十分钟左右。4.称量内筒和冰熔化后的水的总质量,求出冰的质量M。5.作出T-t曲线,看系统与外界的热量交换是否大致得到“补偿”,若相差较大,应合理改变实验条件重做一次。6.用公式(21-2)计算冰的熔化热L。【思考题】1.水的初温过高或过低对实验有什么不宜之处?2.放置冰块时,是放一大块冰好,还是放同质量的几小块冰好?为什么?3.如果用图中的E、F两点所对应的温度分别代替水的初温T1和系统平衡温度T2来计算熔化热行不行?为什么?212\n大学物理实验实验二十二良导体导热系数的测定【实验目的】1.学会使用导热系数测定仪测定金属的导热系数。【实验仪器】导热系数测定仪,附件:1.杜瓦瓶(一只)、2.硬铝样品一根(附绝缘圆盘一块,供散热时覆盖用)、3.橡皮样品(一块)、4.热电偶(铜-康铜二付)、5.多量程数字电压表(一台)、6.测片(一把)。实验装置如图22-1所示,固定于底上的三个测微螺旋头支撑着一散热盘P,在散热盘P上,安放一待测的圆盘样品B,样品B上再安放一圆筒发热体,圆筒发热体由电热体由电热板提供热源,实验时一方面发热体底盘A直接将热量通过样品上平面传入样品,另一方面散热盘P及电扇有效稳定地散热,使传入样品的热量不断往样品的下平面散出,当传入的热量等于散出的热量时样品处于稳定导热状态。这时发热盘A与散热盘P的温度为一定的数值。当待测样品为空气时,可利用测片调节三螺旋头使散热盘相距一定的距离h,此即待测定空气层的厚度。A.带电热板的发热盘B.样品C.螺旋头D.样品支架E.风扇F.热电偶G.杜瓦瓶H.数字电压表P.散热盘图22-1稳态法测定导热系数实验装置图【实验原理】测定导热系数的原理是法国数学、物理学家约瑟夫·傅立叶给出的导势方程形式。该方程式指出,在物理内部,垂直于导热方向上,二个相距为h,面积为A,温度分别为q1、q2的平行平面,在Dt秒内,从一个平面传到另一个平面的热量DQ,满足下述表达式:212\n大学物理实验(22-1)式中l定义为该物质的导热系数,亦称热导率。由此可知。导热系数是——表示物质热传导性能的物理量。其数值等于二相距单位长度的平行平面上,当温度相差一个单位时,在单位时间内,重直通过单位面积所流过的热量。导热系数的SI单位的瓦特每米开尔文单位符号为:W/(M·C)导热系数的量纲为:导热系数过去常用的非SI制单位是国际蒸汽表卡每秒厘米开(尔文):cal/(S·cm·0C),它与SI单位的换算是:lcal/(S·cm·K)=418.68w/(m·K)材料的结构变化与杂质多寡对导热系数都有明显的影响。同时,导热系数一般随温度而变化,所以实验时对材料成份,温度等都要一并记录。实验时根据上述装置,由傅立叶导热方程式可知,通过待测样品B盘的热流量,DQ/Dt为:(22-2)式中h为样品厚度,R为圆盘样品的半径,l为样品热导率q1、q2分别为稳态时样品上下平面的温度。实验时,当传热达到稳态时,q1、q2的值在误差允许范围内将稳定不变,这时可以认为发热盘A通过圆盘样品上平面传入的热量与由散热盘P向周围环境散热的速率相等。因此可通过散热盘P在稳定温度q2时的散热速率求出热流量DQ/Dt,方法如下,当读得稳态时的q1、q2后,将样品B盘抽去,让发热盘A的底面与散热盘P直接接触,使盘P的温度上升到此q2高出1mV左右时,设为q3,再将发热盘A移开,盖上绝缘圆盘,让散热盘P冷却,此时电扇仍处于工作状态,每隔30秒钟读一下散热盘的温度示值,选取邻近q2的温度数据,求出铜盘P在q2的冷却速率,则mc=就是散热在q2时的散热速率,代入式(22-2)得:(22-3)(22-3)式中,m为铜盘的质量,C为铜的比热容。【实验内容】1.按照图示安装仪器,接好导线。2.打开电源,开始给样品加热,直到热传导达到稳定。3.当热传导达到稳定时,测定样品上下两个面的温度q1、q2,并测量此时散热盘的温度q3。4.直接给散热盘加热,使加热盘的温度比q3高0.5mV—1.0mV,测量散热盘P的冷却速率。5.把所测量的数据代入公式计算导热率。212\n大学物理实验【注意事项】1.在做稳态法时,要使温度稳定约要1个小时左右,为缩短时间,可先将热板电源电压打在220V档,几分钟后q1=4.005mV即可将开关拨至110V档待q1降至0.35mV左右时通过手动调节电热板电压220V档、110V档及0V档,使q1读数在±0.03mV范围内,同时每隔2分钟记下样品上下圆盘A和P的温度q1和q2的数值,等q2的数值在10分钟内不变即可认为已达到稳定状态,记下此时的q1和q2值。2.测金属的导热系数时q1、q2值为稳态时金属样品上下两个面的温度,此时散热盘P的温度为q3值。因此测量P盘的冷却速率应为:测q3值时可在q1、q2达到稳定时,将上面测q1或q2的热电偶移下来进行测量。3.圆筒发热体A盘侧面和散热盘P的侧面,都有供安插热电偶的小孔,安放发势盘时此二小孔都应与杜瓦瓶在同一侧,以免路线错乱。热电偶插入小孔时,要抹上些硅油,并插到洞孔底部,保证接触良好。热电偶冷端插入浸于冰水中的细玻璃管内,玻璃管内也要灌入适当的硅油。4.样品圆盘B和散热盘P的几何尺寸,可用游标尺多次测量取平均值。散热盘的质量m,约1kg,可用药物天平称量。5.本实验选用铜——康铜热电偶,温差100℃时,温差电动势约4.2mV。故应配用量程0—10mV的数字电压表,并能测到0.01mV的电压(也可用灵敏电流计串联—电阻箱来替代)。212\n大学物理实验实验二十三转动惯量的测定【实验目的】1.学习用恒力矩转动法测定刚体转动惯量的原理和方法。2.观测转动惯量随质量、质量分布及转动轴线的不同而改变的状况,验证平行轴定理。3.学会使用通用电脑计时器测量时间。【实验仪器】ZKY—ZS转动惯量实验仪,ZKY—JI通用电脑计时器。【实验原理】1.恒力矩转动法测定转动惯量的原理根据刚体的定轴转动定律:(23-1)只要测定刚体转动时所受的总合外力矩M及该力矩作用下刚体的角速度b,则可计算出该刚体的转动惯量J。设以某初始角速度转动的空实验台转动惯量J1,未加砝码时,在摩擦阻力矩Mm的作用下,实验台将以角速度b1作匀减速运动,即:-Mm=J1b1(23-2)将质量为m的砝码用细线绕在半径为R的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。若砝码的加速度为a,则细线所受张力为T=m(g-a)。若此时实验台的角加速度b2,则有a=Rb2。细线施加给实验台的力矩为TR=m(g-Rb2),此时有:m(g-Rb2)R-Mm=J1b2(23-3)将(23-2)、(23-3)两式联立消去Mm后,可得:J1=(23-4)同理,若在实验台上加上被测物体后系统的转动惯量为J2,加砝码前后的角加速度分别为b3与b4,则有:J2=(23-5)由转动惯量的迭加原理可知,被测试件的转动惯量J3为:J3=J2-J1(23-6)测得R、m及b1、b2、b3、b4,由(23-4)、(23-5)、(23-6)式即可计算被测试件的转动惯量。2.b的测量212\n大学物理实验实验中采用ZKY-JI通用电脑计时器记录遮挡次数和相应的时间。固定在载物台圆周边缘相差角的两遮光细棒,每转动半圈遮挡一次固定在底座上的光电门,即产生一个计数光电脉冲,计数器计下遮挡次数K和相应得时间t。若从第一次挡光(K=0,t=0)开始计时,且初始角速度为w0,则对于匀变速运动中测量得到的任意两组数据(qm,tm)、(Kn,tn),相应得角位移qm、qn分别为:qm=qmp=w0tm+(23-7)qn=Knp=w0tn+(23-8)从(23-7)、(23-8)两式中消去w0,可得:b=(23-9)由式(23-9)即可计算角加速度b。3.平行轴定理理论分析表明,质量为m夫人物体围绕通过质心O的转轴转动时的转动惯量J0最小。当转轴平行移动距离d后,绕新转轴转动的转动惯量为:(23-10)【实验内容】1.实验准备在桌面上放置ZKY-ZS转动惯量试验仪,并利用基座上的三颗调平螺钉,将仪器调平。将滑轮支架固定在实验台面边缘,调整滑轮高度及方位,使滑轮槽与选取得线绕塔轮槽等高,且其方位相互垂直,如图23-1所示。通用电脑计时器上2路光电门的开关应1路接通,另一路段开作备用。当用于被实验时,建议设置1个光电脉冲计数1次(若非这样,式(23-9)中的系数要相应改变),1次测量记录大约8组数据(砝码下落距离有限)。图23-1图23-2212\n大学物理实验2.测量并计算试验台的转动惯量J1(1)测量b1接通电脑计时器电源开关(或按“复位”键),进入设置状态,不用改变默认值;用手拨动载物台,使实验台有一初始转速并在摩擦力矩作用下做匀减速运动;按“待测/+”键后仪器开始测量光电脉冲次数(正比于角位移)及相应时间;显示8组测量数据后再次按“待测/+”键,仪器进入查阅状态,将查阅到的数据记下。采用逐差法处理数据,用式(23-9)计算对应各组的b1值,然后求其平均值作为b1的测量值。(2)测量b2选择塔轮半径R及砝码质量,将一端打结的细线沿塔轮上的细缝塞入,并且不重叠的密绕于所选定半径的轮上,细线另一端通过滑轮后连接砝码托上的挂钩,用手将载物台稳住;按“复位”键,进入设置状态后再按“待测/+”键,使计时器进入工作等待状态;将砝码放载物台,砝码重力产生的恒力矩使实验台产生匀加速转动;电脑计时器记录8组数据后停止测量。查阅、记录数据并计算b2的测量值。由式(23-4)即可算出J1的值。3.测量并计算实验台放上试样后的转动惯量J2,计算试样的转动惯量J3并与理论之比较将待测试样放上载物台并使试样几何中心轴与转轴中心重合,按与测量J1同样的方法可分别测量未加砝码的角速度b3与加砝码后的角速度b4。由式(23-5)可计算J2的值,已知J1、J2,由式(23-6)可计算试样的转动惯量理论值J3。已知圆盘、圆柱绕几何中心轴的转动惯量理论值为:(23-11)圆环绕几何中心轴的转动惯量理论值为:(23-12)计算试样的转动惯量理论值并与测量值比较,计算测量值的相对误差:(23-13)4.验证平行轴定理将两圆柱体对称插入载物台上与中心距离的圆孔中,测量并计算两圆柱体在此位置的转动惯量。将测量值与由式(23-10)、(23-11)所得的计算值比较,若一致即验证了平行轴定理。【思考题】1.若g>>a,且轮轴间摩擦力(矩)可忽略。试推导公式22-3。2.设g>>a,摩擦力矩Mf为常量但不能忽略。试在这种情况下推导公式22-3,并指出选何变量能得到线性关系。3.在一般情况下,若g>>a不一定成立,且Mf=常量又不能忽略,问:是否可以适当选择变量得出一线性关系?通过实验和作图,可否既求出转动惯量,又求出摩擦力矩?212\n大学物理实验实验二十四复摆【实验目的】1.考查复摆振动时振动周期与质心到支点距离的关系;2.测出重力加速度,回转半径和转动惯量。【实验仪器】复摆及其附件、物理天平、周期测定仪。【实验原理】一个围绕定轴转动的刚体就是复摆,当摆动的振幅甚小时,其振动周期T为:(24-1)式中I为复摆对回转轴O的转动惯量,m为复摆的质量,g为当地的重力加速度,h为摆的支点到摆的质心的距离(图24-1)。又设复摆对通过质心G平行O轴的轴的转动惯量为IG,则:(24-2)而IG又可写成为,k就复摆对G轴的回转半径,由此可将式(24-1)改成为:(24-3)图24-1图24-2【实验内容】1.测量相应不同支点的周期支点位置用从摆的一端a量度的距离s表示。将支点由靠近a端开始,逐渐移向b端并测周期T,摆角小于5o。改变支点10—20次(图24-2)。要求测得的周期T的相对误差小于。2.测定重心G的位置SG212\n大学物理实验将复摆水平放在支架的刀刃上(图24-3),利用杠杆原理寻找G点的位置,要求SG的误差在1mm以内。图24-3图24-43.求出各s值对应的h值(h均取正值),作T-h图线(图24-4)。4.将式(24-3)改写成为:令,,则上式又成为图24-5从测量可得出n组(,)值,用最小二乘法求出拟合直线的A()和B(=),再由A、B求出g和k值,并计算g的不确定度。最后求出IG值。提示:在T-h图上如有明显偏离曲线的点,应当重新测量。【思考题】图24-61.设想在复摆的某一位置上加一配置时,其振动周期将如何变化(增大、缩短、不变)?2.用一块均匀的平板,切割下如图24-5的船形板。如何用实验的方法求出该船形板在其重心(位置未知)周围的转动惯量(轴与板面垂直)?复摆可用圆棒、圆管或扁平棒制作,可以钻一系列圆洞,挂在刀口上摆动;也可以穿一细针的木塞插入圆洞中为轴;也可在摆的两侧打一系列小坑,用固定的针为轴(图24-6)。212\n大学物理实验第三部分电磁学实验实验二十五二极管伏安特性的测定【实验目的】1.熟悉测量元件伏安特性的方法。2.了解二极管的正、反向伏安特性及其相应的测量电路。3.绘制二极管的伏安特性曲线。【实验仪器】直流电源、电压表、毫安表、微安表、滑线变阻器、二极管、开关等。【实验原理】通过一个元件的电流随元件上的外加电压而变化,这种变化关系如以电压为横坐标、电流为纵坐标可得出其关系曲线,该曲线就称为这一元件的伏安特性曲线。通过元件中的电流I随外加电压U的变化可用公式I=U/R表示,其中比例系数1/R就是该元件的电导。如果R为定值,则伏安特性曲线是一条直线,具有这类性质的元件称为线性电阻元件,它们是严格服从欧姆定律的;如果R不是定值,而是随着外加电压的变化而变化,则伏安特性是一条曲线,这类元件称为非线性电阻元件。常用的晶体二极管就是非线性电阻元件,其阻值不仅与外加电压的大小有关,而且还与方向有关。当二极管正极接高电势端,负极接低电势端时,电流从二极管的正极流入,负极流出,这时的伏安特性称为正向特性;反之,称为反向特性。用伏安法测量二极管的特性曲线时,线路一般采用两种方法,即外接法(见图25-1a)和内接法(见图25-1b)。由于测量电表内阻的存在,不管采用哪一种方法都会给测量结果带来系统误差。下面将分析误差产生的原因和大小,以便在测量时合理选择线路接法。图24-1(a)(b)在图25-1a所示的外接法中,由于采用这一接法而产生的系统误差就是电压表中流过的电流IV,并且:212\n大学物理实验(25-1)或写成相对误差的形式:(25-2)显然,电压表内阻RV越大,二极管内阻RD越小,电流测量产生的系统误差相对越小。