• 574.50 KB
  • 2022-04-21 发布

某山谷型卫生填埋场工艺设计固体废弃物处理与处置课程设计

  • 26页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
固体废弃物处理与处置课程设计第五组第一部分固体废弃物处理与处置课程设计任务书指导教师:许士洪一、课题名称:某山谷型卫生填埋场工艺设计二、设计任务:根据有关部门批准的任务书,拟在某城市新建一座城市垃圾卫生填埋场,要求对该填埋场进行工艺设计。三、工程概况(设计资料):1、设计数据:该城市现有人口数量85万,根据城市规划,至2030年人口约128万,服务年限20年。我国人均生活垃圾产量约0.8~1.4kg/(人·d),垃圾容重(压实密度)0.4~0.6t/m3。填埋场覆土与垃圾体积比为1:3.5。2、工程建设场地概况本工程建设场址距市中心15km,三面环山,峡谷面积约1km2,地面标高52.0~68.0米。3、工程水文地质3.1工程地质裸露的地层为棕黄色粉质黏土,渗透系数小于1.0×10-5,厚度为2~3m.。3.2水文地质建设场地中含水层主要为黄土层潜水,场地地下水埋深约2~3m,水位年变幅1~2m。4、气象工程场地属温暖带半湿润大陆性季风气候,具有冬长夏短,春秋温凉典型特征。四季分明,春季和冬季干旱多风,夏季炎热,降雨集中,秋季天气晴朗,日照充足。气温:年平均气温:13.5℃极端最低气温:-3℃极端最高气温:41℃年平均相对湿度:70~85%降雨:年平均日降水量:6.9mm/d日最大降水量:8.6mm/d日最小降水量:4.2mm/d风:冬季平均风速:2.1m/s夏季平均风速:2.5m/s主导风向:西南最大冻土深度:230mm5、相关规范及标准(1)生活垃圾卫生填埋技术规范(CJJ17-2004)26n固体废弃物处理与处置课程设计第五组(2)生活垃圾填埋场污染控制标准(GB16889-2008)(3)生活垃圾卫生填埋场防渗系统工程技术规范(CJJ113-2007)四、要求:1、进行该填埋场的方案论证与设计;2、进行填埋场工艺设计(包括库容设计、填埋工艺、防渗系统、导气系统、封场覆盖、渗滤液收集),并写出设计说明书;字数不少于5000字;3、绘出填埋场流程图,平面图,填埋场场地平整图、填埋场封场图、渗滤液收排及填埋气导排系统图、集气集液系统断面图。(要求达到初步设计要求)五、设计时限:1周六、设计进度1、设计动员,布置任务,提出要求,强调纪律(时间0.5d)。2、文献查阅,了解垃圾填埋场设计的工艺与方法(时间ld)。3、进行工艺设计与计算(时间1d)。4、绘制图纸(时间2d)。5、编写设计说明书(时间l.5d)。七、参考文献《环境工程设计手册》、《三废处理工程技术手册》(固废卷)、《固体废弃物处理与处置》、《环境工程》、《中国沼气》、其他相关书籍及刊、及网络资源。26n固体废弃物处理与处置课程设计第五组第二部分设计说明书第一章填埋场方案论证与设计1.1城市的生活垃圾处理方式论证城市的生活垃圾处理方式主要有卫生填埋、堆肥和焚烧三种。这三种主要处理方式的使用条件和效果各有特点。常用垃圾处理方法特点的比较:(1)卫生填埋①处理量大,运行费用低,工艺相对较简单,是其他处理方法的残渣的最终消场;②大型填埋场产生的沼气有一定利用价值;③但是场址受地理、地质和水文地质条件限制较多;④场地使用年限收垃圾量的影响大;⑤占地面积大。(2)堆肥①投资适中,使用年限较长;②无害化程度高;③产品有农用价值;④只能处理垃圾中的可堆腐有机物,且对这部分含量有一定要求;⑤运行费用较高;⑥产品销售易受限制。(3)焚烧①减量化、无害化程度很高;②可综合利用热能;③使用期限长,运输费用较低;④投资高,运行费用也较高;⑤工艺、设备复杂,要求垃圾达到一定热值;⑥管理水平要求较高。由于填埋处理垃圾消纳的量大,单位投资相对较低,比较适应我国目前大部分城市的经济承受能力,因此,在此设计中选择卫生填埋作为处理城市生活垃圾的方法。26n固体废弃物处理与处置课程设计第五组1.2填埋场构造论证根据填埋场填埋层空气的存在状态可分为厌氧填埋和好氧填埋,好氧填埋又有两种不同的方式——好氧填埋半好氧填埋方式。1.2.1气体成分论证不同类型的填埋方式对气体的产量有影响,直接决定着填埋气体是否能够在进行利用。实践证明:好氧填埋、半好氧及循环式填埋的气体产生量比较少;而厌氧填埋的沼气产生量比较多。