• 69.50 KB
  • 2022-11-03 发布

数学—我的理解 数学与应用数学专业概论课结课论文

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
数学与应用数学专业概论课结课论文数学—我的理解1数学历史奇普,印加帝国时所使用的计数工具。数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语μαθηματικός(mathematikós)意思是“学问的基础”,源于μάθημα(máthema)(“科学,知识,学问”)。化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象思想的一大突破。除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。\n从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据MikhailB.Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”2数学的发展历史数学的发展史大致可以分为四个阶段。第一时期  数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。第二时期  初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成现在中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数、三角。中、西方数学的融合\n 明代进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考试制度。在这种情况下,除珠算外,数学发展逐渐衰落。16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面。鸦片战争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期,直到19世纪末与20世纪初,近代数学研究才真正开始。  变量数学时期。变量数学产生于17世纪,大体上经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分【微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。】的创立。第四时期现代数学。现代数学时期,大致从19世纪上半叶开始。数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。3中国数学历史数学是中国古代科学中一门重要的学科,它的历史悠久,成就辉煌。根据它本身发展的特点,可以分为五个时期:①中国古代数学的萌芽;②中国古代数学体系的形成;③中国古代数学的发展;④中国古代数学的繁荣;⑤中西方数学的融合。  中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有|,,,等表示1,2,3,4的符号。《易·繫辞》中说:“上古结绳而治,后世圣人易之以书契。”这就是说,到原始公社末期,人们已开始用文字符号取代结绳记事了。西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形(见彩图)。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载。夏禹治水时已使用了这些工具。中国古代数学体系的形成 秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科以及《九章算术》为代表的数学著作的出现。《汉书·艺文志》载有《许商算术》2卷和《杜忠算术》16卷,但均已失传。1983年12月在湖北江陵张家山出土一本西汉初年的《算数书》\n,收有许多应用的数学问题。现有传本的著作是公元前1世纪的《周髀算经》和公元1世纪的《九章算术》(见彩图)。《周髀算经》是一部讲述盖天学说的天文著作,书中有较复杂的开方、分数运算和勾股定理的应用等数学问题。中国古代数学的发展 魏、晋数学的发展 魏、晋时期出现的玄学,不为汉儒经学束缚,各抒己见,思想比较活跃;它诘辩求胜,又能善于运用逻辑思维,分析义理。这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注2卷(已失传),魏末晋初刘徽撰《九章算术》注10卷(263)、《九章重差图》1卷(已失传)都是出现在这个时期,赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。中国古代数学的繁荣 960年,北宋王朝的建立结束了五代十国割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。