在图25-1b所示的内接法中,由此而带来的系统误差就是电流表两端的电压UA,并且:(25-3)其相对误差为:(25-4)显然,电流表内阻RA越小,二极管内阻RD越大,电压测量产生的系统误差相对越小。综上可知,由于二极管正向特性时的RD相对较小,所以宜采用外接法;而反向特性时的RD相对较大,则宜采用内接法。【实验内容】1.测量正向特性曲线(1)按照图25-1a连接电路。调节R观察电表的变化情况,确定电压的取值范围和间隔。(2)电压从0V开始增加,读取相应的电流值,并记录列表。注意在电流迅变区取值间隔相应密一些。2.测量反向特性曲线(1)按照图25-1b连接电路(2)重复1中步骤。注意在电流变化较大时应立即停止测量。3.数据处理(1)将正、反向特性曲线画在同一张坐标纸上。由于正、反向的电压和电流值相差甚大,所以作图时,坐标的正、反向可选取不同的比例和单位。(2)必要时根据式(25-1)和式(25-3)对两条特性曲线分别进行修正。【思考题】1.如何判决二极管的正、负极?2.实验中如何更好地减小系统的误差?212\n大学物理实验实验二十六用电位差计校正电表【实验目的】1.了解箱式电势差计的工作原理。2.比较熟练地正确掌握箱式电势差计的使用。3.运用箱式电势差计校正电表。【实验仪器】箱式电势差计、标准电池、直流电源、检流计、滑线变阻器、待校电表、开关和导线。【实验原理】磁电式电表在电学测量中得到广泛应用,使用和携带都很方便,但电表在经常使用或长期保存后,它的各个元件参数及性能都会发生变化。如电阻老化、磁性减弱、转动部件的磨损等。这样,电表的准确度等级就可能降低。因此电表是需要定期进行检定或校准。如果栓定结果说明它的误差已经超过原来预定的数值,则该电表只能降低级别,或用校准所得的校准曲线加以修正。图26-1电表校准的基本方法就是用一个标准表来校准被校表,也就是在同一电路和条件下比较标准表和被校表的指示值的差异。在校准中要求标准表的准确度等级应该比被校表至少高二个级别。如被校表为2.5级或1.5级表,标准表可以用0.5级表。但如果要校准的是一个0.5级电表,那么标准表就应该是0.1级以上,0.05级的电势差计(如UJ—I型、UJ—31型等),几乎所有的实验室都可能具备。因此我们可以采用电势差计来校准电表。1、电势差计校准电压表图26-2电势差计能精确地测量电势差,因此就可以用它来校准电压表。但是电压表本身并不能产生电势差,必须通过一个辅助电源及一套调节装置,才能使电压表有示值并发生变化。在电压表不同示值情况下,用电势差计进行精确测量,比较二者结果,进行校准。校准电压电路如图26-1所示。图中V为被校电压表,E为电压表供电的辅助电源。被校电压表两端接至电势差计的待测端,用电势差计直接测出电压表两端的准确电压。设被校电压表示值为U,实际电压降为U0,电势差计读数为US,则U0=US。这样电压表的指示值U与实际值U0之间的绝对误差为DU=U-U0(26-1)用电势差计对被校电压表在不同示值下进行校准,可得一组DU。用DU作、纵轴,U作横轴作图线DU-U(注意用折线联结相邻两点),这一图线称为校准曲线或修正曲线。利用修正曲线可以对该被校表的测量值进行修正。如果用被校表测量某一电压所得示值为Ux,可在修正曲线上找出对应于Ux的误差DUx,则经修正而得测量结果为212\n大学物理实验U0x=Ux-DUx(26-2)另外根据修正曲线可以确定被校表的最大引用误差。找出各校准点中误差的绝对值最大的数值DUm,根据被校表的量程Um,则被校表的最大引用误差为最大引用误差(26-3)根据电表的最大引用误差可以确定电表的等级。由于电势差计的测量范围一般都不大,低电势的电势差计的量程只有几十或几百毫伏(如UJ—31型电势差计最大测量范围0~171mV),高电势的电势差计也只能测到2伏左右(如UJ—24型电势差计测量范围为0~1.6111mV),而电压表的量程范围很宽,因此能直接用电势差计校准的电压表是不多的。为了扩大电势差计校准电压表的范围,必须采用“分压箱”这个附加装置,实际线路如图26-2所示。图中虚线框内电路为标准分压箱原理线路,A、B为其输入端,C、D为输出端。在图中情况下,电势差计所测电势差Us与电压表实际值U0应有如下关系:(26-4)通常(R1+R2+R3)/R3值可由标准分压值直接读出。2.电势差计校准电流表图26-3电势差计的直接测量量为电势差,但是利用一个串接在待测回路中的标准电阻,通过测量标准电阻上电势差就可间接测量出待测回路的电流。因此用电势差计亦可校准电流表。电势差计校准电流表的电路如图26-3所示。图中A为被校电流表,Rs为标准电阻。因被校电流表与标准电阻两电压端(即PP端)间的电压Us,则电流的实际值为:(26-5)比较电流表指示值I与电路电流实际值I0可得两者间的绝对误差DI为(26-6)通过对电流表不同示值的校准,同样可以作出校准曲线,并确定最大引用误差和等级(方法与电压表完全类似)。【实验内容】1.观察箱式电势差计面板,了解各旋钮的作用。2.按实验电路连线。3.查出室温下标准电池的电动势、旋转温度补偿盘使之符合此值。4.选择开关置“标准”,调节电流调节盘,使检流计电流为零,即工作电流为标准工作电流。5.选择开关置“未知”,在毫伏表全量程中,从小到大分别取测量点10—212\n大学物理实验15个,记录相应的电压表读数U和电势差计读数U0。将数据填表。6.测量电势差计的灵敏度。7.以U为横坐表,U-U0为纵坐表作误差图线(折线),并确定电压表等级。【思考题】1.为什么要使工作电流标准化?2.怎样测量电势差计的灵敏度?212\n大学物理实验实验二十七用板式电位差计测干电池电动势和内阻【实验目的】1.掌握板式电位差计的工作原理。2.学会用补偿法测电池电动势和内阻。【实验仪器】板式电位差计、直流稳压电源、灵敏电流汁、标准电池、待测电池、滑线变阻器、开关。【实验原理】电势差计是根据补偿原理用于精确测量电势差的仪器。所谓补偿,就是两个量通过比较而使它们的作用相互抵消,其相应的测量方法称为补偿法。比如,在测电源的电动势时,由于标准电池(已知量)被补偿,被测量源(未知量)中没有电流流过,所以,不会因电源内阻的存在而在其内部产生压降,这时电源的端电压就等于其电动势。正是由于这一特点,电势差计被广泛应用于测量电动势、电势差,以及电阻、电流等电学量,并且经过转换还可以测量某些非电学量,如温度、压强等。板式电势差计(见图27-1)具有结构简单、直观明了、便于分析等优点,并且测量精度也较高。它的主要结构是一根长11m、戴面均匀的电阻丝ab,将其往复绕在10个插孔上,相邻两个插孔之间的长度为1m。插头c可插在任一插孔上,其调节范围为0—10m,每次移动至少1m。滑块开关d可在1m范围内连续移动。这样,插头c和滑块d配合调节,可使cd间的电组丝长度在0—11m之间连续变化。图27-2图27-1图27-2所示为用板式电势差计测电源的电动势和内阻的原理图。它主要由三部分组成。(1)工作回路:包括工作电源E、开关KE、变阻器RE和电阻丝R。此回路的作用是为电势差计提供工作电流,并由RE调节该电流值的大小。(2)校准回路:包括标准电池E2、开关K1、灵敏电流计G和保护电阻R1。其作用是用来校准工作回路中的电流,此校准过程称为电流的标准化。212\n大学物理实验(3)待测回路:包括待测电源EX、开关K1和K2、电阻箱R2、灵敏电流计G和保护电阻R1。对于其它电势差计,不管其型号各异,结构繁简、功能强弱,都离不开上述三个部分,缺一则不能完成测量。前面已提及,电势差计是利用补偿原理对其进行校准和用于测量的,其工作原理是:先将K1接通ES一方,即用标准电池校准工作回路中的电流。由于ES为一定值,可以通过调节RE使得电阻丝R上某一段cd间的压降US与ES的值相等,这时灵敏电流计中没有电流流过,且cd间电阻丝的阻值为RS。至此,电流的标准化调节结束,RE将不可再变。再将K1接通EX一方,调节cd间的长度再使灵敏电流计的示值为零。如果该长度电阻丝的阻值为RX,那么应有:(27-1)由于电阻丝是截面均匀的,所以可用电阻丝某一段的长度L来代替该长度的电阻值,这样,式(27-1)又可写成(27-2)或(27-3)由以上测量原理可知,因为ES是定值,不可能将ES直接与EX相比较,所以要通过工作回路经过二次补偿间接测量EX的值。在测量电源的内阻时,将图27-2中的开关K2合上,利用已校准过的工作回路,再次调节cd间的长度使G的示值为零。若此时该长度为LX′,则被测电源EX的端电压为(27-4)在EX、R2和K2组成的回路中,由全电路欧姆定律可求出被测电源的内阻为(27-5)若用电阻丝长度表示,即为(27-6)【实验内容】1.按电路图连接电路,并注意E,ES,EX的正负极相对应。2.根据温度修正ES值,取A=,选定c、d之间的长度LS。并在板式电位差计上调出LS值。E选定为3V。3.K1接通“1”,调节RE使Ig=0即ES得以补偿。4.K1接通“2”,调节c、d之间的长度,使Ig=0,记下c、d的长度L,测出电池电动势,重复十次,用算术平均值和不确定度表示测量结果。5.选取R2=100欧姆,合上K2,调节c、d之间的长度,使Ig=0,记录下c、d的长度Lx212\n大学物理实验′,由rx=R2(),求出电池的内阻。【思考题】1.测量中,灵敏电流计的指针总是偏向一边,调节c、d的长度,无论如何也不能调节平衡。试分析产生这一现象的各种可能的原因。2.如何正确使用保护电阻R1?212\n大学物理实验实验二十八开尔文双电桥测算低电阻【实验目的】1.了解低电阻测量中的主要矛盾以及双路电桥的设计思想。2.学习用双电桥测量低电阻的原理和方法。【实验仪器】电阻箱、安培计、毫伏计、标准电阻、检流计、螺旋测微计、待测电阻、滑线变阻器、开关及导线。【实验原理】所谓低电阻是指阻值小于1Ω的电阻。用惠斯通电桥(单电桥)是测不准低电阻的。这是由电路中的导线电阻和接触电阻(以下简称线触电阻,通常为10-3Ω左右)的存在而造成的,开尔文双电桥就是采用“四端电阻”这一巧妙设计,避开了线触电阻的干扰,把“四端电阻”与单电桥相结合而产生的双路电桥,准确率很高。1.伏安法测低电阻的困难与处理图28-1伏安法测中等阻值的电阻是很容易的,但在测低电阻RX时将遇到困难,如图28-1所示,(a)是伏安法的一般电路图,(b)是将RX两侧的接触电阻、导线电阻以等效电阻表示的电路图。由于电压表V的内阻较大,串接小电阻对其测量影响不大,而串接到被测低电阻RX后,使被测电阻成为其中串接到被测低电阻RX相比是不可不计的,有时甚至超过RX,因此如图28-1的电路不能用以测量低电阻RX。解决上述测量的困难,在于消除的影响,图28-2的电路可以达到这个目的。它是将低阻RX两侧的接点分为两个电流接点(CC)和两个电压接点(PP),这样电压表测量的是长l的一段低电阻(其中不包括212\n大学物理实验)两端的电压。这样的四接点测量电路使低电阻测量成为可能。图28-2(1)电压的测量设RX=0.002Ω,则当电流I=1.5A时,Ul=0.003V,即3mV,因此测低电阻时,要用毫伏表测电压,为了减少毫伏表内阻不够大的影响,可改用数字电压表或电势差计去测量。(2)电流的测量如用安培计测量图28-2电路中的电流,当选用量限2A,0.5级安培计时,对于1.5A的电流可能使电流I的测量的相对误差达到0.67%,即低电阻的测量误差将超过0.67%。如要提高低电阻测量的精密度,就要改用如图28-3间接测量电流的方法,即精确测量串联的标准电阻RS两端的电压U。由去求I值,图28-3由于US可以设法测得很精确,所以可提高电流I的精确度。2.测低电阻的开尔文(Kelvin)双电桥的原理图28-4212\n大学物理实验双电桥测低电阻,就是将未知低电阻RX和已知的标准低电阻RS相比较,在联结电路时均采用四接点接线,比较电压的电路,如图28-4所示,表示接触电阻和导线电阻,比较Rx和RS两端的电压时,用通过两个分压电路adc和b1bb2去比较b、d二点的电势,由于取某一值时可使,即(28-1)由于(28-2)(28-3)由于<<或<<,上二式中取,代入式(28-1)消去I得(28-4)整理上式改写成为(28-5)图28-5从上式可以看出,当时,式中右侧括号中的值等于零,因而不好处理的接触电阻及电阻的影响被消除,结果(28-6)即在满足的条件下,可用上式算出未知低电阻值Rx。【实验内容】1.用组装双电桥测金属线的电阻参照左图的电路,用4只电阻箱,一个标准低电阻RS,待测低电阻RX和检流计等仪器组成一个开尔文双电桥,RS、RX212\n大学物理实验均用四接点联线。开始测量时RG和RP都取大一些的阻值,这容易调节电桥的平衡,R1、R2、R3、R4可取同一值(例如22000Ω),操作时根据检流计的偏转,转变之值并保持,逐渐使电桥平衡。每次调节时,要先断开电源开关KE,调节确定开后,再闭合KE(为什么?)当粗调平衡后,减少RG和RP再细调平衡。2.利用箱式双电桥测量同一电阻。3.测量金属线直径d,用电阻率RX求各组(l,RX)的P值,再求及,比较各种测量结果。【思考题】1.开尔文双电桥与惠斯通电桥有什么异同?2.怎么样调节桥路才能更快更准的使其达到平衡?212\n大学物理实验实验二十九电表的改装【实验目的】1.掌握表头改装成电压表和电流表的方法。2.掌握用标准表校准改装表。【实验仪器】表头、电阻箱、滑线变阻器、直流稳压电源、电压表、电流表。【实验原理】直接用磁电式测量机构构成的电表叫做磁电式电表。我们又常把其中只允许通过很小电表叫做表头,它可以被改装成测量大电流或高电压的电流表或电压表。多用电表就是用不同的改装方式,通过转换开关使表头成为一个多功能、多量程的电表的。1、表头改装成电流表根据并联电路知识,只要在表头上并联一个电阻Rp(见图29-1)。表头与电阻Rp组成的电路就能通过较大的电流。对于表头支路,VAB=IgRg,其中Ig为表头满偏电流,Rg为表头内阻;对于并联电阻支路VAB=IPRP,于是:(29-1)mA—微安表;1—标准电流表图29-1式中I为电路总电流。把表头和并联电阻RP看成一个整体——新电流表,I就是新电流表能够测量的最大电流值。