表1.2-1不同填埋构造的CO2和CH4的产生比率%(V/V)填埋构造形式CO2CH4备注半好氧型填埋8020其他成分数据:氮:17%;氧:小于1%;二氧化硫:小于20ppm;氨气:0.6ppm,硫化氢:6.8ppm循环式半好氧型填埋9010好氧型填埋955从表1.2-1可以看出,厌氧填埋中CH4成分远高于好氧填埋,满足资源再利用的条件。1.2.2堆体堆高论证本工程地区地表裸露的地层为棕黄色粉质黏土,渗透系数小于1.0×10-5cm/s,厚度为2~3m。而在填埋面积一定的情况下,填埋高度同气体回收量有着密切的联系,一般填埋场的气体如果要具备利用价值,要求的填埋高度应在20m以上。本填埋场高度约为26m,可以满足气体回收利用的条件。1.2.3结构形式确定根据以上的特点,本工程采用厌氧填埋技术。大量厌氧分解产生的填埋气体通过气体导排系统排出,并需配备完善的填埋气体收集利用系统和渗滤液处理系统来处理场区渗滤液和回收填埋气体。1.3填埋场类型论证垃圾卫生填埋场根据其所在的地形不同可分为四种类型:①平原型填埋场②山谷型填埋场③坡地型填埋场和④滩涂型填埋场。而由于本工程建设场址距市中心15km,三面环山,峡谷面积约1km2,因此采用山谷型填埋场。山谷型填埋场一般具有如下特点:利用山谷形成的贮留空间,26n固体废弃物处理与处置课程设计第五组在山谷下游修筑堤坝建造而成;场地为独立的水文地质单元,地下水流至谷口向外排泄;在库区外设置环库截洪沟,拦截场外雨水,排入场区下游;渗沥液收集后汇入下游的调节池,作集中处理。山谷型填埋场具有填埋容量大、建设费用低等优点,但由于山谷大都位于地下水上游,填埋场对地下水的影响是一个必须重点考虑的因素;另外山谷地区地质条件的复杂性、山谷汇集洪水对填埋场的破坏也是要考虑的因素。1.4填埋场等级划分与规模确定“城市生活垃圾卫生填埋处理工程项目建设标准”规定:垃圾卫生填埋场根据建设规模(总库容)和日处理能力两种方式进行分类与分级。按填埋场建设规模划分:Ⅰ类总库容1200万m3以上Ⅱ类总库容500~1200万m3Ⅲ类总库容200~500万m3Ⅳ类总库容100~200万m3按日处理能力划分:Ⅰ级日处理量1200t/d以上Ⅱ级日处理量500t/d~1200t/dⅢ级日处理量200t/d~500t/dⅣ级日处理量200t/d以下根据该城市居民生活垃圾产量和场址库容,项目为Ⅰ类Ⅰ级处理场规模。26n固体废弃物处理与处置课程设计第五组第二章填埋场工艺设计2.1库容设计2.1.1城市概况该城市现有人口数量85万,根据城市规划,至2030年人口约128万,服务年限20年。我国人均生活垃圾产量约0.8~1.4kg/(人·d)。垃圾容重(压实密度)0.4~0.6t/m3。填埋场覆土与垃圾体积比为1:3.5。在此期间,城市生活垃圾量随人口的增加而呈递增趋势,设20年人口自然增长率为a,则有85×(1+a)20=128。故20年人口自然增长率为a=2%,即城市生活垃圾年增长率。2.1.2填埋场库容计算填埋场总容量包括填埋垃圾的体积和覆土的体积。取人均生活垃圾产量为1.0kg/(人·d),垃圾容重(压实密度)0.6t/m3。(1)计算公式:①每年所需的场地体积为:式中:W-垃圾产生率(kg/d·人);P-城市人口;D-压实后垃圾的密度(kg/m3);r-覆土与垃圾之比。②每年所需的场地面积为:(2)计算结果:20年间城市生活垃圾量随人口增长而递增,年增长速率为2%,计算列表如下:表2.1-1垃圾所占体积年份库容量/万m3年份库容量/万m3201166.48202282.66201267.80202384.31201369.16202486.00201470.55202587.22201571.96202689.47201673.40202791.26201774.87202893.09201876.36202994.95201977.90203096.8526n固体废弃物处理与处置课程设计第五组202079.45总量1615.28202181.04计算举例:2011年库容量计算如下:2030年库容量计算如下:由上表可知,服务年限20年间库容总量为1615.28万m3,日平均规模2212.71m3/d,填埋场的起始规模为1821.37m3/d。