1084年秘书省第一次印刷出版了《算经十书》。1213年鲍澣之又进行翻刻。这些情况为数学发展创造了良好的条件。从11~14世纪约300年期间,出现了一批著名的数学家和数学著作,如贾宪(11世纪中期)的《黄帝九章算法细草》(已失传),刘益(12世纪中期)的《议古根源》(已失传),秦九韶的《数书九章》(1247),李冶的《测圆海镜》(1248)和《益古演段》(1259),杨辉的《详解九章算法》(1261)、《日用算法》(1262)和《杨辉算法》(1274~1275),朱世杰的《算学启蒙》(1299)和《四元玉鉴》(1303)等,很多领域都达到古代数学的高峰。其中一些成就也是当时世界数学的高峰。中、西方数学的融合 明代进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考试制度。在这种情况下,除珠算外,数学发展逐渐衰落。16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面。鸦片战争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期,直到19世纪末与20世纪初,近代数学研究才真正开始。4数学逻辑思维\n逻辑思维有形式逻辑思维与辩证逻辑思维。在数学学习过程中,既有形式逻辑思维,也有辩证逻辑思维。不过通常使用的是形式逻辑思维。形式逻辑思维是借助于概念、判断、推理等思维形式,遵循形式逻辑规律与法则进行学习活动中的思维。数学学习过程中,也存在着辩证逻辑思维现象。例如,正数与负数在代数和意义下的对立统一现象,“负负得正”中的否定之否定现象,切线作为弦的极限位置是一种量变到质变的过程。对于这些过程的思维都是辩证逻辑思维。逻辑思维(Logicalthinking),人们在认识过程中借助于概念、判断、推理等思维形式能动地反映客观现实的理性认识过程,又称理论思维。它是作为对认识着的思维及其结构以及起作用的规律的分析而产生和发展起来的。只有经过逻辑思维,人们才能达到对具体对象本质规定的把握,进而认识客观世界。它是人的认识的高级阶段,即理性认识阶段。逻辑思维是人们在认识过程中借助于概念、判断、推理反映现实的过程。它与形象思维不同,是用科学的抽象概念、范畴揭示事物的本质,表达认识现实的结果。逻辑思维要遵循逻辑规律,这主要是形式逻辑的同一律、矛盾律、排中律、辩证逻辑的对立统一、质量互变、否定之否定等规律,违背这些规律,思维就会发生偷换概念,偷换论题、自相矛盾、形而上学等逻辑错误,认识就是混乱和错误的逻辑思维是分析性的,按部就班。做逻辑思维时,每一步必须准确无误,否则无法得出正确的结论。我们所说的逻辑思维主要指遵循传统形式逻辑规则的思维方式。常称它为“抽象思维”或“闭上眼睛的思维”。在逻辑思维中,是使用否定来堵死某些途径。比喻说,逻辑思维是在深挖一个洞,它就是为了把一个洞挖得更深的工具。逻辑思维是人脑的一种理性活动,思维主体把感性认识阶段获得的对于事物认识的信息材料抽象成概念,运用概念进行判断,并按一定逻辑关系进行推理,从而产生新的认识。逻辑思维具有规范、严密、确定和可重复的特点。多角度思维从多个不同的角度思考问题,不同的角度有不同的发现。事例:有个小男孩说:“苹果里有颗五角星。”这让人难以理解,小男孩把苹果横放在桌上,然后拦腰切开,就会发现苹果里有一个清晰的五角形图案。\n事例:有一家手帕厂生产的锦缎白手帕销售受阻,库存积压20万条。按照习惯思维,手帕总是用来擦手,揩汗的。但销售人员换了一种思维方式,手帕除了实用的功能外,应该还有美化功能,而市场上没有一家手帕厂是以美化功能进行定位的。这个发现让他们欣喜不已,他们对库存的20万条手帕重新进行加工,在上面印上图案,配上说明书,重新投放市场,结果大受欢迎,这批滞销的手帕成为了畅销商品一售而空。侧向思维侧向思维法就是思考问题时,不从正面角度,而是将注意力引向外侧其他领域和事物,从而受到启发,找到超出限定条件以外的新思路。事例:一百多年前,奥地利的医生奥恩布鲁格,想解决怎样检查出人的胸腔积水这个问题,他想来想去,突然想到了自己父亲,他的父亲是酒商,在经营酒业时,只要用手敲一敲酒桶,凭叩击声,就能知道桶内有多少酒,奥恩布鲁格想:人的胸腔和酒桶相似,如果用手敲一敲胸腔,凭声音,不也能诊断出胸腔中积水的病情吗?“叩诊”的方法就这样被发明出来了。U型思维从思维方向看,有直线思维和U型思维之分。在求解问题过程中,如果能用直线思维求解,那是再好不过的了,因为直接求解的思路最短,但是许多问题的求解靠直线思维是难以如愿的,这时采用U型思维去观察思考,或许能使问题迎刃而解。运用U型思维的基本特点就是避直就曲,让思路拐个大弯。在实际操作时,思路又怎样拐好这个弯呢?借助“第三者”的介入进行过渡思考,便是常用的拐弯技巧。例如,电冰箱中的冷冻机中充满着氟里昂和润滑油,如果密封不良,氟里昂和润滑油都会外漏。传统的查漏办法是直接观察,费时费力且不可靠,能否发明一种新方法实现自动检测呢?有人想到了一种避直就曲的办法:将掺有荧光粉的润滑油注入冷冻机里,然后在暗室里用紫外光照射冷冻机,根据有无荧光出现来判断是否出现渗漏和渗漏发生在何处。