令np=I/Ig,式(29-1)可写成:(29-2)式中np为电流放大系数,它表示改装后的电流表能测量的电流I是表头满偏电流Ig的np位。因为np是一定值,所以表头可以用被测电流I=ngIg重新刻度。表头的两个重要参数Ig和Rg212\n大学物理实验需事先给出或测出。根据改装后的量程,由公式(29-2)就可以算出需并联的电阻Rp的电阻值。表头改装完毕要进行校准。将改装电表与标准电流表串联,按图29-1b连接线路,用滑线变阻器改变电路电流,分别读出改装表和标准电流表读数,以求出绝对误差。用各刻度上绝对误差的最大值除以最大的被测电流值(改装后的量程),便得出所改装电流表的引用误差(或电表的准确度等级a):(29-3)2.表头改装为电压表用表头即能测量电流,也可以测量电压。表头能够测量的满偏电压为,它一般很小,约为零点几伏,但只要在表头上串联大电阻Rs,就能测量较高电压。图29-2a是表头改装为电压表的电路。表头两端电压为Vg=IgRg,电阻Rs两端电压为Vs=IgRs,总电压V=Vg+Vs,所以:(29-4)令,则式(29-4)可写成:(29-5)式中ns称为电压放大系数,它表示改装后的电压表量程是表头满偏电压的ns倍。ns为一定值,所以表头可用V=nsVg重新刻度。校准改装电压表的电路如图29-2b。引用误差表示为mA—微安表;1—标准电压表;E—直流电源图29-2(29-6)212\n大学物理实验式中为在各刻度上标准电压表读数与改装电压表读数之差的最大值,β为改装电压表的准确度等级。3.半偏法测表头内阻1—电势差计;2—待测电表图29-3半偏法测量电路如图29-3a所示。先断开K2,调节电阻箱R0,命名表头指针满偏。表头电流为:式中为直流电源两端的端电压。然后合上K2,调节电阻箱R1,使表头电流为Ig/2,则联立上两式求得表头内阻Rg:4.表头满偏电流的测量用电势差计测满偏电流Ig是较精确的方法。具体的测量方法参见实验“电势差计校正电表”。【实验内容】1.将满偏电流为100微安的表头改装成100毫安的电流表,(1)按给定表头内阻Rg计算并联Rp,将其与表头并联。(2)按照校准电路连线,微调并联电阻Rp之后进行测量,将数据填表。(3)在坐标纸上做出DI-I改图,并求出准确度等级a,确定改装表的等级。2.将同一只表头改装成5伏电压表,(1)按给定表头内阻计算串联电阻Rs,将其与表头串联。212\n大学物理实验(2)按照校准电路连线,微调串联电阻Rs之后进测量,将数据填表。(3)在坐标纸上做出DV-V改图,并求出准确度等级b,确定改装表的等级。【思考题】设表头Ig=50mA,Rg=2985W,R1=3.0W,R2=12.0W,连接如图29-4所示的电路。当开关K打向1和2位置时,作电流表使用,其量程分别是多大?图29-4212\n大学物理实验实验三十电子束实验【实验目的】1.研究带电粒子在电场中的偏转规律。2.测量电子束线管偏转系统的灵敏度。【实验仪器】EBSI-2型电子束测试仪,示波管,晶体管毫伏表,多用表。EBSI-2型电子束测试仪的示波管结构及供电示意图如图30-1所示。图中f-f为灯丝,K为阴极,G为控制栅极,A1、A2、A3为第一、第二、第三阳极,Y为坚直偏向板,X为水平偏向板。电位器WK用于调节阴极的电位,控制荧光屏上光点的辉度;电位器W1和W2用于调节阳极的电位,控制荧光屏上光点的聚焦。在电子射线管中,是让电子束可以在相互垂直的两个方向上偏转,以使电子束能到达电子接收器上任何一点。为使电子束偏转,通常是用外加电场或磁场来实现。图30-11、电偏转系统图30-2在电子束通过的空间,平行于射线水平放置两块平板(竖直偏转板),在它上面加电压U,就可以使电子束上下偏转。当偏转板间距D比其长度小很多时,可以认为它所形成的空间电场是均匀的。设质量为m,速度为v的电子沿X方向入射。在t=0时到达O点。偏转电场E与Y轴平行,如图30-2所示。电子在偏转板之间有:(30-1)(30-2)若电子在进入偏转电场之前,使电子加速的电压为Ua212\n大学物理实验,则加速电场对电子所做的功等于电子的动能,得:(30-3)将式(30-3)代入式(30-2),并注意到E=U/D,得:(30-4)电子达到偏转板末端时的竖直位移yl为:yl(30-5)求微商,在处得:电子离开偏转板后,偏转电场为零,电子将沿与X轴交角的方向作匀速直线运动。到达荧光屏时,电子在竖直方向又位移了:于是,电子到达荧光屏时的总位移是(30-6)显然,位移sy(即电偏转量)与偏转电压U成正比,与加速电压Ua成反比,此即电子束在电场中偏转的规律。当偏转板上加单位电压时,电子束在荧光屏上的位移称为电偏转灵敏度d电。由式30-6可知,竖直电偏转灵敏度为:(30-7)图30-3212\n大学物理实验即灵敏度d电Y与加速电压Ua成反比。同理,对竖直放置的水平偏转板也有相应的结果。2.磁偏转系统在电子束通过的空间,加一均匀横向磁场如图30-3所示。调磁感应强度为B,电子的速度为v,且v⊥B。电子在洛伦兹力的作用下作圆周运动。洛伦兹力就是作圆周运动的向心力,即:所以:(30-8)因为,式中n为单位长度线圈的匝数,I为通过线圈的电流(称为偏转电流或磁场电流),k为比例系数,与线圈的形状和有无磁介质有关。于是(30-9)显然,位移sy即磁偏转量与偏转电流I成正比,与加速电压Ua的平方要根成反比,此即电子束在磁场中偏转的规律。把单位磁场电流所引起的电子束在荧光屏上的位移置称为磁偏转灵敏度。由式(30-9)可知,竖直方向的磁偏转灵敏度为:(30-10)即灵敏度与加速电压Ua的平方根成反比。磁偏转系统与电偏转系统相比较,磁偏转不散焦,因此显象管的偏转角可达110°,缩短了管长。随着加还电压Ua的增加磁偏转灵敏度比电偏转灵敏度下降得慢,因此大的加还电压场合用磁偏转。但磁偏转线圈的电感和分布电容较大,因此磁偏转不适用于高频。【实验内容】212\n大学物理实验1.电偏转(1)开启电源开关,将“电子束一荷质比”选择开关打向电子束位适当调节“辉度”与“聚焦”旋纽,并调节“X调节”、“Y调节”使光点亮度适当,位置居中。(2)旋转“阳极电压”旋纽,使阳极电压为800V,旋转“Y调节”旋纽,使光点上偏2.0、1.5、1.0、0.5、0.0cm,下偏2.0、1.5、1.0、0.5cm。用万用表直流50V档测量相应的偏转电压Uy,用最小二乘法求电偏转灵敏度d电Y。(3)调节阳极电压为900V,重复以上步骤。2.磁偏转(1)调节阳极电压为800V,并使光点位置居中,(2)旋转“磁偏调节”旋纽,使光点上偏2.0、1.5、1.0、0.5、0.0cm,下偏2.0、1.5、1.0、0.5cm。用万用表直流500mA档测量相应的磁偏电流I,用最小二乘法求磁偏转灵敏度磁d磁Y。(3)调节阳极电压为900V,重复以上步骤。【思考题】1.示波管中怎样用电场来控制电子束的强弱和偏转?2.使电子束偏转的方法有几种?各有何规律?各有何有缺点?212\n大学物理实验实验三十一灵敏电流计内阻和灵敏度的测定【实验目的】1.了解灵敏电流计的结构及工作原理。2.观察灵敏电流计在欠阻尼、过阻尼及临界阻尼条件下的三种运动状态。3.掌握测定灵敏电流计内阻和灵敏度的方法。【实验仪器】灵敏电流计、直流稳压电源、直流电压表、标准电阻、直流电阻箱、停表、单双刀开关。灵敏电流计是一种磁电式电流计,其灵敏度特别高,可用来测量10-10—10-7A的微小电流,也常作为判断电路中有无电流的一种平衡指示器,所以,在测量中有较广泛的应用。灵敏电流计的基本结构如图33-1所示,它主要由三部分组成:图31-11—导流张丝;2—软铁芯;3—线圈;4—磁铁;5—反射镜;6—固定反射镜;7—标尺;8—球面反射镜;9—光源。(1)磁路系统。它包括永久磁铁和圆柱形软铁芯,并在它们形成的气隙处产生均匀辐射状磁场。(2)偏转系统。它由放置在磁场中的线圈及支承线圈的导流张丝组成。线圈的两端引线通过张丝与外电路相连。(3)读数系统。它由光源以及固定在线圈上的反射镜等形成的光指针,并连同标尺一起组成。通过该系统可将线圈的偏转角转换成光标在标尺上移动的距离。【实验原理】1.灵敏电流计的工作原理当线圈中通有电流IS时,由于气隙磁场的作用而产生的电磁力矩推动线圈偏转。线圈在偏转过程中,支承它的张丝发生扭曲变形,同时产生与电磁力矩方向相反的弹性回复力矩,该力矩与线圈偏转角成正比。当这两个力矩大小相等时,线圈不再偏转而处于平衡位置a0,此时有:NSBIg=Da0(31-1)式中N为线圈的匝数,S为线圈的面积,B为线圈所在气隙处的磁感应强度,D为张丝的扭转系数,这几个量均为灵敏电流计的固有参数。变换式(31-1)可得:212\n大学物理实验(31-2)其中,定义为电流计的电流灵敏度,其倒数称为电流计常量,该值通常标明在电流计铭牌上,单位为A/mm。在线圈偏转过程中,它不仅受到上述两个力矩的作用,而且还受到阻尼力矩的作用。阻尼力矩由两部分组成:空气阻尼力矩和由于线圈切割磁力线生成感应电流与磁场相互作用时产生的电磁阻尼力矩。由于前者与后者相比要小得多,一般忽略不计。这样,电磁阻尼力矩为,其中称为阻力系数,它除了与电流计本身的常量N、S、B和电流计内阻Rg有关外,还与电流计所接外电路电阻R外有关。由此可知,改变电流计外电路阻值可以改变电磁阻尼力矩的大小,R外越大,阻尼越小,当R外→∞时,线圈开路,电磁阻尼力矩趋于零;线圈被短路时,电磁阻尼力矩最强。由于以上三个力矩的作用,线圈的偏转过程可用下式表示为(31-3)式中J为线圈的转动惯量。由于P随P外而变,导致式(31-3)的解有不同的形式,从而线圈有不同的运动状态(见图31-2)。图31-2(1)当时,线圈的运动状态对应曲线I,它表示的是线圈的阻尼振荡过程,称为欠阻尼状态。由曲线I可知,接通电源后,线圈偏转至平衡位置并非立即停下来,而是在平衡位置附近作周期性阻尼振荡后才逐渐停在平衡位置。P2/(4JD)越小r阻尼振荡越明显。当P=0时,可分别得其自由振荡频率和周期。(2)当P2>4JD时,线圈的运动状态对应曲线III,此时线圈呈非振荡状态,它趋于平衡位置所需的时间较长,称为过阻尼状态。当R外=0时,P最大,也即阻尼最强。在实际测量中,我们常利用电流计的这一特点。(3)当P2=4JD时,线圈的运动状态对应曲线II,此时线圈刚刚脱离振荡状态,并以最短的时间趋于平衡位置且不超过此位置,这称为临界阻尼状态,相应的R外212\n大学物理实验称为外临界阻尼电阻。显然,在此状态下,对提高实验测量的效率最为有利。需要指出的是,由于人的眼睛的分辨能力有限,往往不易区分临界阻尼状态和与该状态相似的过阻尼状况,从而造成测量时间上的损失。所以,在测量中,一般让电流计工作在近临界的欠阻尼状态。如果R外的取值不能满足上述要求,可考虑在电流上串联或并联电阻来实现。2、灵敏电流计的内阻和电流灵敏度的测定灵敏电流计的内阻和灵敏度是电流计的两个重要参数,通过测量获取这两个参数的数值对于电流计的正确选用具有实际意义。测量线路如图31-3所示。由于灵敏电流计允许通过的电流,很小,所以采用了二级分压线路。下面推导测量公式。由图31-3可知,标准电阻Rs两端的电压Us为:(31-4)或:(31-5)又:图31-3(31-6)其中,Is和Ig分别为流过Rs和电流计的电流,V是电压表的示值。考虑到Rs的值相对R1很小,所以式(31-6)可近似为:(31-7)比较(31-5)、(31-7)两式后,将式(31-2)代入得:(31-8)或写成:(31-9)其中,。在保持Rs、V和a0不变的条件下,通过改变R1的值来获取相应的R2的值。由测得的若干组数据,根据最小二乘法定出a、b后,即可分别得到内阻Rg和电流灵敏度Si。【实验内容】1.观察灵敏电流计的三种运动状态212\n大学物理实验(1)按图联接电路,分流器旋钮置“直接”。(2)从大到小取若干个不同的R2值,调节R0、R1,使光标满刻度,然后断开K0,用秒表记录光标回零时间,观察不同的时光标的运动状态。2.测定灵敏电流计内阻和灵敏度(Rg、Si)(1)调节R0,使电压表示数为0.5伏,R1取定值为90000欧姆,调节R2,使光标偏转为50分格,记录R2的值R2′,随后电压每增加0.25伏,记录光标偏转为50分格时相应的R2值,测到2.00伏为止。(2)将K1换向,重复以上步骤,记录相应的R2值R2″,求(将所测数椐填表)。(3)用最小二乘法或作图法求解a和b,继而求出Rg、Si。【思考题】1.图示断开电源后光标的三种运动状态。2.电路图中的开关K1和K2各起什么作用?【附】AC15系列直流复射式检流计简介图31-4AC15系列直流复射式检流计是一种常见的光标反射式电流计,图31-4为其面板图,使用方法及注意事项如下:1.在接通220V交流电源前,应先检查电源插头是否插入“220V”插座(在机箱后面),电源开关是否置于“220V”一侧。特别注意不要将220V电源插头插入“6V”插座内。2.接通电源后,标尺上应有光标出现,这时可将电流计的“分流器”置于“直接”处,调节“零点调节”旋钮,将光标尺调至标尺中央。3.电流计标尺小范围调节时,可抓住标尺上金属小柱体将标尺左右移动。212\n大学物理实验4.测量时,电流计的“分流器”应从最低灵敏度档(×0.01)开始,如灵敏度不够,再逐步调到高灵敏度档(做灵敏电流计实验应使用“直接”档,以免内部分流电阻影响运动状态的观察)。5.在测量中若光标摇晃不停,可利用“分流器”的“短路”档,它相当于外接的阻尼电键。在改变电路、使用完毕或移动电流计的,均应将“分流器”旋到“短路”档,使电流计线圈处于过阻尼状态,以免损坏。6.照明灯泡损坏,应请指导教师更换。212\n大学物理实验实验三十二RLC电路的谐振【实验目的】1、研究和测量RLC串、并联电路的幅频特性;2、掌握幅频特性的测量方法;3、进一步理解回路Q值的物理意义。【实验仪器】音频信号发生器、交流毫伏表、标准电阻箱、标准电感、标准电容箱。【实验原理】在力学和电学实验中都观测过简谐振动和阻尼振动。在力学的扭摆实验中,在外加的按正弦变化的策动力作用下,不仅使振动得以维持,而且策动力的频率对振动状态有很大的影响。类似地,在电路中接入一电动势按正弦变化的电源,可经常地给电路补充能量以维持电振荡。