计算机视觉new 9页

  • 82.50 KB
  • 2022-08-30 发布

计算机视觉new

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
计算机视觉*使计算机通过二维图像认知三维环境信息1>.感知三维环境中物体的几何信息:形状,位置,姿态,运动2>.描述,存储,识别,理解\nMarr的计算视觉理论三个阶段:三个层次:计算理论表达与算法硬件实现三个阶段:基元图2.5D3D\nMultiobjectTrackingasMaximumWeightIndependentSetThispaperaddressestheproblemofsimultaneoustrackingofmultipletargetsinavideo.Wefirstapplyobjectdetectorstoeveryvideoframe.Pairsofdetectionresponsesfromeverytwoconsecutiveframesarethenusedtobuildagraphoftracklets.Thegraphhelpstransitivelylinkthebestmatchingtrackletsthatdonotviolatehardandsoftcontextualconstraintsbetweentheresultingtracks.Weprovethatthisdataassociationproblemcanbeformulatedasfindingthemaximum-weightindependentset(MWIS)ofthegraph.Wepresentanew,polynomial-timeMWISalgorithm,andprovethatitconvergestoanoptimum.Similarityandcontextualconstraintsbetweenobjectdetections,usedfordataassociation,arelearnedonlinefromobjectappearanceandmotionproperties.Long-termocclusionsareaddressedbyiterativelyrepeatingMWIStohierarchicallymergesmallertracksintolongerones.Ourresultsdemonstrateadvantagesofsimultaneouslyaccountingforsoftandhardcontextualconstraintsinmultitargettracking.Weoutperformthestateoftheartonthebenchmarkdatasets.\nOverviewoftheApproachStep1:Weapplydetectorsofasetofobjectclassestoallvideoframes.Eachdetectionischaracterizedbyadescriptorthatrecordsthefollowingpropertiesofthecorrespondingboundingbox:location,size,andthehistogramsofcolor,intensitygradients,andopticalflow.\nStep2:Thebestmatchingdetectionsaretransitivelylinkedacrossvideointodistincttracks,whosetotalnumberisunknownapriori.Thisisdoneunderthehardconstraintthatnotwotracksmaysharethesamedetection,topreventimplausiblevideointerpretations.Inaddition,thelinkingisinformedbyspatiotemporalrelationshipsbetweenthetracks,whichprovideforsoftconstraints.Tothisend,webuildagraph,wherenodesrepresentcandidatematchesfromeverytwoconsecutiveframes,referredtoastracklets;nodeweightsencodethesimilarityofthecorrespondingmatches;andedgesconnectnodeswhosecorrespondingtrackletsviolatethehardconstraints.Giventhisattributedgraph,dataassociationisformulatedasthemaximum-weightindependentset(MWIS)problem.MWISistheheaviestsubsetofnon-adjacentnodesofanattributedgraph.Conveniently,MWISoftheentiregraphisequivalenttoaunionoftheMWISsolutionsofindependentsubgraphs.Thisallowsustoconductmultitargettrackingonline.WepresentanewMWISalgorithmthatisguaranteedtoconvergetoanoptimum.\nStep3:Intrinsictargetpropertiesandpairwisecontext,usedinStep2,arelearnedonline,asthetrackskeepaccumulatingstatisticalevidenceofthetargets.TherelativesignificanceofthesepropertiesforeachtrackislearnedsoastominimizetheMahalanobisdistancesofdetectionswithinthesametrack,andmaximizetheMahalanobisdistancesbetweendetectionsfromdistincttracks.Step4:Toaddresslong-termocclusions,weiterateStep2andStep3tomergeorsplittrackssoastoincreasethetotalweightoftheMWIS,untilconvergence.\nPCA主成分分析(PrincipalComponentAnalysis,PCA)是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。计算主成分的目的是将高维数据投影到较低维空间。鲁棒性鲁棒性就是系统的健壮性。它是在异常和危险情况下系统生存的关键。比如说,计算机软件在输入错误、磁盘故障、网络过载或有意攻击情况下,能否不死机、不崩溃,就是该软件的鲁棒性。所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性。\nHOG(梯度方向直方图检测器)HOGdescriptors是应用在计算机视觉和图像处理领域,用于目标检测的特征描述器。这项技术是用来计算局部图像梯度的方向信息的统计值。ImplicitShapeModel(ISM)(绝对形状模型)\n疑问:1.Occlusionn.闭塞?2.MaximumWeightIndependentSet?3.Hard&softconstraints(硬件&软件系统规定参数)?

相关文档