在这种方法中,荧光粉和紫外光就属于“第三者”。5逻辑思维的一般作用  1、有助于我们正确认识客观事物。\n  2、可以使我们通过揭露逻辑错误来发现和纠正谬误。  3、能帮助我们更好地去学习知识。  4、有助于我们准确地表达思想。  逻辑思维在创新中的作用:  1、逻辑思维在创新中的积极作用·发现问题;·直接创新;·筛选设想;·评价成果;·推广应用;·总结提高。  2、逻辑思维在创新中的局限性·常规性;·严密性;·稳定性。6数学的三大危机第一次数学危机毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。第二次数学危机\n导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如反掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。第三次数学危机十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……”7个人对数学的理解数学本质上源于自然科学,是人类逻辑的产物,人类的逻辑仿佛是数学的逻辑,然而事实上却并非如此。数学的逻辑包含了人类的逻辑,而人类的逻辑又与自然事物所孕育而出的规律相符合。我个人对此看来,表示无比的惊叹,从古至今,好像自然世界在不断的约束人类,一步一步的使人类走向正确的道路(从目前看来)。对于学习数学而言,务必要学习数学的本质,了解数学的历史足迹。个人认为,数学的本质是规律,源于自然规律,似乎超越于自然,但实质却在自然之中,它只是在反应自然规律上比物理,化学,生物这些自然学科更抽象些,不是实质物质的表现形式,而是思维的结合。学好数学不一定要了解数学史,数学的发展规律,但要学精,一定要知道本质。哥德巴赫猜想史上和质数有关的数学猜想中,最著名的当然就是“哥德巴赫猜想”了。1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想:一、任何不小于6的偶数,都是两个奇质数之和;二、任何不小于9的奇数,都是三个奇质数之和。这就是数学史上著名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想的推论。因此,只需在两个猜想中证明一个就足够了。同年6月30日,欧拉在给哥德巴赫的回信中,\n明确表示他深信哥德巴赫的这两个猜想都是正确的定理,但是欧拉当时还无法给出证明。由于欧拉是当时欧洲最伟大的数学家,他对哥德巴赫猜想的信心,影响到了整个欧洲乃至世界数学界。从那以后,许多数学家都跃跃欲试,甚至一生都致力于证明哥德巴赫猜想。可是直到19世纪末,哥德巴赫猜想的证明也没有任何进展。证明哥德巴赫猜想的难度,远远超出了人们的想象。有的数学家把哥德巴赫猜想比喻为“数学王冠上的明珠”。我们从6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……这些具体的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一验证了3300万以内的所有偶数,竟然没有一个不符合哥德巴赫猜想的。20世纪,随着计算机技术的发展,数学家们发现哥德巴赫猜想对于更大的数依然成立。可是自然数是无限的,谁知道会不会在某一个足够大的偶数上,突然出现哥德巴赫猜想的反例呢?于是人们逐步改变了探究问题的方式。1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。这个“9+9”是怎么回事呢?所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是2个奇质数之积。”从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。1924年,德国数学家雷德马赫证明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。1957年,我国数学家王元证明了“2+3”。1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。1965年,苏联数学家证明了“1+3”。1966年,我国著名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数\n,另一个则是两个奇质数的积。”这个定理被世界数学界称为“陈氏定理”。由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的就如哥德巴赫猜想这类数学史上有名的难题难道不是以数学逻辑思维为基础的吗?解题的过程仿佛就是在逻辑思维的海洋的驾船而行,在数字符号自然规律的世界里翱翔。学习数学,懂数学,对它有着无比热爱和浓厚兴趣的人,才是数学所眷顾的人,是数学所期待的人,是数学在等待的人。时间:2013.11.20

相关文档