在此实验中是研究电源的频率对电路中振荡的影响。一、RLC串联电路1.回路中的电流与频率的关系(幅频特性)见图32-1(a)和(b),图中R′由两部分组成,一部分是电感线圈的电阻,另一部分是与电容串联的等效损耗电阻,mV1为交流毫伏表,可监视信号源的输出电压,mV2也为交流毫伏表,用来测量R两端的交流电压值,f为频率计。RLC交流回路中阻抗Z的大小为:(32-1)图32-1LRC串联电路对此回路总电压U与总电流I的相位差j,下式成立:(32-2)212\n大学物理实验或:(32-3)回路中电流I为:(32-4)当时,j=0,电流I最大。令:(32-5)如果取横坐标为ω,纵坐标为I,可得图32-2所示电流频率特性曲线。2.串联谐振电路的品质因数Q谐振时电容器两端的电压相等,并且:图32-2RLC串联电路中的电流与频率关系曲线又将式(32-5)代入上式,得(32-6)令:212\n大学物理实验(32-7)则:(32-8)Q称为串联谐振电路的品质因数。当Q>>1时,UL和UC都远大于信号源输出电压,这种现象称为LRC串联电路的电压谐振。Q的第一个意义是:电压谐振时,纯电感和理想电容器两端电压均为信号源电压的Q倍。为了描述I-ω曲线的尖锐程度,常常考查I由极大值Imax下降到Imax/=0.707Imax时的带宽与谐振频率w0的关系。对应此带宽边界的两个频率w1和w2均应满足:由此可以得出:(32-9)上面二式相减得:(32-10)则:和式(32-5)相比较,可得:(32-11)又将式(32-9)与式(32-10)相加,整理后得出:将代入上式,得:=最后得出:212\n大学物理实验(32-12)显然(f2-f1)越小,曲线就越尖锐。Q的第二个意义是:它标志曲线尖锐程度,即电路对频率的选择性,称Df(=f0/Q)为通频带宽度。3.Q值的测量法(1)(电压)谐振法根据图32-1(a)所示的线路,调节信号源的输出电压值,保证在各种不同频率时都相等,然后测量R两端的交流电压,当UR最大时,说明电路已处于谐振状态。用交流电压表分别测量L和C两端的电压,则Q值就可计算出来。如果各种频率的输出信号幅度U值都是1.00V,那么测得的UL或UC值就是Q值的大小,这就是专门测量Q值的“Q”表原理。(2)频带宽度法根据图32-1(a)所示的线路,按照上述要求测量各种频率f时R两端的电压值,作出UR-f曲线,找出UR最大时的频率,即谐振频率,再求出时的频率f1和f2值,根据(32-12)式计算出Q值的大小。以上两种方法得到的Q值是一样的。但是测量精确度各不相同。电压谐振法宜用于高Q值(即Q值较大的)电路,频带宽度法适用于低Q值电路。为了测到准确的Q值,要多次调到谐振,并用频率计仔细地测出每次的谐振频率,再取平均,最后得到比较可靠的谐振频率值。二、LRC串并混联电路——LR和C并联电路LR和C并联电路如图32-3所示,图中RS为信号源的内阻,R由线圈内阻与外接电阻串联而成的合成电阻。为了计算方便,采用复数法研究电路的规律。根据并联电阻的计算。ab两点间的导纳:图32-3LRC串并混联电路212\n大学物理实验因此:(32-13)式中:当时,或者j=0。即当交流电的角频率满足关系式:时,信号源的输出电压也与输出电流相同。同样,令分别表示j=0的角频率与频率,或者称为谐振角频率和谐振频率,a,b两点的阻抗为|ZP|,则:(32-14)(32-15)当时,LR和C并联电路的谐振频率与LRC串联电路的谐振频率近似相等。式(32-14)可改写成为:(32-16)式中Q为LR与C并联电路的品质因数。如果作LR与C并联电路的阻抗值—角频率(即|Z|-ω)曲线,如图32-4所示,不难看212\n大学物理实验出它与串联谐振曲线非常相似,但存在相异之处。图中(ωP)m为阻抗最大(|Zmax|)时的角频率,根据求极值的方法可以得到:(32-17)图32-4LR与C并联电路的|Z|-ω曲线利用幂级数展开上式得:(32-18)比较式(32-16)和式(32-18)可知,当Q≥1时,更接近w0,当Q>5时,与w0的相对差异小于0.04%,因而常取与w0相等去处理问题。【实验内容】1、测量RLC串联电路的谐振特性L和C分别取0.01H和0.1μF,R为20Ω,毫伏表用3V档。测量线路如下图所示,当K与“2”接通时,调节XF的电压输出幅度,保证各种频率测量时的电压值(有效值)为1.50V,当K与“1”接通时,用交流毫伏表测量R的端电压。计算电路的谐振频率f0,并使频率从f0向两侧扩展,每侧取10~12种频率,对每种频率测电阻R的端电压,频率的改变范围应能使UR从最大值降到最大值的十分之一以下。每次频率的改变量不应相等,在f0附近可以小些,或者使UR的每次变化大体相似即可。这样取值是为了能将曲线中间突起部分测绘得准确些。在实验中测量谐振频率的实际值时,应是UR最大值对应的频率,但是由于信号发生器的内阻较大,谐振时其端电压立刻下降,因而R两端电压不能马上迅速上升,其上升的速度远不及信号源电压下降的快。所以寻找谐振点时,对应信号源端电压下降为极小值时的频率即为谐振频率的测得值。找到谐振频率后,再调信号源的输出电压为规定值。绘制I(或UR)-f曲线,并用频带宽度法确定Q值。212\n大学物理实验图32-52.用电压谐振法确定Q值。212\n大学物理实验实验三十三惠斯通电桥测电阻【实验目的】1.掌握惠斯通电桥的结构特点和测量原理2.了解电桥灵敏度以及提高灵敏度的几种方法3.学会正确使用惠斯通电桥【实验仪器】万用电表、滑线变阻器、电阻箱(三个)、检流计、直流电源、待测电阻、箱式惠斯通电桥、开关、导线等。【实验原理】1.惠斯通电桥的结构和测量原理图33-1图33-1所示是惠斯通电桥的电路图,惠斯通电桥是直流平衡电桥。4个电阻R1、R2、R0和Rx联成一个四边形,每一个边称为电桥的一个臂。对角d和b加上电源E,对角a和c之间连接检流计G,所谓桥就是指ac这条对角线而言,它的作用是将“桥”两边的电势直接进行比较。当a、c两点的电势相等时,检流计中无电流通过,电桥达到了平衡。此时:Uda=UdcUba=Ubc即:I1R1=IxRxI2R2=I0R0因为G中无电流所以:I1=I2Ix=I0上列两式相除得:(33-1)(33-2)(33-1)式即为电桥的平衡条件,实验中,R1、R2和R0由电阻箱给出。若R1、R2为已知,只要改变R0值,使G中无电流,记下R0,即可算出Rx。2.电桥灵敏度(33212\n大学物理实验-2)式是在电桥平衡的条件下推导出来的,而电桥是否平衡,实验上是看检流计有无偏转来判断。检流计的灵敏度总是有限的,如我们实验中常用的指针检流计,指针偏转1格所对应的电流大约为10-6A,当通过它的电流比10-7A还要小时,指针的偏转小于0.1格,我们就很难觉察出来,假设电桥在时调到了平衡,则有Rx=R0这时若把R0改变一个小量DR0电桥就应失去平衡,从而有电流Ig流过检流计。如果Ig小到使检流计觉察不出来,那么我们就会认为电桥还是平衡的,因而得出Rx=R0+DR0,DR0就是由于检流计灵敏度不够而带来的测量误差DRx,对此我们引入电桥灵敏度S的概念,它定义为:DRx是在电桥平衡在Rx的微小改变量(实验上Rx是不能变的,改变的是标准电阻R0),而n是由于电桥偏离平衡而引起的检流计的偏转格数,它越大,说明电桥越灵敏,带来的误差也就越小。实验和理论都已证明,电桥灵敏度与下面诸因素有关:(1)与电源的电动势E成正比。(2)与检流计的电流灵敏度S成正比。(3)与电源内阻RE及检流计内阻Rg有关。因此,提高电源电动势E;减小电源内阻RE;选择较高灵敏度的检流计,都可以提高电桥灵敏度。【实验内容】1.用电阻箱、检流计组成惠斯通电桥测量电阻参照图(33-1)组成一电桥。测量时,先用万用电表测一下阻值(粗测)。比例臂R1和R2不宜取得很小,一般取R1=R2=500以上比例。连接待测电阻Rx,取R0等于Rx粗测值,按电键K,观察检流计指针偏转方向和大小,改变R0再观察,根据观察的情况正确调整R4,直至检流计指针无偏转。逐渐减小RG值再调R4,其次,将R1和R2交换后再测(换臂测量)测量三个待测电阻的阻值,并估计其不确定度。2.测量电桥的相对灵敏度3.使用箱式电桥测量【思考题】1.电桥法测量电阻的原理是什么?如何判断电桥平衡?2.为什么用电桥测量待测电阻前,先要用万用表进行粗测?3.电桥灵敏度是什么意思?如果测量电阻误差要求小于万分之五,那么电桥灵敏度应多大?212\n大学物理实验实验三十四交流电桥【实验目的】1.了解用交流电桥测量电容、电感的原理。2.了解交流电桥的特点,掌握调节平衡的方法。【实验仪器】电阻箱、电容箱、交流毫伏表、音频信号发生器、待测电容、待测电感线圈。【实验原理】惠斯通电桥的四个桥背如果用复阻抗,、和代替,电源用交流信号源,平衡指示器用交流电表,就成了交流电桥(见图34-1a)。其平衡时(即流过电表D的电流为零)满足的平衡条件一惠斯通电桥平衡具有相同的形式。C3C2C1Z3Z4Z1Z2(a)(b)(c)(a):交流电桥(b):谢林电桥(c)麦克斯韦电桥D:交流毫伏表;~:交流信号源:Rx:待测电容或待测电感的等效电阻图34-1(34-1)因为组成复阻抗的元件可以是电容、电感和电阻,所以满足式(34-1)的组合方式有很多种,对应的交流电桥形式也就有很多种。常见的交流电桥和麦克斯电桥,它们主要用来测量电容及其损耗因素、电感及其品质因素。1.谢林电桥任何一个实际电容都可以看作一个理想电容Cx和一个损耗电容Rx串联而成的。比较图35-1a和35-2b(忽略标准电容箱C2的损耗电阻)得:212\n大学物理实验式中Xcx为待测电容的容抗,Xc2为电容箱的容抗。将上列四式代入式(34-1)得到:(34-2)式中w是交流信号源角频率,tgd称为电容的耗散因数,d称为电容的损耗角。质量好的电容,其耗散电阻Rx是很小的,即tgd很小。式(34-2)表明,必须,两个等式同时满足,电桥能平衡,这就增加了调节的难度。电桥有四个可调参量C1、C2、C3、C4,为了便于调节,先固定同时出现在两个等式中的参量C2和R4;然后调节出现在不同等式中的R3和C3,再改变C2和R4,使电桥进一步平衡后再调节R3和C3。反复调节直至电桥达到最佳平衡状态。2.麦克斯韦电桥谢林电桥的待测臂如果换成待测电感,把C2换成电阻箱R2,就成了麦克斯韦电桥(或称麦克斯韦----维恩电桥)。任何一个实际电感都可以看成是一个理想电感LX和一个电感线圈的电阻Rx串联而成的。从图34-1c知:式中是电感线圈的感抗。从式(34-1),可以得出麦克斯韦电桥平衡的条件为:(34-3)式中Q称为电感线圈的品质因数。Rx越小,品质因数就越高。与谢林电桥类似,调节麦克斯韦电桥时,先固定同时出现在两个等式中的参量R2和R4,然后调节出现在不同等式中的C3和R3。这样反复调节直至电桥达到最佳平衡状态。3.交流电桥的灵敏度和收敛性212\n大学物理实验交流电桥的灵敏度定义为:它表示交流电桥平衡时,其中某一桥臂阻抗相对变化时将引起平衡指示器两端的不平衡电压。越大,电桥越灵敏。交流电桥的收敛性是指电桥趋于平衡的快慢程度。收敛性好则电桥达到平衡所需反复调节的次数就少,电桥容易平衡。反之,就不易调平衡。比较谢林电桥和麦克斯韦电桥,可以看出:相对桥臂和都是一个元件,并且都同时出现在两个等式中(式34-2中C2和R4,式34-3中的R2和R4),它们的取值确定了R3和C3的取值。实际上,合理地调节和臂可提高电桥的灵敏度,和固定后,调节R3和C3可获得较好的收敛性。但必须指出,电桥灵敏度和收敛性是有矛盾的:调节R3、C3收敛性好,但灵敏度低;而只调和臂电桥却不能收敛。另外,在某种状态下,不管怎样改变某一元件值,平衡指示器(交流毫伏表)都不反应,我们称这种状态是电桥进入了“死区”。这是由于平衡指示器的分辨能力和电桥的收敛性造成的。在调节电桥平衡的过程中,要根据平衡条件、电桥灵敏度和收敛性的特点,细心地调节,使电桥最终达到最佳平衡状态。【实验内容】1.按图34-1b连接电路。接线尽可能短,尽量把各仪器外壳、屏蔽壳连接一起或接地,以减少外界感应的影响。2.开始时电阻箱R3、R4置数百欧姆(测量过程中,R3和R4不能同时为零,否则会有烧坏信号源的危险);信号源频率去1000Hz,输出电压取3V左右(开始测量时,电压可低些,电桥接近平衡时再逐渐升高)。经仔细调节后,使电桥获得较好的灵敏度和收敛性,不平衡电压最终应低于几毫伏。3.记下平衡时C2、R3、C3和R4,算出Cx、Rx和d。4.按图34-1c连接电路。保持电源频率为1000Hz,R2、R3和R4置数百欧姆,并与前面测量步骤一样仔细调节电桥。平衡后记下R2、R3、C3和R4,算出Lx、Rx和Q。【思考题】1.若图34-1a中作为待测臂,,,。问该电桥能否平衡?试证明之。2.为什么开始测量时,信号源电压要低,电桥接近平衡时又要逐渐增高电压?212\n大学物理实验第四部分光学实验实验三十五透镜组基点的测定【实验目的】1.了解共轴球面系统基点的性质,并掌握测定基点及焦距的一般方法。2.验证薄透镜的成象公式对透镜组也同样成立。【实验仪器】测节器、待测透镜组、平行光管(或其它平行光源)、光具座、米尺、白屏等。【实验原理】由薄透镜组(或厚透镜)构成的共轴球面系统有六个基点,即两个焦点F、F′,两个主点H、H′,两个节点N,N′;过各基点垂直于光轴的平面称为相应的基平面。如图35-1所示。图35-1如果透镜组各基点位置都已确定,则透镜组就可作为一个整体,与薄透镜这样简单的共轴球面系统一样,物和象的位置关系可由高斯公式和牛顿公式表示:(35-1)这里物距s为第一主面M至物的距离,象距s′为第二主平面M′至象的距离;第一焦距f为第一主点H至第一焦点F的距离,第二焦距f′为第二主点H′至第二焦点F′的距离;x、x′分别是第一焦点和第二焦点至物和象的距离。各物理量的符号同薄透镜成象所规定的相同。以两个薄透镜组成的共轴球面系统为例,给出透镜组各基点位置的表达式。设两薄透镜的第二焦距分别为f1′、f2′,两透镜之间距离为d,则透镜组的焦距可由下式计算:,(35-2)两主点位置的公式为:,(35-3)212\n大学物理实验式中l′、l分别是从第二透镜和第一透镜的光心作为起点,到两主点H′和H的距离。