厂区总面积约1km2,而根据《生活垃圾卫生填埋技术规范》的要求,填埋库区的占地面积宜为总面积的70%~90%,不得小于60%,本设计取80%。填埋库区面积:则填埋高度:1615.28×104/800000=20.19m2.2填埋工艺2.2.1场地平整为避免填埋场库区地基在垃圾堆积后产生不均匀沉降,保护符合防渗层中的防渗膜,在铺设防渗膜前必须进行场地处理,包括场地平整和石块等坚硬物体的清除等。对于山谷型垃圾填埋场根据场区的防渗要求,则需要进行竖向整平和横向整平。竖向整平是考虑到填埋场防渗处理需要建设锚固平台,以利于膜的锚固。按照现有地形整平后设置锚固平台,还有填埋作业道路的需要,在通往填埋库区底部,设计临时道路。横向整平是为了便于地下水的收集导排、渗沥液收集导排,根据填埋场的实际地形,对场底要进一步整平,以满足填埋工艺的需要。以垃圾坝为控制面,考虑到渗沥液实现自流的问题,一般以垃圾主坝为控制高程纵向整平;另外,一般以导渗主盲沟为控制轴线,向导渗主盲沟两侧进行整平。设计对库区场底进行横向和竖向整平,根据地形特点,设计纵横坡度为3‰平整原则为清除所有植被及表层耕植土,确保所有软土、有机土和其他所有可能降低防渗性能和强度的异物被去除,所有裂缝和坑洞被堵塞,并配合场地渗滤液手机系统的布设,使场底形成相对整体坡度,以大于或等于2%26n固体废弃物处理与处置课程设计第五组的坡度坡向垃圾坝;同时,还要求对场底进行压实,压实度不小于90%。为了使衬垫层与土质基础之间的紧密接触,场底表面要用滚筒式碾压机进行碾压,使压实处理后的地基表面密度分布均匀,最大限度地减少场底的不均匀沉降。平整顺序最好从垃圾主坝处向库区后端延伸。为防止水土流失和避免二次清基、平整,填埋场的场底平基不宜一次完成,二是应与膜的分期铺设同步,采用分层实施的方式。因为在南方地区,裸露的土层会自然长出杂草,且容易受山洪水的冲刷,造成水土流失。2.2.2场区平面布置填埋场总图中的主体设施布置内容应包括:计量设施,基础处理与防渗系统,地表水及地下水导排系统,场区道路,垃圾坝,渗沥液导流系统,渗沥液处理系统,填埋气体导排及处理系统,封场工程及监测设施等。填埋场配套工程及辅助设施和设备应包括:进场道路,备料场,供配电,给排水设施,生活和管理设施,设备维修、消防和安全卫生设施,车辆冲洗、通信、监控等附属设施或设备。填埋场宜设置环境监测室、停车场,并宜设置应急设施(包括垃圾临时存放、紧急照明等设施)。填埋库区的占地面积宜为总面积的70%~90%,不得小于60%。填埋场宜根据填埋场处理规模和建设条件做出分期和分区建设的安排和规划。整个场区总占地面积约1.0km2,取垃圾填埋区其中垃圾填埋区比例80%,则面积约为0.8km2,其余面积主要用于其他主体及配套设施的建设,详见填埋区平面布置图。整个场区设置一个进出口,在进口处设置地磅台和洗车台。同时建设20m宽的绿化带将管理区和进填埋场的道路隔开,形成缓冲区,以吸收污染物及防尘,使管理区和填埋区有机地分开。填埋库区周围应设安全防护设施及8m宽度的防火隔离带,填埋作业区宜设防飞散设施。由于西南风为全年主导风向,为防止填埋区气体污染的影响,将管理区等设置于填埋区的西南方。2.2.3分区分期设计根据地形,将整个填埋区分为两期4个大区,分别为填埋一区、填埋二区、填埋三区和填埋四区。填埋一期工程包括填埋一区和填埋二区,填埋二期工程包括填埋三区和填埋四区。为加快工程的进度,尽快满足接受生活垃圾的要求,将整个填埋库区工程分为二期进行,先进行填埋一期工程的施工,在进行填埋作业的同时,再来考虑填埋二期工程的进行。2.2.4填埋工艺26n固体废弃物处理与处置课程设计第五组本工程采用厌氧卫生填埋工艺,实行分层摊平、往返碾压、分单元逐日覆土的作业制度,主要工艺流程是:每天将城市生活垃圾运到填埋场,经地磅计量后后,通过作业平台和临时通道进入填埋单元作业点按统一调度卸车,然后由填埋机械摊平、碾压。按分区从处理好的库底开始,向外向上逐排推进填埋,以一日填埋垃圾作为一个填埋单元。每日需进行覆土,并对覆土后的填埋单元进行喷药消毒,以减少和杜绝蚊蝇、昆虫孽生。最终封场覆土厚度大于1m。垃圾的压实密度约为0.6t/m3。每层垃圾厚度为2.5~3.0m,通常四层厚度组成一个大单元。随着填埋作业高度的增加,可利用的填埋作业有效面积也在增加,为气体利用提供方便,已经经过临时封场的填埋单元可以通过导气石笼中间的垂直气井,将导气管和周围的移动式集气站连接起来,对气体进行再利用。