根据共轴球面系统基点的特性,可用实验的方法来确定基点的位置。焦点和焦平面的性质。平行光束经过透镜组后会聚于焦平面上,焦平面与光轴的交点即为透镜组的第二焦点。由此可用测定薄透镜焦距的类似方法确定透镜组的焦点和焦面。根据节点的性质,入射光线(或其延长线)通过第一节点时,其出射光线(或其延长线)必然通过第二节点。因此,可用下面介绍的测节器来测定节点的位置。主点是横向放大率b=+1的一对共轭点,即将物体垂直于系统的光轴放置在第一主点H处,则必成一个与物体同样大小的正立象于第二主点H′处。如共轴球面系统处于同一媒质中时,两主点分别与两节点重合。测节器结构如图(35-2)。测节器是一个可绕铅直轴OO′转动的水平滑槽R,待测基点的光具组LS(由薄透镜组成的共轴系统)可放置在滑槽上,位置可调,并由槽上的刻度尺指示LS位置(图35-2)。测量时轻轻地转动一点滑槽,观察P′上的像是否有横向移动,参照上述分析去判断N′是否位于OO′轴上,就是调整LX在槽中位置,直至N′在OO′轴上,则从轴的位置可求出N′相对LX的位置。图35-2测节器工作的光学原理如下图35-3所示图35-3平行光束1、2、3沿光轴方向入射于透镜组,出射光线对应为1′、2′、3′将会聚于系统的第二焦点F′上,如图35-3所示。若保持平行光束的入射方向不变,使透镜组沿通过第二节点N′且垂直于光轴的转轴转过一角度,即转至如图36-4所示位置,此时对应的出射光线1′、2′、3′的会聚点将偏离第二焦点F′,而在焦平面P上的Q点处。由节点的性质可知,通过第一节点的入射光线1,其出射光线1′方向不变且通过第二节点N′,而N′在透镜组转动前后的位置不变,所以1′光线与转动前的透镜组光轴重合。由此可判断Q212\n大学物理实验点的位置在转动后的焦平面P与转动前的光轴的交点上。如果用接收象点的白屏放在原焦点F′处不变,将发现:在透镜组转动后,以上的象点不发生横向移动,只是清晰度稍有改变。若转动轴未通过第二节点N′,则透镜组转动时两节点均偏离了原光轴,可观察到在屏上的象点有明显的横向移动,由此可测定透镜组第二节点的位置。图35-4【实验内容】1.选择两薄透镜分别测出它们的焦距f1′、f2′。两透镜按间距和两种形式组合成透镜组。用式(35-2)和(35-3)计算其焦距和主点位置。2.用测节器测定基点和焦距。即用平行光入射透镜组,调节测节器转轴在透镜组光轴上的位置,直到绕转轴转动透镜组时,白屏上的聚焦点没有横向移动,此时转轴通过透镜组的第二节点(也是第二主点)。第二主点到聚焦点的距离即为第二焦距f′。将透镜组转过180度,用同样方法可测定另一组基点位置。3.用牛顿法测定基点。当确定了透镜组两焦点位置后,把一照亮的物屏置于第一焦点F以外,在透镜组两焦点位置后,把一照亮的物屏置于第一焦点F以外,在透镜组的另一侧用白屏接收对应的象;分别测出物、象到焦点F、F′的距离即为x、x′;用式(35-1)可计算焦距f′。由此可确定透镜组两主点(也是节点)的位置。4、比较2、3两种方法的测量结果,并验证成象公式(35-1)。用作图的方法按一定比例画出被测透镜组的基点图。【思考题】1.如何用实验验证主平面的性质?2.怎样测定发散透镜组的主点?212\n大学物理实验实验三十六分光计的调节和使用1【实验目的】1.了解分光计的结构及各组成部件的作用,正确掌握调整分光计的要求和方法;2.测定三棱镜的顶角。【实验仪器】JJY1′型分光计、低压汞灯电源、平面镜、三棱镜。【实验原理】三棱镜如图36-1所示。图36-1图36-2AB和AC是两个透光的光学表面,称为折射面,其夹角A称为三棱镜的顶角;BC为毛玻璃面,称为三棱镜的底面。1.自准法测量三棱镜的顶角图36-2为自准法测量三棱镜顶角的示意图。光线垂直人射于AB面而沿原路反射回来,记下此时光线入射方位T1,然后使光线垂直入射于AC面,记下沿原路反射回来的方位T2。则角,而顶角,即:(36-1)2.分光计(1)结构分光计的型号很多,结构基本相同,都是由4个部件组成:平行光管、自准直望远镜、载物小平台和读数装置(参阅图36-3)。分光计的下部有一个竖轴,称为分光计的中心轴。①自准直望远镜(阿贝式)。阿贝式自准直望远镜与一般望远镜一样具有目镜、分划板及物镜三部分。分划板上刻画的是“╪”准线,而且边上粘有一块45°全反射小棱镜,其表面涂了不透明薄膜,薄膜上刻了一个空心十字窗口,小电珠光从管侧射人后,调节目镜前后位置,可以在望远镜目镜视场中看到如图36-4(a)中所示的景象。若在物镜前放一平面镜,前后调节目镜(连同分划板)与物镜的间距,使分划板处于物镜焦平面上时,小电珠发出透过空心十字窗口的光经物镜后成平行光射于平面镜,反射光经物镜后在分划板上形成十字窗212\n大学物理实验1.狭缝装置2.狭缝装置锁紧螺钉3.平行光管部件4.制动架(二)5.载物台6.载物台调平螺钉(3只)7.载物台锁紧螺钉8.望远镜部件9.目镜锁紧螺钉10.阿贝式自准直目镜11.目镜视度调节手轮12.望远镜光轴高低调节螺钉13.望远镜光轴水平调节螺钉14.支臂15.望远镜微调螺钉16.转座与度盘止动螺钉17.望远镜止动螺钉18.制动架(一)19.底座20.转座21.度盘22.游标盘23.立柱24.游标盘微调螺钉25.游标盘止动螺钉26.平行光管光轴水平调节螺钉27.平行光管光轴高低调节螺钉28.狭缝宽度调节手轮平螺钉(3只)图36-3口的像。若平面镜镜面与望远镜光轴垂直,此像将落在准线上方的交叉点上,如图36-4(b)所示。②平行光管。它是由一个宽度和位置均可调节的狭缝和一个会聚透镜所组成。如图36-5所示。当狭缝位于透镜的焦平面上时,凡是从狭缝进入平行光管的光线,过透镜射出后,都成为平行光束。③载物台。载物台套装在游标盘上,可以绕中心轴转动,它是为放置平面镜、棱镜、光栅或其他被测光学元件而设置的。台下有三个螺丝,可调节平台水平。④读数装置。读数装置由刻度圆盘和沿圆盘边相隔180°对称的两游标T和T′组成。刻度圆盘相差360°,最小分度为0.5°(30′),小于0.5°的读数利用游标读出。游标上有30格,所以游标上的读数单位为1′。角游标的读法与游标相同。如图37-6所示位置。其读数为:87°(30′+15′)=87°45′两个游标对称放置是为了消除刻度盘中心与分光计中心轴线之间的偏心差。测量时要同时记下两游标所示的读数。(2)调整为了准确测量角度,测量前应了解分光计上每个零件的作用以便调节。一台已调好的分光计必须具备以下3个条件:1)望远镜聚焦于无穷远,或称适合于观察平行光;2)平行光管射出的光是平行光——即狭缝口的位置正好处于平行光管透镜(物镜)的焦平面处;3)望远镜和平行光管的中心光轴一定要与分光计的中心轴相互垂直。212\n大学物理实验图36-4图36-5图36-7图36-6【实验内容】1.分光计的调整在进行调整前,应先熟悉所使用的分光计中下列螺丝的位置:①目镜调焦(看清分划板准线)手轮(图36-1中11);②212\n大学物理实验望远镜调焦(看清物体)时用的目镜锁紧螺钉(图36-1中9);③望远镜光轴高低调节螺钉(图36-1中12);④控制载物台转动的制动螺丝(图36-1中7);⑤调整载物台水平状态的螺丝(图36-1中6);⑥控制游标盘转动的制动螺丝(图36-1中25);⑦调整平行光管上狭缝宽度的手轮(图36-1中28);⑧调整平行光管高低倾斜度的螺钉(图36-1中27);⑨平行光管调焦的狭缝套筒制动螺钉(图36-1中2)。(1)目测粗调:根据眼睛的粗略估计,调节望远镜、平行光管大致成水平状态;调节载物台下的3个水平调节螺丝,使载物台大致成水平状态。这一步粗调是以下细调的前提,也是细调成功的保证。(2)用自准法调节望远镜聚焦于无穷远。①调节目镜调焦手轮,直到能够清楚地看到分划板“准线”为止。②接上照明小灯电源,打开开关,可在目镜视场中看到如图36-4(a)所示的“准线”和带有绿色的小十字窗口。③将平面镜按图37-7所示方位放置在载物台上,这样放置是出于这样的考虑:若要调节平面镜的俯仰,只需要调节载物台下的螺丝a或c即可,而螺丝b的调节与平面镜的俯仰无关。④沿望远镜外侧面观察可看到平面镜内有一亮十字,轻缓地转动载物台,亮十字也随之转动。但若用望远镜对着平面镜看,往往看不到此亮十字,这说明从望远镜射出的光没有被平面镜反射到望远镜中。我们仍将望远镜对准载物台上的平面镜面,调节镜面的俯仰,并转动载物台让反射光返回望远镜中,使由透明十字发出的光经过物镜后(此时从物镜出来的光还不一定是平行光)再经平面镜面反射,由物镜再次聚焦,于是在分划板上形成模糊的像斑(注意:调节是否顺利,以上步骤是关键)。然后先调物镜与分划板间的距离,再调分划板与目镜的距离使从目镜中既能看清准线,又能看清亮十字的反射像。注意准线与亮十字的反射像之间有无视差,如有视差,则需反复调节,予以消除。如无视差,则望远镜已聚焦于无穷远。图36-8(3)调整望远镜光轴与分光计的中心轴相垂直平行光管与望远镜的光轴各代表入射光和出射光的方向。为了测准角度,必须分别使它们的光轴与刻度盘平行。刻度盘在制造时已垂直于分光计的中心轴,因此,当望远镜与分光计的中心轴垂直时,就达到了与刻度盘平行的要求。具体调整方法如下:212\n大学物理实验平面镜仍竖直置于载物台上,使望远镜分别对准平面镜前后两镜面,利用自准法可以分别观察到两个亮十字的反射像。如果望远镜光轴与分光计的中心轴相垂直,而且平面镜反射面又与中心轴平行,则转动载物台时,从望远镜中可以两次观察到由平面镜前后两个面反射回来的亮十字像与分划板准线的上部十字线完全重合,如图36-8(c)所示。若望远镜光轴与分光计中心轴不垂直,平面镜反射面也不与中心轴相平行,则转动载物台时,从望远镜观察到的两个亮十字反射像必然不会同时与分划板准线的上部十字线重合,而是一个偏低,一个偏高,甚至只能看到一个。这时需要认真分析,确定调节措施,切不可盲目乱调。重要的是必须先粗调:即先从望远镜外面目测,调节到从望远镜外侧能观察到两个亮十字像;然后再细调:从望远镜视场中观察,当无论以平面镜的哪一个反射面对准望远镜,均能观察到亮十字像。若从望远镜中看到准线与亮十字像不重合,它们的交点在高低方向相差一段距离,如图36-8(a)所示。此时调节望远镜光轴高低调节螺钉使差距减小为1/2h,如图36-8(b)所示;再调节载物台下的水平调节螺丝,消除另一半距离,使准线的上部十字线与亮十字线重合,如图36-8(c)所示。再将载物台旋转180°,使望远镜对着平面镜的另一面,采用同样方法调节,如此重复调整,直至转动载物台时,从平面镜前后两表面反射回来的亮十字像都能与分划板准线的上部十字线重合为止。这时望远镜光轴和分光计的中心轴相垂直,常称这种方法为逐次逼近各半调整法。(4)调整平行光管用前面已调节好的望远镜调节平行光管。当平行光管射出平行光时,则狭缝成像于望远镜物镜的焦平面上,在望远镜中就能清楚地看到狭缝像,并与准线无视差。①调整平行光管产生平行光。取下载物台上的平面镜,关掉望远镜中照明小灯,用汞(a)(b)图36-9灯照亮狭缝,从望远镜中观察来自平行光管的狭缝像,同时调节平行光管狭缝与其透镜间距离,直到看见清晰的狭缝像为止,然后调节缝宽使望远镜视场中的缝宽约lmm。②整平行光管的光轴与分光计中心轴相垂直。图36-10看到清晰的狭缝像后,转动狭缝(但前后不能移动)成水平状态,调节平行光管光轴高低调节螺钉,使狭缝水平像被分划板上中央十字线(即下准线)的水平线上、下平分,如图36-9(a),所示,这时平光管的光轴已与分光计中心轴相垂直.再把狭缝转至铅直位置并需保持狭缝像最清晰而且无视差,如图36-9(b)所示。至此,分光计已全部调节好,使用时必须注意分光计上除刻度盘止动螺钉及其微调螺钉外,其他螺钉不能任意转动,否则将破坏分光计的工作条件,须重新调节。2.测量在正式测量之前,请先弄清你所使用的分光计中下列各螺丝的位置:①控制望远镜(连同刻度盘)转动的止动螺丝;②控制望远镜微动螺丝;③控制游标盘(连同载物台)转动的止动螺丝和微调螺丝。(1)自准法测三棱镜顶角a①三棱镜的调整。三棱镜的两个折射面的法线应与分光计中心轴相垂直,调整方法根据自准原理,用已调好的望远镜来进行。为了便于调整,三棱镜应按图36-10所示的位置放置在载物台上,使平台下3个螺丝a,b,c212\n大学物理实验中每两个的连线与三棱镜的镜面正交。调节载物台使三棱镜的一个折射面AC对准望远镜,调节AC面下方载物台下的水平调节螺丝a,使准线上部的水平线与亮十字像重合(注意此时望远镜已调好,不可再调);再旋转载物台,使棱镜另一折射面AB对准望远镜,以同样方法调节成重合。经反复调整,直到AC,AB面反射回来的亮十字像均能和分划板准线的上部十字线重合为止。此时三棱镜的两个折射面的法线均与分光计中心轴相垂直。②顶角的测量。按图36-10将望远镜的光轴垂直于AC面,由两个游标读出望远镜的位置值t1和t2;再将望远镜的光轴垂直于AB面,从两个游标读出望远镜的位置值t1′和t2′,则三棱镜的顶角为:重复测量4次,列表记录数据,计算顶角a的平均值及其不确定度u(a),注D仪=1′。【注意事项】1.望远镜、平行光管上的镜头,三棱镜、平面镜的镜面不能用手摸、揩。如发现有尘埃时,应该用镜头纸轻轻揩擦。三棱镜、平面镜不准碰磕或跌落,以免损坏。2.分光计为精密仪器,各活动部分均应小心操作。当轻轻推动可转动部件(例如望远镜、游标盘)而无法转动时,切记不可强制其转动,以免磨损仪器的转轴。为避免这种情况出现,应在每次转动望远镜和游标盘前,先看一下止动螺钉是否放松。3.调节狭缝宽度时,千万不能使其闭拢,以免使狭缝受到严重损坏。4.在游标读数过程中,由于望远镜可能位于任何方位,故应注意望远镜转动过程中是否越过了刻度零点。如越过刻度零点,则必须按式计算望远镜转角。例如当望远镜由位置Ⅰ转到Ⅱ时,双游标的读数分别如下表所示:望远镜位置游标(左)游标(右)Ⅰt1=175°45′t2=355°48′Ⅱt1′=295°43′t2′=155°44′由左游标读数可得望远镜转角为:由右游标读数可得望远镜转角为:说明有偏心差,所以望远镜的实际转角为:5.在暗室中,由望远镜中观察图像和分划板十字线时,眼睛易疲劳,所以一要耐心,二要及时地自我调节。