2.2.5填埋单元设计填埋作业单元:每一个工作日作业完成时形成的填埋体基本单位。每天的垃圾填埋压实后进行日覆盖,覆盖后形成一个填埋单元。设计垃圾填埋场的平均日处理量为2212.71m3/d,则考虑设计填埋单元为:长×宽×高=20.0×14.0×3.0m(考虑机械作业要求)。其中:填埋垃圾量为:(20.0-0.37)×(14.0-0.37)×(3.0-0.37)=703m3覆土量为:考虑覆土为0.37m0.37×(19.63×13.63+13.63×2.63+13.63×2.63)+0.372×(20+14+3)×4=137m3覆土比例为:137/700=20%。填埋单元的形成过程;推土机将运来的垃圾在规定的地域平面内堆成0.5m厚的薄层,用压实机压实。然后再铺垃圾,再压实(用压实机压实前,可用推土机预压实),直到堆到设计高度2.63m时,再覆盖0.37m厚土壤压实。2.2.6垃圾坝建在垃圾填埋库区汇水上下游或周边,由粘土、块石等建筑材料筑成,起到阻挡垃圾形成填埋场初始库容的目的,本工程选择山谷型填埋场工艺,因此为增加垃圾库容、或填埋分期规划,需设置垃圾拦挡构筑物。根据材料的不同,主要分为碾压式土石坝、混凝土坝、浆砌石坝等。实际操作中,HDPE膜不可能永远完好,特别是边坡和坝的地方。为了不使垃圾渗滤液从大坝处渗漏而污染地下水,大坝必须拥有良好的密实度。它还必须有防渗的功能。而以往使用纵向防渗的垃圾填埋场的大坝,更是使用了防渗水泥以达到要求。所以,防渗是垃圾坝的建设的重要目的之一。也就是说,垃圾坝必须依照水坝设计。本垃圾填埋场垃圾坝选用表面防渗水泥的石、土坝。在垃圾卫生填埋场工程的总造价中,垃圾坝的造价占有相当大的比重,通常占总造价的25%~40%,26n固体废弃物处理与处置课程设计第五组然而在垃圾坝设计技术方面,目前我国尚无专门的垃圾坝结构设计规程,设计者往往较多地参照水工构筑物(低坝)的设计技术及挡土墙理论进行垃圾坝的结构设计。(1)坝型选择:填埋场用土石坝没有防渗要求,不设心墙,一般可分为均质坝和多种土质坝。由于场地地质情况不同,考虑就地取材及降低造价,选择采用多种土质坝。具体设计如下图所示。(2)材料选择:筑坝材料压实后,应具有较高的强度和一定的抗风化能力,并具有较好的长期稳定性。因此,除了含有机质太多的土料、淤泥和软粘土外,几乎所有土石料都可用作筑坝材料。(3)坝体结构:①坝体高度:本工程填埋高度是26m,根据坝体高度的设计标准,将垃圾坝坝高定为10m,按水工分类标准都属于低坝。②坝坡:上游坝坡1:0.2下游坝坡取坝坡为1:0.7且坝顶按车道考虑,宽度为4.5m。填埋垃圾一侧的坝面上覆防渗层,且进行防渗水泥涂抹;长期暴露的坝面应做坡面防护,并做反滤层以防止坝体材料流失,防渗材料一般选用HDPE膜。③坝顶构造:土石坝坝顶是作为运输或巡检通道,宽度定为40m。为满足车辆行驶的要求,选用泥结碎石、沥青碎石等材料。坝轴线中点附近填筑高度最大,坝基覆盖层也可能最厚,设计中应留有一定超高,到轴线两侧逐渐降到设计高度,同时也有利于坝顶排水。26n固体废弃物处理与处置课程设计第五组图1垃圾坝结构2.3填埋场的地基与防渗系统2.3.1填埋区基底工程《城市生活垃圾卫生填埋技术规范》规定,场底地基是具有承载能力的自然土层或经过碾压、夯实的平稳层,且不应因填埋垃圾的沉陷而使场底变形、断裂,场底基础表面经碾压后,方可在其上贴铺人工衬里。场底应有纵、横向坡度。纵横坡度宜在2%以上,以利于渗滤液的导流。2.3.2场地防渗系统法案的选定1、填埋场的防渗系统度量粘土衬层渗透性的主要指标是渗透系数,根据《城市生活垃圾卫生填埋技术规范》:天然粘土类衬里的渗透系数不应大于10-7cm/s且厚度大于2m的粘土。故排除了用天然材料作衬垫层的方案,而选择了人工合成防渗膜。并选用性能较优、国内外使用经验较多的高密度聚乙烯(HDPE)防渗膜。在本设计中根据所给的原始资料可以知道:裸露的地层为棕黄色粉质黏土,渗透系数小于1.0×10-5cm/s,厚度不小于2m,可以采用单层人工合成材料防渗衬层。人工合成材料衬层下应具有厚度不小于0.75m,且其被压实后的饱和渗透系数小于1.0×10-7cm/s的天然粘土防渗衬层,或具有同等以上隔水效力的其他材料防渗衬层。场区地下水位较低,离地面2~3m,水位年变幅1~26n固体废弃物处理与处置课程设计第五组2m,即填埋场填埋区基础层底部与地下水年最高水位距离不足1m时,应建设地下水导排系统,地下水导排系统应确保填埋场的运行期和后期维护与管理期内地下水水位维持在距离填埋场填埋区基础层底部1m以下。综上,山谷型垃圾填埋场防渗系统主要由填埋库区防渗层和地下水导排系统组成,不仅防止渗滤液渗出污染地下水,还防止地下水进入填埋场内造成二次污染。填埋场场底防渗系统主要有水平防渗系统和垂直防渗系统两种方式。水平防渗系统是在填埋区底部及周围铺设低渗透性材料制作的衬层系统。垂直防渗系统将密封层建在填埋场的四周,主要利用填埋场基础下方存在的不透水层或弱透水层,将垂直密封层构筑在其上,以达到将填埋气体和垃圾渗滤液控制在填埋场之内的目的,同时也有阻止周围地下水流入填埋场的功能。根据本工程情况属于渗透性场地,故不宜采用垂直防渗系统,而采用水平防渗系统。选择水平防渗。2、防渗系统构造现有三种方案可供选择:方案一:单层HDPE膜+粘土复合衬垫(1)竖向结构——其竖向结构构造自上而下分别入图所示图2单层膜+粘土复合垫(2)工程造价:HDPE膜选用进口产品,土工网格、土工布选用国内产品,其余按当地市场价格,单位工程造价大概为142.5元/m2。方案二:双层HDPE膜复合防渗衬垫(1)竖向结构——其竖向结构构造自上而下分别如图所示:26n固体废弃物处理与处置课程设计第五组图3双层膜+粘土复合垫(2)工程造价:HDPE膜选用进口产品,土工网格、土工布选用国内产品,其余按当地市场价格,单位工程造价大概为173.1元/m2。方案三:单层HDPE+膨润土复合防渗衬垫(1)竖向结构——其竖向结构构造自上而下分别如图所示:垃圾层渗沥液导流与缓冲层膜上保护层HDPE土工膜膜下保护层(粘土厚度≥75cm、渗透系数不大于1.0×10-5cm/s)地下水导流层(≥30cm)基础图4单层膜+膨润土复合垫(2)工程造价:HDPE膜、含膨润土交织土工布选用进口产品,土工布选用国内产品,其余按当地市场价格,单位工程造价大概为166.1元/m2。各方案技术经济对比:(1)对方案一的评价①该方案是三个方案中较经济的一个方案②适用性:若在填埋作业是,第一层所填垃圾很有尖锐物或在填埋过程中压实机械操作不当,使单层膜被刺穿,则防渗系统基本失效,造成水体污染。故本方案对填埋作业是的技术要求较高,且发生膜刺穿时造成的危害较大。26n固体废弃物处理与处置课程设计第五组(2)对方案二的评价①此方案造价较贵,并要求较高的监管水平②适用性:双层膜具有双保险的作用。若第一层被刺穿,还有下层膜及土工布可阻挡渗滤液进一步向下渗透,因此可将经过上层膜孔洞的渗漏量减至最少,从而可大大减少通过防渗衬垫的渗漏量。(3)对方案三的评价①此方案造价在三个方案中相对经济②适用性:单层膜+膨润土的复合防渗衬垫最为经济实用。既可解决单层摸的穿刺问题,又可减少造价,不仅防渗效果良好,可靠性、耐久性也好,且施工方便,膨润土能够对局部渗漏点起到补漏的作用。而且根据相关规定,库区底部系统可以采用单层防渗衬层,库区边坡系统也采用单层防渗衬层。因此,本设计采用方案三的方案。2.4渗滤液的收集与处理2.4.1垃圾渗滤液的产生及特征:1、概念垃圾渗滤液是指超过垃圾所覆盖土层饱和蓄水量和表面蒸发潜力的雨水进入填埋场地后,沥经垃圾层和所覆盖土层而产生的污水。渗滤液还包括垃圾自身所含的水分、垃圾分解所产生的水及浸入的地下水。2、来源垃圾渗滤液主要来源于降水和垃圾本身的内含水和分解产生的水,主要污染成分有:有机物、氨氮和重金属等。其种类和浓度与垃圾类型、组分、填埋方式、填埋时间、填埋地点的水文地质条件、不同的季节和气候等密切相关。其主要来自以下几个方面:(1)降水的渗入,降水包括降雨和降雪,它是渗滤液产生的主要来源;(2)外部地表水的渗入,这包括地表径流和地表灌溉;(3)地下水的渗入,这与渗滤液数量和性质与地下水同垃圾接触量、时间及流动方向等有关;当填埋场内渗滤液水位低于场外地下水水位,并没有设置防渗系统时,地下水就有可能渗入填埋场内;(4)垃圾本身含有的水分,这包括垃圾本身携带的水分以及从大气和雨水中的吸附量;(5)覆盖材料中的水分,与覆盖材料的类型、来源以及季节有关;26n固体废弃物处理与处置课程设计第五组(6)垃圾在降解过程中产生的水分,与垃圾组成、pH值、温度和菌种等有关,垃圾中的有机组分在填埋场内分解时会产生水分;3、基本特征垃圾渗滤液的特性如下:(1)有机污染物种类繁多,水质复杂。