即观察久了就脱离望远镜,让眼睛休息一下,必要时做做眼保健操。212\n大学物理实验【思考题】1.调节望远镜光轴垂直于仪器中心轴时可能看到两类现象:(a)由平面镜两个镜面反射的绿十字像都在准线的上方;(b)由两个面反射的像,一个在上,一个在下。分析说明二者主要是由望远镜和载物台的倾斜而引起的;怎样调节能迅速使两个面反射的像的水平线都和准线上方的水平线重合。2.若平面镜两次反射的绿十字像,一个偏高上水平线的距离为a,另一个偏下5a,此时应该如何调节?212\n大学物理实验实验三十七分光计的调节和使用2【实验目的】1.进一步掌握分光计的调节和使用方法;2.观察三棱镜对汞灯的色散现象;3.用最小偏向角法测定三棱镜对各单色光的折射率。【实验仪器】图37-1JJY1′型分光计、平面镜、三棱镜、低压汞灯电源。【实验原理】棱镜玻璃的折射率,可用测定最小偏向角的方法求得。如图37-1所示,光线PO经待测棱镜的两次折射后,沿O′P′方向射出时产生的偏向角为d。在入射光线和出射光线处于光路对称的情况下,即,偏向角为最小,记为dm,可以证明:棱镜玻璃的折射率n与棱镜角A、最小偏向角dm有如下关系:(37-1)因此,只要测出A与dm就可由式(37-1)求得折射率n。由于透明材料的折射率是光波波长的函数,同一棱镜对不同波长的光具有不同的折射率。所以当复色光(例如汞灯发出的光)经棱镜折射后,不同波长的光将产生不同的偏向而被分散开来。通常所说的某种透明媒质的折射率,是指对波长为589.3nm的钠黄光而言的,记作nD。图37-2【实验内容】1.调节分光计。2.将平行光管狭缝对准汞灯,并使三棱镜、望远镜和平行光管处于如图37-2所示的相对位置,即可在望远镜中看到彩色谱线(即狭缝的单色像)。调节缝宽,使光谱线细而清晰地成像在望远镜分划板平面上。3.松开载物台下的紧固螺钉,将游标盘固定,即内盘固定。转动载物台并认定一种单色谱线,使谱线向入射光方向靠拢,即减小偏小角d,继续转动载物台,并转动望远镜跟踪该谱线,直至载物台继续沿着同方向转动时谱线逆转,此转折点即为相应于该谱线的最小偏向角位置。212\n大学物理实验4.通过望远镜观察所认定的那条单色谱谱线,并细心地重新观察载物台转动时,该谱线移动情形(注意此时望远镜视场中的准线中心应能始终跟踪该谱线),使该单色谱线刚好在望远镜视场的准线处发生逆转(望远镜所在方位即是该单色谱线的最小偏向位置)。5.分别读出此时双游标上的相应读数t1和t2。6.依次测出汞灯光谱中的黄色、草绿、蓝色、紫色4种单谱线的最小偏向角的方位角读数。7.移去三棱镜,将望远镜对准平行光管,使望远镜准线对准狭缝中点,读出两个游标的相应读数t1′和t2′。8.按,计算最小偏向角dmin,对于绿色谱线重复测量4~6次,算出dmin的平均值,对于黄光、蓝光、紫光各测一次,求出各自的dmin。【数据处理与分析】1.列表记录所有测量数据,表格请自拟。2.将测出的顶角A=60°00′(当作常数)和最小偏向角dmin代人(37-1)式,求出各单色光的折射率,并分析棱镜折射率随波长变化的规律。3.把绿光的折射率n表示成。【附】函数运算的有效数字规则及所用公式,即如何求u(n):函数运算的有效数字规则:先求出函数的绝对误差的估计值,再由绝对误差值在小数点后的位置来确定函数的末位(应与绝对误差位置对齐),从而确定函数值的有效数字。例:,则用计算器可以算出,如何确定它的有效数字?由d(若的误差量取1′,则:,误差产生在小数点后的第四位。所以,为4位有效数字。所用公式:,,A=为常量,,设则,,由按上例求出的有效数字,由于要求u(n),所以n可以先多保留一至212\n大学物理实验两位有效数字最后由u(n)确定其位数,注意:u(x)一定要化为弧度为单位。对于其它三种光的折射率n的有效位数可直接由其sinx的位数确定。【思考题】若已经找到一种单色光的最小偏向角位置,此时其他的单色光是否也处于最小偏向角位置?dmin与波长l的大致关系如何?玻璃对什么颜色的光折射率大?212\n大学物理实验实验三十八平行光管的调整和使用【实验目的】1.了解平行光管的原理及结构,掌握平行光管的调节及使用方法。2.掌握测定透镜焦距、分辨率、玻璃基板平行度的方法以及用星点板检测光学仪器的成象质量。【实验仪器】CPG550型平行光管(附可调平面反射镜);分划板(含十字分划板、玻罗板、分辨率板、星点板);测微目镜及待测透镜(组);普通玻璃板等。图38-1平行光管是光学实验中的重要光学量度仪器,其结构如图38-1所示。平行光管的主要作用是产生位于无限远处的、不受外界气候条件影响的各种基准目标,是装校和调整光学仪器的重要工具之一。图中2为平行光管的物镜,其标准焦距值为550mm。在其焦点平面处装有带销口的分划板管座4,根据测量需要,可换用不同的分划板3(十字分划板11,玻罗板12,分辨率板13,星点板14)。十字分划板用来调整平行光管;玻罗板用来测量透镜焦距、玻璃基板平行度等;分辨率板有2号、3号之分,主要用来检验透镜或透镜组的分辨率,板上刻有25个图案单元,每单元条纹间隔各不相同。2号板第1单元到第25单元由20μm递减到5μm,3号板则由40μm递减到10μm;星点板是一块全黑仅在中心开有直径为0.05mm透光孔的分划板,用来观察光学系统的光束经其产生的衍射图样,可定性地检验光学系统的成象质量。5、8、9为照明系统,6是高斯目镜,7是射光瞳。【实验原理】1.平行光管的调整如图38-1212\n大学物理实验所示,当十字分划板被照明系统照亮后,若分划板处在平行光管物镜的焦平面处,则十字分划板经物镜必成象于无穷远处。当在其前方置一平面反射镜1,被反射回来用高斯目镜观察,经调整可见十字分划象重合于十字分划板的十字线上。调校好的分划管座4固定后,不要再动,换用不同的分划板,配用所需的测微目镜或移测显微镜,可进行不同目的的测量。2.用平行光管测凸透镜的焦距把调校好的平行光管分划板管座上的十字分划板取下,换上玻罗板。取下高斯目镜,换上光源(如图38-2所示),即可进行凸透镜焦距的测量。由图38-2中的几何关系可以看出,待测透镜焦距图38-2式中f′为平行光管物镜焦距的实测值,y′是玻罗板上刻线对应象的间距实测值,y为玻罗板上线对间距的实测值。为了保证测量精度,一般待测透镜的焦距应小于平行光管物镜焦距的1/2。3.测定透镜(组)的分辨率任何两个靠近的物点,经透镜成象后,仍应是两个点。但由于透镜组成的光学系统的象差、色差、畸变及光的衍射作用的结果,一个物点的象也就不再是一个“点”,而是一组衍射图样。因此,透镜(组)光学系统能够分辨细微结构的能力,就成了其成象质量的综合指标。这种透镜的分辨能力是用其能够分辨两组衍射图样的最小角距离θ来表示的。式中a为图案刻纹的宽度(单位为mm)。2a为相邻两条刻纹的间距,其值参照仪器使用说明书数据附表。f′为平行光管焦距的实测值。【实验内容】1.平行光管的调整参照图38-1调整装置。调节目镜和平面反射镜,并适当调节分划板管座,使通过目镜能看到十字分划线和其反射象。调整过程中应松开固定管座的螺钉,细心、适当移动管座位置,且同时调节平面反射镜的水平或垂直旋钮,使十字分划板的物象重合、清晰且无视差。并应转动平行光管180°再调,直到物象重合为止。注意,平行光管一旦调整完毕,应固定好分划板管座的螺钉,不可再动。2.按图38-1及图38-2的装置,即可对透镜(组)的焦距及分辨率进行测定。3.玻璃基板平行度的测定和用星点板鉴别透镜的成象质量,由学生根据具体情况选做。定性评定光学系统成象质量的装置如图38-2所示,但应在光源前加一滤色片。先将分辨率板装在管座上,在待测光学系统的焦平面处,沿轴向移动移测显微镜进行观察,直到看清分辨率板的象。而后再换上星点板,即可仔细观察星点象。微调移测显微镜,观察焦前焦后星点象的状况,对照实验提供有关图案,判断光学系统的象差(球差、慧差和象散等)。212\n大学物理实验【思考题】1.用平行光管测定透镜焦距的主要依据是什么?测量的精度取决于什么?2.在测定玻璃基板平行度的实验中,如视场中找不到两个反射象,或者两个反射象中一个始终调不清晰,这说明了什么?212\n大学物理实验实验三十九牛顿环【实验目的】1.观察等厚干涉现象,掌握利用牛顿环测定透镜曲率半径的方法。2.进一步熟悉移测显微镜的使用方法。【实验仪器】牛顿环仪、钠灯、移测显微镜。【实验原理】根据光的干涉理论,当一束单色光照射到透明薄膜上时,分别经膜的上、下两表面反射的光将会在相遇处产生干涉。在不考虑半波损失的情况下,两相干光波的光程差可表示为(39-1)式中n为膜的折射率,h为膜厚(各点可以不一样),i′为光波在膜内的折射角。当i′一定时(如平行光入射),光程差d便随薄膜厚度h的不同而不同。而相同厚度处则具有相同的干涉条件。这样所形成的干涉图样称等厚干涉图样。当把一个曲率半径很大的平凸透镜的凸面放在一块平板玻璃上时,便在透镜和平板玻离之间形成了自中心向外厚度不等的空气薄膜。用单色光垂直照射透镜表面,在反射光中就可观察到等厚干涉图样。由于空气膜在距接触点距离相等的各处厚度相等,所以形成的等厚干涉图样是以接触点为圆心的一系列明、暗相间的同心圆环,称为牛顿环。图39-1212\n大学物理实验设平凸透镜凸面的曲率半径为R,在距接触点r处空气膜的厚度为h。根据图39-1中的几何关系并考虑到h<4f)212\n大学物理实验不变,移动凸透镜L至O1时,像屏上会得到一个倒立放大清晰的实像A1B1,再移动L至O2处,像屏上又会出现一个清晰、倒立缩小的实像A2B2。按透镜成像公式有:在O1处:(48-1)在O2处:(48-2)由式(48-1)和(48-2)可得:(48-3)将(48-1)式代入(48-2)式,简化后可得:(48-4)从(48-4)式中可知,只要测出D和d,就能算出凸透镜焦距f。这种方法不需要知道透镜光心O的精确位置,只需保证在两次成像过程中,固定透镜的底座标线与透镜的光心偏差值不变即可。因此,用这种方法来测焦距,较好地解决了自准直法和一次成像法测焦距中因透镜底座上标线与透镜光心的不共面给测量带来的系统误差。图48-3(3)自准直法(平面镜法):如图48-3所示,当光源S发出的光经透镜L折射成为平行光时,则光源S所在位置即为透镜的焦点F,光心O与光源S之间的距离即为焦距f。利用光的可逆原理,在透镜的后面放置一块与透镜主光轴垂直的平面镜M,平行光射到M后沿原路返射回去,仍将会聚于S上,即光源和光源的像都在透镜的焦点处;如果不是点光源,而是一个有一定形状的发光物屏,则当该物屏位于透镜焦平面上时,其倒立的像也必然在该焦平面上。此时物屏至透镜光心O的距离就是透镜焦距f。2.凹透镜焦距的测量原理(1)物距像距法:由于凹透镜为发散透镜,它所成的虚像不能在像屏上显示出来,它的像距也无法直接测量,因此不能用测量凸透镜焦距的方法来直接测量凹透镜焦距。若将一凸透镜与凹透镜组成复合会聚透镜,便可在像屏上得到实像,测出物距和像距后,就可以算出凹透镜的焦距。图48-4先用凸透镜L1使物体AB成缩小倒立的实像,将凹透镜L2插放在L1与A1B1之间,若OA<212\n大学物理实验|f凹|;则A1B1相当于凹透镜L2的虚物,这虚物A1B1经凹透镜L2成一实像A2B2。所以物距,像距,代人成像公式即可求出凹透镜焦距f凹。图48-4中的像A2B2是AB经凸透镜L1和凹透镜L2组成的复合透镜作用的结果。若改变L2的位置,则像A2B2的大小也随之变化,可知复合透镜焦距的大小也在变化。(2)自准直法:凹透镜对光束有发散作用,要由它获得一束平行光,则需借助一凸透镜图48-5才能实现。如图48-5所示,先由凸透镜L1将光点S成像于S′处,在透镜L1和像点S′之间,放人待测凹透镜L2和平面镜。若L2的光心O2到S′之间距离,移动L2的位置,当时,由S发出的光束经L1和L2后变成平行光,通过平面镜M的反射,又在S处成一清晰的实像。若光源为一定形状的发光物屏,则当时,其像必然成在物屏上,故只需确定S′位置和凹透镜光心O2的位置,就可算出凹透镜焦距f凹。【实验内容】1.光具座上各光学元件同轴等高的调整薄透镜成像公式仅在近轴光线的条件下才能成立。所以要让各光学元件的主光轴重合,且该光轴与光具座导轨平行。这就是“同轴等高”的调整,它是光学实验中必不可少的步骤,应熟练地掌握这一方法。(1)粗调:先把光具座上所有的光学元件靠拢,调节各光学元件上下左右,使它的中心大致在一条与导轨平行的直线上,物平面与像平面互相平行,且与导轨垂直。这些靠目视判断完成的工作,称为粗调过程。(2)细调(依据成像规律的调整):利用自准直法调整:调节透镜上下及左右位置,使物、像中心重合。利用共轭法调整:调节物屏与像屏间距D>4f,将凸透镜从物屏缓慢移向像屏,在这过程中,像屏上会出现一次大的和一次小的清晰实像,当两次像的中心重合时,则说明此光学系统已达到了同轴等高的要求(如调大像时可调物屏,而调下小像时可调透镜的高度及左右,反复多次调节二者的中心便可重合)。采用此法调节时应注意用“大像追小像”。两个或两个以上透镜的调整:可采用逐个调整的方法,先调好凸透镜,记下像中心在屏上的位置,再加上凹透镜调节,使凹透镜的像的中心与前者重合就可以了。2.用一次成像法测凸透镜焦距点亮纳灯,使其光照亮物屏(一字屏),此物屏上的缝即作为物。物距取不同的值,测出相应的像距。测6次,作出与的关系图,即可求出f。212\n大学物理实验3.用共轭法测量凸透镜焦距。如图48-2所示,放置物屏及像屏,使它们间距D>4f。移动透镜L,分别读出成清晰大像和小像时,透镜L在光具座上的位置O1和O2,算出。重复测量6次。注意:若D取得太大,会使一个像缩得过小,以致难确定成像最清晰时凸透镜所在的位置。把结果用表示。4.用自准直法测凸透镜焦距如图48-3所示,慢慢地改变透镜L至物屏的距离,直至在物屏上看到与物等大清晰的像为止。记下此时物屏和透镜L在光具座上的位置S和O,则有:。测量时,为克服对成像清晰程度的判断误差,常采用左右逼近法读数。即将透镜L自左向右移动,当像刚清晰时,记下透镜L的位置;再将透镜L自右向左移动,当像刚清晰时,记下透镜L的位置。最后取两次读数的平均值作为透镜L的位置值。重复上述测量6次,把结果用表示。5.