(2)污染物浓度高,变化范围大。(3)水质水量变化大。产量随季节变化大,雨季明显大于旱季。(4)金属含量高。垃圾渗滤液中含有10多种金属离子,由于国内垃圾不像国外某些城市那样经过严格的分类和筛选,所以国内外垃圾渗滤液中金属离子浓度有差异。其中铁浓度可高达2050mg/L,铅的浓度可达12.3mg/L,锌的浓度可达130mg/L,钙的浓度可达4300mg/L。(5)氨氮含量高。高氨氮浓度是城市垃圾渗滤液的重要水质特征之一,随着垃圾填埋年数而增加,可以高达1700mg/L,渗滤液中的氮多以氨氮形式存在,约占TN的70%~80%。(6)营养元素比例失调。对于生化处理,污水中适宜的营养元素比例是BOD5:N:P=100:5:1,而一般的垃圾渗滤液中的BOD5:P大都大于300,与微生物所需的磷元素相差较大。4、垃圾渗滤液的特性与埋龄的关系垃圾填埋后,随着填埋年龄的增长,垃圾中有机物的降解速率、垃圾的持水能力和水的透过性能均发生变化。所产生的渗滤液性质在填埋场的不同年龄中也会有不同的性质。随着时间的增长,垃圾中难降解的高分子有机物逐渐取代了可生物降解的有机物。如下表所示。表2.4-1渗滤液特性与填埋场年龄关系考察指标<5年(年轻)5-10年(中年)>10年pH<6.56.5-7.5>7.5COD(g/L)>10<10<5COD/TOC<2.72.0-2.7>2.0BOD5/COD>0.50.1-0.5<0.12.4.2垃圾渗滤液产量估计:渗滤液的产生量为:式中Q---表示渗滤液平均日产量,m3/d;26n固体废弃物处理与处置课程设计第五组A1---填埋区的面积,m2;A2---封场区的面积,m2;C1---填埋区浸出系数,其值一般在0.2~0.8之间,取0.5;C2---为封场区浸出系数,C2=C1×0.6=0.5×0.6=0.3I---表示年平均日降水量,6.9mm/d。表2.4-2填埋区体积填埋库区填埋区体积/万m3一区第(1-5年)66.48+67.80+69.16+70.55+71.96=345.95二区(第6-10年)73.40+74.87+76.36+77.90+79.45=381.98三区(第11-15年)81.04+82.66+84.31+86.00+87.22=421.23四区(第16-20年)89.47+91.26+93.09+94.95+96.85=465.62填埋场的服务年限为20年,填埋库区分四块,分别进行填埋。(1)第一块填埋区第一块填埋区的服务年限为5年,则第一块填埋区面积为渗滤液平均日产量:渗滤液最大日产量:(2)第二块填埋区第二块填埋区服务年限为5年,则第二块填埋区面积为封场区面积为A2=第一块填埋区面积=渗滤液平均日产量:渗滤液最大日产量:(3)第三块填埋区第三块填埋区服务年限为5年,则第三块填埋区面积为26n固体废弃物处理与处置课程设计第五组封场区面积A2=第一块填埋区面积+第二块填埋区面积=171347.20+189192.67=360539.87m2渗滤液平均日产量:渗滤液最大日产量:(4)第四块填埋区第四块填埋区服务年限为5年,则第四块填埋区面积为封场区面积A2=第一块填埋区面积+第二块填埋区面积+第三块填埋区面积=171347.20+189192.67+230619.12=591158.99m2渗滤液平均日产量:渗滤液最大日产量:(5)最终封场区面积A2=第一块填埋区面积+第二块填埋区面积+第三块填埋区面积+第四块填埋区面积=171347.20+189192.67+230619.12+230619.12=821778.11m2渗滤液平均日产量:渗滤液最大日产量:2.4.3垃圾渗滤液收集系统:1、收集系统的功能26n固体废弃物处理与处置课程设计第五组为防止填埋场场区内垃圾渗滤液对场区地下水的污染,在填埋场库区底部设置渗滤液导排及收集系统,将填埋场内的渗滤液及时导出填埋场外并排人调节池,最终进人渗滤液处理站进行处理。渗滤液收集系统应保证在填埋场使用年限内正常运行,收集并将填埋场内渗滤液排至场外指定地点,避免渗滤液在填埋场底部蓄积。渗滤液的蓄积会引起下列问题:(1)场内水位升高导致垃圾体中污染物更强烈的浸出,从而使渗滤液中污染物浓度增大;(2)底部衬层上的静水压增加,导致渗滤液更多的地渗漏到地下水——土壤系统中;(3)填埋场的稳定性受到影响;(4)渗滤液有可能扩散到填埋场外。