用物距像距法测量凹透镜焦距(1)如图48-4中,将凸透镜上L1置于O1处,移动像屏,出现缩小清晰的像后,记下像A1B1的位置A1。(2)在L1与像A1B1之间插入凹透镜,记下的位置O2,移动像屏直至屏上出现清晰的像A2B2,记下像屏位置A2。由此得到:和代入成像公式中,便可算出f凹。(3)保持凸透镜L1位置不变,按上述步骤重复测量3次。(4)保持物屏不变,改变凸透镜L1的位置,重复测量3次,把结果用表示。6.用自准法测量凹透镜焦距(1)如图8-5所示,调整物屏S与凸透镜L1的间距SO1使间距SO1使,移动像屏,使光点S经透L1成清晰像S′。(2)在O1S′之间放人凹透镜L2和平面镜M,并在导轨上移动它们,直至物屏上出现清晰的像。则。(3)保持物屏和L1的位置不变,重复测量3次。(4)保持物屏不变,改变L的位置,再测量3次,把结果用表示。212\n大学物理实验【注意事项】1.光学元件易破碎,使用时要轻拿轻放,不能用手触摸光学元件面。2.对光学元件表面清洁时,应用擦镜纸或专用工具来进行。【思考题】1.实际测量时,成像清晰程度的判断不免有一定的误差,试问如何减小这一误差给焦距测量所带来的影响?2.在自准直法测凸透镜焦距的实验中,移动凸透镜位置时为什么在物屏上先后出现两次成像现象?3.为什么要对光学元件进行同轴等高调节?如何调节?212\n大学物理实验实验四十九液体折射率的测定折射率是透明材料的重要光学常数。测定透明材料折射率的方法很多,最小偏向角法(参看分光计的调节和使用2)和全反射法是比较常用的两种方法。最小偏向角法具有测量精度高、被测折射率的大小不受限制、不需要已知折射率的标准试件而能直接测出被测材料的折射率等优点。但是被测材料要制成棱镜,而且对棱镜的技术条件要求高,不便快速测量。全反射法属于比较测量,虽然测量准确度较低(大约DnD=0.0003),被测折射率的大小受到限制(nD大约为1.3—1.7),对于固体材料也需要制成试件,但是全反射法具有操作方便迅速的特点。阿贝折射仪是专门用于测量透明或半透明液体和固体折射率的仪器,它还能测量糖溶液的含糖浓度。【实验目的】1.加深理解全反射原理及其应用。2.掌握用掠入法(透射法)测定液体的折射率。3.了解阿贝折射仪的工作原理,学会阿贝折射仪的使用。【实验仪器】图49-1阿贝折射仪、各种待测液体、台灯。【实验原理】图49-1是2WA—J型阿贝折射仪的光学系统,它由望远系统和读数系统组成。望远系统:进光棱镜(1)与折射棱镜(2)之间有一微小均匀的间隙,被测液体就放在此空隙内。当光线(自然光或白光)射入进光棱镜(1)时便在其磨砂面上产生漫反射,使被测液层内有各种不同角度的入射光,经过折射棱镜(2)产生—束折射角大于临界角的光线,由摆动反射镜(3)将此束光线射人消色散棱镜组(4),消色散棱镜组是由一对等色散阿米西棱镜组成,其作用是获得一可变色散来抵消由于折射棱镜对不同被测物体所产生的色散,再由望远物镜(5)将此明暗分界线成象于分划板(7)上,分划板上有十字分划线,通过目镜(8)能看到如图49-2上半部所示的象。212\n大学物理实验光线经聚光镜(12)照明刻度板(11),刻度板与摆动反射镜(3)连成一体,同时绕刻度中心作回转运动。通过反射镜(10),读数物镜(9),平行棱镜(6)将刻度板上不同部位折射率示值成象于分划板(7)上(见图49-2下半部所示的象)。有关阿贝折射仪结构的详细介绍、仪器规格及使用方法等见实验室提供的仪器说明书。图49-2设待测物体的折射率为n,折射棱镜的折射率为n1,如图49-3所示。若n1>n根据折射定律,沿BA掠射的光线经AB面折射后以全反射临界角(进入折射棱镜,然后以折射角i从AC面出射至空气中。以这条光线为界,所有入射角小于90°的入射光线经AB面折射后的折射角都小于临界角,且均在这条光线的下方。所有“入射角”大于90°的入射光线被棱镜的金属外套挡住,不能进人折射棱镜。因此,用阿贝折射仪的望远镜对准出射光线观察时,就会看到如图49-4所示的明暗分明的视场。明暗分界线对应于以i角出射的光线方向。不同折射率的物体有不同的临界角,因而出射角也不同。因此一定的i角对就应一定的折射率值。图49-3图49-4由折射定律可知:(49-1)(49-2)由式(49-2)可得:由式(49-1)及角度关系可得:(49-3)式中f为折射棱镜入射面与出射面之间的夹角。若f和n1已知,则测出射角i就可以由(49-3)式计算n值。阿贝折射仪的刻度盘上直接刻有与角对应的n212\n大学物理实验值,因此不必计算,只要用标准块校准刻度盘的读数(见仪器说明书)后,可直接从刻度盘上读出n值。由于阿米西棱镜是按照让D谱线直通(偏向角为零)的条件设计的,故用阿贝折射仪测得的折射率就是待测物体对D谱线(589.3nm)的折射率nD。应当指出,当对应与明暗分界线的光线出现在折射棱镜AC面法线右侧时,(49-3)式中cosf前的减号应改为加号。测定透明固体的折射率时,必须将透明固体制成互成90°角的抛光面的试件,并用折射率液(溴代萘,其折射率大于或等于待测物体的折射率,而小于或等于折射棱镜的折射率)将此试件粘着在折射棱镜的AB面上,此时进光镜不用。测量糖溶液浓度的方法同测量折射率一样,只是应读图49-2下半部中刻度尺的上一刻度上的数值。【实验内容】1.测定蒸馏水和酒精的折射率。2.测定糖溶液和盐溶液的浓度。3.进行多次测量以减少随机误差。对蒸馏水和酒精各测量8次并计算折射率n的不确定度。,把结果写成的形式。【注意事项】1.认真阅读仪器说明书,了解阿贝折射仪的结构和使用方法。2.每换一种待测液体,必须用酒精棉把折射棱镜及进光棱镜表面擦干净。3.防止气泡进入待测液体或折射率液中,以免影响测量结果。4.各待测液体绝对不可混杂。5.测量完毕,将有关元件的光学面用酒精棉擦干净,把进光镜盖上,并用手轮锁紧。【思考题】1.用阿贝折射仪测量的折射率范围为何受到限制?如果待测物体的折射率大于折射棱镜的折射率,能否用阿贝折射仪测定之?212\n大学物理实验实验五十全息照相【实验目的】1.了解全息照相的记录原理及掌握全息照片的拍摄方法。2.拍摄一幅静物的全息照片与制作一块全息光栅。3.了解再现全息物像的方法。【实验原理】早在1948年全息照相原理就被提了出来,并由英国科学家伽柏(Gabor)拍出了第一张全息照片,虽然从此展开研究,但缺少合适的光源,进展缓慢。1960年激光的出现,为全息照相提供了高度相干的强光源,全息研究工作迅速发展,新方法不断出现。全息照相术已被广泛地应用在干涉计量、显微技术、信息处理以及光计算机等许多方面。普通照相术是通过透镜系统,把物成象在照相底片上,我们得到的只是物的二维平面图象,而没有三维特征。这是因为普通照相,只记录了物光的强度,没有能同时把物光的位相也记录下来。全息照相则不同,它并不需要透镜去成像,但是却同时把物光的振幅和位相,即物光的全部信息都记录下来。这种记录是借助于物光(信息光)波前和一束叫参考光的波前相干涉的结果。底片上记录的是它们的干涉斑纹,不是物的几何图形。但是当使用参考光照明这一组干涉斑纹时,物光的波前就重现出来,我们将看到原物的逼真的三维图象。只要我们把这一组干涉斑纹准确地放回到拍摄它时的位置上,这个三维图象无论其大小、位置或者景深都和原物丝毫不差,当我们改变观察的角度时,还可以看到该物的不同侧面,就像原物还放在那里一样。这个过程与无线电通迅中把信息波调制在一个载波上发射出去(调制),而在接收时,再把信息波从调制波中取出(解调)的过程是完全相似的。正如调制波寄存了信息波的全部信息一样,全息照片的斑纹寄存了物光的全部信息,所以我们把物光与参考光的干涉斑纹叫全息图。由于底片上任何一小部分都包含整个物体的信息,因此只利用拍摄的全息底片的一小部分,也能再现整个物体的象。((a)记录(b)再现1:物;2:物光;3:参考光;4:全息底片;5:1级衍射;6:共扼象;7:0级衍射;8:+1级衍射图50-1图50-212\n大学物理实验1表示全息照相的记录和再现的方法。为了便于分析,我们只画出由物上一点所发出的子波,利用与物光相于的一束平行参考光与之迭加,图50-2就可在照相底片上各点得到一组极不规则的干涉斑纹,即全息图。原物的再现,是基于全息图的衍射。再现时用原来的参考光照明所得的全息图,经干涉斑纹的衍射后产生三个波束。其中直接透射的是再照光本身,强度有所衰减;另外两个波束,一束是发散的,形成原物的初级像,另一束是会聚的,形成初级像的共轭像。在图l所示的情况下,初级像是虚像,共轭像是实像。下面对全息照相进行简单数学分析,全息底片H放在物光O和参考R两束相干光的干涉场中如图50-2所示,设它们在H上某一点(x,y)的振幅分别是:(50-1)(50-2)其中:(50-3)(50-4)分别是物光O及参考光R的复振幅。由于物光和参考光是相干的,所以在全息底片上的光强是它们合振幅的平方,即:=(50-5)曝光后的全息底片,经显影、定影、漂白处理后,所得的全息图上各点的振幅透射率是曝光量的函数,但是处理得当,可以恰好利用函数的线性部分,这时振幅透射率可用下式表出(50-6)将全息图准确复位,并用参考光R照明,这样,透过全息图的光场表示为Ψ(50-7)把它跟物光O及参考光R的表示式比较,可以看出,第一项仅与参考光相差一常数倍,表示被衰减了的参考光,由全息图直接透射过来;第二项与物光也只相差一常数倍,显然这一项是原来物光的准确再现,对应于物的初级像;第三项则表示原来物光光波发生了位相改变,对应于初级像的共轭像。【实验装置】212\n大学物理实验拍摄一张静物的全息图和摄制一块平面全息光栅的典型光路,分别如图50-3(a)及(b)所示,(a)图中两个透镜分别指物光束及参考光束扩展以保证物体能全部受光照和参考光在底版上有均匀到照明。为了实现全息记录,实验装置必须具备下列三个基本条件:(a)(b)1:激光束;,2:分光板;,3:平面镜;4:平面;5:扩束镜;6:物;7:息干板;8:束镜;9:参考光束;10:物光束。图50-31.一个很好的相干光源。图50-4由于全息照相是用干涉的方法记录物光波的振幅及位相,因此参考光束与物光束必须是相干的。我们实验用的是氦氖激光器,λ=6828Å。激光的单色性虽然很好,但谱线仍然有一定的宽度Dl,相应的相干长度为l=,考虑到最坏情况,例如多普勒展宽,Dl=0.02Å,则l=20cm,因此为了保证物光束与参考光束发生干涉,布置光路时,应使参考光路与物光路的光程比较接近,一般光程差不要超过10cm。2.防震装置全息照片所记录的是参考光束和物光束之间的干涉条纹。这些干涉条纹很细,在照相过程中,极小的振动和位移都会引赶干涉条纹的模糊,甚至使干涉条纹完全不能记录下来。我们简略估计一下条纹的宽度:设参考光束垂直入射到底板上,而物光束以q角入射。如图50-4所示,则可算出于涉条纹的宽度:当q=30°时,l=6328Å时:显然在照相时位移和振动不应大于10-4mm的数量级。为此在照相过程中,光源、光路中各光学元件、被摄物体和感光底板都必须放在一个防震台上,使外界各种微小震动(例如邻室关门,室外汽车驶过等)不致于扰条纹的记录。212\n大学物理实验缩短曝光时间也有利于减少外界震动的影响,但这往往受到光源强度和底板灵敏度的限制。此外,在曝光前应使防震台上整个光学系统用磁力座与台面紧固,形成一体,并静置数分钟,使台上各元件都稳定下来。3.高分辨率的感光板根据上面估算,干涉条纹间距为10-3mm数量级,如果参考光束与物光束夹角更大,条纹间距更小,每毫米将有上千条干涉条纹。普通感光底板由于银化合物的颗粒较粗,每毫米只能记录几十至几百条,不能用来记录全息照相中极密的干涉条纹。全息照相必须用特制的高分辨率的感光底板,例如,天津感光胶片厂出品的全息底板,分辨换率为3000条/mm。此外,和底片感光特性有关的另一个问题是:为了得到振幅透过率与曝光量成正比的全息片,参考光束与物光束强度比例应该合适,根据我们所用底片性能,在放置底片的地方二者强度比以3:1~5:l为宜,可以把照度计探头放在底片所在位置,先后档住物光路及参考光路,分别测量两光束的强度。如果光强不合适,可挑选透光率合适的分光板或改变扩束信镜的前后位置,改变光束大小,从而改变光束强度。【实验步骤】一、全息记录1.没计光路系统。光路系统应满足下列条件:(1)用透镜将物光束扩展到一定程度以保证被摄物体能全部受到光照,参考光束也应加以扩展使底板上有均匀光照。(2)物光束和参考光束的光程应大致相同。(3)参考光束应强于物光束,在放底板的地方强度比约为3:1至5:l。2.所有光学元件调整好位置后,都用磁力表座固定在防震台上。关上照明灯,用照度计分别测量底片处参考光束和物光束的强度,以检查光强比例是否符合要求,并根据总光强确定曝光时间。3.关上快门,在暗绿灯下装底片,底片的乳胶面向着入射光,并不得用手去接触,静置几分钟后曝光,在曝光过程中,绝对不得触及防震台,并保持室内十分安静。4.显影及定影。显影前用坚膜液浸泡5分钟,水洗5分钟。显影用D-19显影液。显影温度为200.50C时时间不超过三分钟。显影过程中不断搅动显影液。显影完毕取出底板,用自来水冲洗。放在温度为19~20℃的停显液中20~30秒,然后放入同样温度的定影液中定影2~4分钟,在18~21℃水中冲洗10分钟后放入漂白液浸泡1~2分钟,取出水洗1~2分钟。二、物象再现1.将激光照射全息照片的乳胶面,尽可能使光照方向与原来参考光束方向一致。从照片反面观察物象。物象的位置与原物位置是什么关系?2.试改变观察角度,物象有什么变化?为什么全息照相能观察到立体图象,而普通照相只能看到平面图象?3.移去激光器前的扩束镜,使激光束只照射在照片的很小一部分上,观察物象。为什么仍然能看到整个物象,而不是只看到象的一个局部?如果打碎照片,用激光照射其中一个碎片,能否看到整个物象?这和普通照相有什么不同?4.把全息片转过180°212\n大学物理实验,使乳胶面向着观察者,用不扩束的激光束照射,用毛玻璃在全息片后面(观察者一侧)移动,接收与观察实象。三、制作全息光栅如图50-3b所示,分光板将扩束后的平行激光分成两束,各经一平面镜反射后直接迭加起来,在干涉场中任意平面上都会形成等间隔的平行干涉条纹,将此条纹用全息干板记录下来就成为—块平面透射光栅,称为全息光栅。