2、收集系统的构成渗滤液收集系统主要由汇流系统和输送系统两部分组成。汇流系统:其主体是一位于场底防渗层之上的,有砾卵石或碎渣石构成的导流层,该层内设有导流沟和穿孔收集管等。导流层设置的目的是将场内的渗滤液通畅及时的导入导流沟内的收集管中。输送系统:由集水槽、提升多孔管、潜水泵、输送管道和调节池组成,设计为山谷填埋场,可利用地形条件以重力流形式让渗滤液自流到储存或处理设施内,可省掉集液池和提升系统。(1)导流(排水)层:对填埋场场区内的垃圾渗滤液收集,考虑在填埋场的HDPE防渗层上铺设渗滤液导排层,使填埋场产生的渗滤液能及时排至渗滤液收集系统以免产生水头,增加渗漏风险、污染地下水。厚度应大于或等于30cm,主要由粗砂粒和卵石组成,需覆盖整个填埋场底部衬里上,其水平渗透系数应大于1×10-3cm/s,纵横坡度大于2%,导流层与废物之间已设土工织物等人工过滤层,以免细粒物质堵塞导流层,影响其正常排水功能的发挥。(2)导流(盲)沟与导流管:导流盲沟设置在导流层的底部,始于垃圾主坝,止于库尾,贯穿整个场底,沿地形谷地开挖铺设的渗滤液收集盲沟,断面为等腰梯形。山谷型填埋场有主、支沟之分,位于场底中轴线上的为主沟,在主沟上按间距30~50m设置支沟,两夹角的度数为60°。盲沟中填充砾石或碎石,粒径上大下小,已形成反滤,通常颗粒粒径上部为40~60mm,下部为25~40mm。26n固体废弃物处理与处置课程设计第五组导流管按照铺设位置分为干管和支管,分别埋设在导流盲沟的主沟和支沟中,主沟内敷设De250的HDPE穿孔管,支沟内敷设De200的HDPE穿孔管。导流管需预先制孔,孔径15~20mm,孔距50~100mm,开孔率为2%~5%。填埋场产生渗滤液通过渗滤液导排层进入主、次收集沟中,最后通过主收集管重力流至库区下游的调节池中。图5典型渗滤液导流系统断面(3)集液池和提升系统:对于山谷型填埋场,通常可利用自然地形坡降采用渗滤液收集管直接穿过废物坝的方式将渗滤液导出坝外,此时可将集液池和提升系统省略。(4)调节池:最后一个环节,它既可以作为渗滤液的初步处理设施,又起到渗滤液水质和水量调节的作用,从而保证渗滤液收集后续处理设施的稳定运行和减少暴雨期间渗滤液的外泄污染环境的风险。调节池常采用地下式或半地下式,其池底和池壁多用HDPE膜进行防渗,膜上采用与之混凝土板保护。3、调节池的设计与计算:由于渗滤液具有水质随时会变化的特点,需要设置调节池,以保证系统的稳定性。根据渗滤液的水质指标,渗滤液在调节池内停留5天以上后COD,BOD5,SS有较大幅度的下降,但氨氮含量会增加。本调节池采用加盖设计,已达到除臭的效果。最小调节池容积的由下式确定:V≥(Qmax-Q)×5其中:V—调节池有效容积;Qmax—设计最大渗滤液产生量,由上可得为2516.85m3/d,;Q—渗滤液处理厂规模,取Q=1000m3/d,则:V=(Qmax-Q)×5=(2516.85—1000)×5=7584.25m3/d调节池的水面面积A,调节池的有效水深H取5m,起高0.5m,则:A=V/H=7584.25/5=1516.85m2调节池的长度L,取调节池的宽度B为20m,则:L=1516.85/20=75.84m取整得,池的实际尺寸:长×宽×高=80m×20m×5.5m2.5导气系统2.5.1填埋气体的产生26n固体废弃物处理与处置课程设计第五组整个卫生填埋场可以看作是一个巨大的生化反应堆:固体废物和水是主要的反应物,气体和渗滤液是基本的生成物。生活垃圾中的有机组分在微生物的分解作用下,反应产生填埋气体和渗滤液等物质。目前垃圾填埋的产气过程大致可分为5个阶段,如图所示:图6填埋气体产生阶段图第一阶段——好氧阶段:好氧阶段在最初垃圾进入填埋场就开始进行。简单有机物通过微生物的好氧分解转化成小分子物质和CO2。好氧阶段往往在较短的时间内就能完成,产生大量的热量使场内温度升高10~15℃。第二阶段——过渡阶段:第一阶段氧气被完全耗尽后,场内厌氧环境开始建立。复杂有机物如多糖、蛋白质等在微生物作用下水解、发酵,迅速生成挥发性脂肪酸、CO2和少量H2,历时不长。此阶段的填埋气体组成较好氧阶段复杂,但气体成分仍以CO2为主,存在少量H2、N2和高分子有机气体,基本不含CH4。第三阶段——产酸阶段:微生物将第二阶段积累的溶于水的产物转化成含1~5个碳原子的酸(大部分为乙酸)和醇等,继而作为甲烷细菌的底物而转化成CH4和CO2。