这种光栅具有很好的空间周期性,用做色散元件时,可以减少由于刻划不均匀造成的各种鬼线与伴线。1.按图3b布置光路系统,考虑应该怎样选择在各反射面上的入射面上的入射角来保证制作效果良好的全息光栅,干板处两光束的光强比例又应如何考虑?2.启动激光电源,点燃激光,调整各部件,全息干板架上放一片毛玻璃或白纸屏,观察干涉条纹的状况。改变反射镜间的距离和角度看干涉条纹有什么变化。用测量显微镜测出条纹间隔(光栅常数)。根据需要制作的光栅的光栅常数,细调各部件的位置和角度。最后紧固各部件。3.同“二”中的2、3、4步,做出合格的光栅。【注意事项】1.所有光学元件,严禁用手触摸镜面。2.千万不要直视经过聚焦的激光光束或者它的镜面反射光束,以免造成视网膜的永久性损伤【思考题】1.为得到一个亮而清晰的再现象,在拍摄全息图时,应当采取哪些措施?2.在防震工作台上安排一台迈克尔逊干涉仪,可以取得哪些对拍摄全息图有用的数据?3.要拍摄一个体积大的物体的全息图,要求再现象不小于原物并且各部分同时看到,问在拍摄与再现时应满足哪些条件?对各光学原件提出什么要求?4.为什么再现物像时仍需要用原参考光照明?能否用其它光源来照明?若用白光可以吗?为什么?怎样才能实砚白光再现?【附】1.SH-5坚膜液配方A液:无水硫酸钠50g无水碳酸钠15g0.5%苯异三氮唑溶液40c.c加水至1000c.cB液:30%甲醛溶液在使用时将B液加到A液中去,1000c、c、A液中加5c、eB液。2.D-19显影液配方米吐尔……………2克无水碳酸钠…………48克无水亚硫酸钠…90克溴化钾……………5克对苯三酚…………8克加蒸馏水至………1000毫升3.停显液配方212\n大学物理实验蒸馏水………1000毫升冰醋酸……………13.5毫升4.F-5定影液配方蒸馏水(500c)…800毫升硼酸(结晶)………7.5克硫代硫酸钠………240克钾矾……………………16克无水亚硫酸钠…………15克加蒸馏水至………1000毫升冰醋酸…………………13.5毫升5.漂白液配方A液:浓硫酸14g重铬酸铵20g加水至1000c.cB液:NaCl5g加水至1000c.cC液:CuCl25g加水至1000,c.c漂白时,取A、B液各一份,加水至10分,时间1~2分取出水洗,放入固定液C液中固定5分钟。212\n大学物理实验附录物理常量表1.基本物理常量物理常量名称符号数值单位真空中的光速电子电量普朗克常数阿佛加德罗常量原子质量单位电子的静止质量电子的比荷法拉第常量氢原子的里德伯常量摩尔气体常量波尔兹曼常量万有引力常量标准大气压冰点的绝对温度标准状态下声音在空气中的速度标准状态下干燥空气的密度标准状态下水银的密度标准状态下理想气体的摩尔体积真空电容率真空磁导率精细结构常数维思位移常量cehN0umee/meFRHRkGp0T0v声ρ空气ρ水银Vmε0μab2.99792458×1081.6021892×10-196.626176×10-346.022045×10231.6605655×10-279.109534×10-311.7588047×10119.648456×1041.096776×1078.314411.380662×10-236.6720×10-11101325273.15331.461.29313595.0422.41383×10-38.854188×10-1212.566371×10-77.29720×10-32.8978×10-3m/sCJ·smol-1kgkgC/kgC/molm-1J/(mol·k)J/KN·m2/kg2PaKm/skg/m3kg/m3m3/molF/mH/mm·k2.在20°C时常用固体和液体密度ρ[kg/m3]物质密度物质密度物质密度铝铜铁银金2698.9896078711050019320锡水银钢石英水晶玻璃729813546.27600~79002500~28002900~3000乙醇乙醚汽车用汽油弗利昂–12(氟氯烷–12)789.4714710~7201329212\n大学物理实验钨铂铅193002145011350窗玻璃冰(0°C)甲醇2400~2700880~920792变压器油甘油蜂蜜840~890126014353.在标准大气压下不同温度时水的密度ρ[103kg/m3]温度(°C)010203001234567890.9998670.9999260.9999680.9999921.0000000.9999920.9999680.9999290.9998760.9998080.9997270.9996320.9995240.9994040.9992710.9991260.9989690.9988000.9986210.9984300.9982290.9980170.9977950.9975630.9973210.9970690.9968080.9965380.9962580.9959590.9956720.9953660.9950510.9947280.9943970.9940580.9937110.9933560.9929930.9926224.在不同温度下水与空气接触时的表面张力系数σ[10–3N/m]温度(°C)12345678910010203075.6474.2272.2571.1875.5074.0772.5971.0275.3673.9372.4470.8675.2173.7872.2870.6975.0773.6372.1270.5374.9373.4971.9770.3774.7973.3471.8170.2174.6573.1971.0570.0574.5073.0471.4969.8874.3672.9071.3469.725.在20°C时与空气接触的液体表面张力系数σ[10–3N/m]液体表面张力系数液体表面张力系数液体表面张力系数石油煤油松节油水302428.872.75肥皂溶液弗利昂–12蓖麻油甘油409036.463水银甲醇(0°C)乙醇(0°C)乙醇(60°C)51324.524.118.46.不同温度时水的粘度η[10–3Pa·s]温度(0˚C)012345678901020301.7871.3071.0020.7981.7281.2710.9780.7811.6711.2350.9550.7651.6181.2020.9320.7491.5671.1690.9110.7341.5191.1390.8900.7191.4721.1090.8700.7051.4281.0810.8510.6911.3861.0530.8330.6781.3161.0270.8150.665212\n大学物理实验7.液体的粘度η[10–3Pa·s]液体温度(0˚C)粘度液体温度(0˚C)粘度汽油甲醇乙醇乙醚变压器油蓖麻油葵花籽油018020-200200202010201.7880.5300.8170.5842.7801.7801.1900.2960.24319.800242050.000甘油蜂蜜鱼肝油水银-2002010020802080-20020100234×103121×102149912.945650010045.6004.6001.8551.6851.5541.2248.20˚C时某些金属的杨氏模量E[N/mm]金属E×104金属E×104铝金银锌铜康铜6.9~7.07.76.9~8.47.810.3~12.716.0铁镍碳钢合金钢钨19~2120.120~2121~2223.5~24.540.79.固体的线膨胀率(线胀系数)物质温度℃线膨胀率物质温度℃线膨胀率金2014.2碳素钢约11银2019.0不锈钢20—10016.0铜2016.7镍铬合金10013.0铁2011.8石英玻璃25—1000.4锡2021玻璃0—3008—10铅2028.7陶瓷3—6铝2023.0大理石25—1005—16镍2012.8花岗岩208.3黄铜2018—19混凝土-13—216.8—12.7殷钢-250—100-1.5—2.0木材(平行纤维)3—5212\n大学物理实验锰铜20—10018.1木材(垂直纤维)35—60磷青铜—17电木板21—33镍钢(Ni10)—13橡胶16.7—25.377镍钢(Ni10)—7.9硬橡胶50—80石蜡16—38130.3冰-5045.6聚乙烯180冰-10033.9冰052.710.物质的比热(容)元素温度(℃)比热容×102物质温度(℃)比热容×102Al259.04水25Ag252.37乙醇25Au251.28石英玻璃20—1007.78C(石墨)257.07黄铜03.70Cu253.850康铜184.00Fe254.48石棉0—1003.95Ni254.39玻璃205.9—0.2Pb251.28云母204.2Pt251.363橡胶15—10011.3—20Si257.125石蜡0—2029.1Sn(白)252.22木材20约12.5Zn253.89陶瓷20—2007.1—8.811.固体的热导率物质温度(K)热导率×102物质温度(K)热导率×102Ag2734.28锰铜2730.22Al2732.35康铜2730.22Au2733.18不锈钢2730.14C(金刚石)2736.60镍铬合金2730.11C(石墨)^c2732.50硼硅酸玻璃3000.011Ca2730.98软木3000.00042Cu2734.01耐火砖5000.0021Fe2730.835混凝土2730.0084Ni2730.91玻璃布3000.00034Pb2730.35云母(黑)3730.0054212\n大学物理实验Pt2730.73花岗岩3000.016Si2731.70赛璐各3030.0002Sn2730.67橡胶2980.0015水晶(∥c)2730.12杉木2930.00113水晶(^c)2730.068棉布3130.0008石英玻璃2730.014呢绒3030.00043黄铜2731.2012.部分电解质的相对电容率er电介质相对电容率er电介质相对电容率er真空空气(1个大气压)氢(1个大气压)氧(1个大气压)氮(1个大气压)二氧化碳(1个大气压)氦(1个大气压)纯水11.00051.000271.000531.000581.000981.0007081.5乙醇(无水)石蜡硫磺云母硬橡胶绝缘陶瓷玻璃聚氯乙烯25.72.0—2.34.26—84.35.0—6.54—113.1—3.513.部分金属合金的电阻率及温度系数金属或合金电阻率(uW/m)温度系数(1/℃)铝0.02842×10-4铜0.017243×10-4银0.01640×10-4金0.02440×10-4铁0.09860×10-4铅0.20537×10-4铂0.10539×10-4钨0.05548×10-4锌0.05942×10-4锡0.1244×10-4水银0.95810×10-4伍德合金0.5237×10-4钢(碳0.10~0.15%)0.10~0.146×10-3康铜0.47~0.51(-0.4~0.1)×10-4铜锰镍合金0.34~1.00(-0.3~0.2)×10-4镍铬合金0.98~1.10(0.3~4)×10-4212\n大学物理实验注:电阻率与金属中杂质有关,表列数据为20℃时的平均值。14在常温下某些物质相对于空气的光的折射率波长物质Hα(656.3nm)D线(589.3nm)Hβ线(486.1nm)水(18oc)1.33141.33321.3373乙醇(18oc)1.36091.36251.3665二硫化碳(18oc)1.61991.62911.6541冕玻璃(轻)1.51271.51531.5214冕玻璃(重)1.61261.61521.6213燧石玻璃(轻)1.60381.60851.6200燧石玻璃(重)1.74341.75151.7723方解石(寻常光)1.65451.65851.6679方解石(非常光)1.48461.48641.4908水晶(寻常光)1.54181.54421.5490水晶(非常光)1.55091.55331.558915.常用光源的谱线波长表(单位nm)一H(氢)656.28红486.13绿蓝434.05蓝410.17蓝紫390.01蓝紫二He(氦)706.52红667.82红587.56(D3)黄501.57绿492.19绿蓝471.31蓝447.15蓝402.62蓝紫388.87蓝紫三Ne(氖)650.65红640.23橙638.30橙626.65橙621.73橙614.31橙588.19黄585.25黄四Na(钠)589.592(D1)黄588.995(D2)黄五Hg(汞)623.44橙579.07黄576.96黄546.07绿491.60绿蓝435.83蓝407.78蓝紫404.66蓝紫六He-Ne激光632.8橙16.光学实验的附表鉴别率板号2号3号鉴别率板单元号单元中第每组的条纹数条纹宽度a(m)当平行光管f=550时鉴别率值(秒)条纹宽度a(m)当平行光管f=550时鉴别率值(秒)1420.015.0040.030.002418.914.1837.828.353417.813.3535.626.70212\n大学物理实验4516.812.6033.625.205515.911.9331.723.786515.011.2530.022.507614.110.5828.321.238613.39.9826.720.039612.69.4525.218.9010711.98.9323.817.8511711.28.4022.516.8812810.67.9521.215.9013810.07.5020.015.001499.47.0518.914.181598.96.6817.813.3516108.46.3016.812.6017117.95.9315.911.9318117.55.6315.011.2519127.15.3514.110.5820136.75.0313.39.9821146.34.7312.69.4522145.94.4311.98.9323155.64.2011.28.4024165.33.9810.67.9525175.03.7510.07.50212

相关文档