这一阶段产生的主要气体CO2前半段呈上升趋势,后半段上升趋势变慢或逐渐减少,还产生少量H2。第四阶段——产甲烷阶段:前几个阶段的产物如乙酸、氢气等在产甲烷菌的作用下,转化成CH4和CO2。这一阶段甲烷气体产生率稳定,其浓度保持在50%~65%。此阶段是进行能源气体回收利用的黄金时期。第五阶段——填埋场稳定阶段:在垃圾中大部分可降解有机物转化成CH4和CO2后,填埋气产生速率显著减小,几乎没有气体产生。26n固体废弃物处理与处置课程设计第五组填埋气产生的五个阶段并不是绝对孤立的,它们是一个连贯的过程,有时会相互重叠。由于垃圾和填埋条件的不同,各个阶段的持续时间也有差异。而且因为垃圾是在不同时期进行填埋,因此在填埋场的不同部位,各个阶段的反应同时存在。2.5.2填埋气体组成成分填埋场气体主要是填埋垃圾中可生物降解有机物在微生物作用下的产物,厌氧条件下产生的填埋气成份一般为甲烷和二氧化碳,以及其他低含量的氨、硫化氢和有机气体。根据填埋气体中各成分的含量及存在的普遍性可分为以下三类:(1)主要成分:包括甲烷和二氧化碳,体积占填埋气体总量的95%~99%。(2)常见成分:主要是指垃圾在生物降解过程中产生的除甲烷和二氧化碳外的其它常见的气体,包括H2S、NH3和H2等气体,这些气体的含量较小,占填埋气体总体积的不到5%。(3)微量成分:填埋气体中还含有总量低于1%的一些气体,主要是包括烷烃、环烷烃、芳烃、卤代化合物等在内的挥发性有机物(VOC).2.5.3填埋气体产生量的预测1、公式及参数垃圾在第t年的产气速率为:Gt=MtL0ke-kt式中:Gt—第t年垃圾的产气速率,万m3/a;Mt—第t年所填垃圾量,万t;L0—气体产生潜力,m3/t,取150m3/tk—气体产气常数,1/a,取0.10;t—年份,a。e—取2.72。表2.5-1填埋场产期一级模型参数的建议值变量取值范围建议数值潮湿气候中湿度气候干旱气候L0(m3/t)0~312140~180140~180140~180K(1/a)0.003~0.40.10~0.350.05~0.150.002~0.102、计算以第一年为例:以此类推,得每年产气量,如表2.5-2所示。表2.5-2填埋场每年产气量第t年年份第t年所填垃圾量/万t产气量/万m326n固体废弃物处理与处置课程设计第五组库容量/万m31201166.4839.89541.352201267.8040.68499.533201369.1641.50461.034201470.5542.33425.515201571.9643.18392.696201673.4044.04362.417201774.8744.92334.478201876.3645.82308.649201977.9046.74284.8810202079.4547.67262.8911202181.0448.62242.6112202282.6649.60223.9013202384.3150.59206.6214202486.0051.60190.7015202587.2252.33174.9916202689.4753.68162.4117202791.2654.76149.8818202893.0955.85138.3319202994.9556.97127.6620203096.8558.11117.82总量1615.28969.175608.312.5.4填埋场导气方式的选择1、填埋气收集方式由于大部分沼气在填埋场填埋过程中就已形成,所以填埋气采集应在填埋过程中就开始实施。对于分层堆放的填埋场,可采用水平采气系统,但要注意采气管道的铺设,不要影响垃圾的填埋。对已建成的填埋场,可采用表面收集或竖井收集技术。根据《生活垃圾卫生填埋技术规范》的要求,由于本工程填埋深度大于20m,故采用水平收集与竖井收集相结合的方式。考虑到该填埋场规模较大,产气量多,选用主动导排方式。《生活垃圾填埋场填埋气体收集处理及利用工程技术规范》规定:垃圾堆体中部的主动导排导气井间距不应大于50m,沿堆体边缘布置的导气井间距不应大于25m。所以本设计垃圾堆体中部的主动导排导气井间距采用30m,沿堆体边缘布置的导气井间距采用20m。2、导气系统在垃圾填埋区底部预埋垃圾气导排系统,呈交错布置,导气管管材采用D20026n固体废弃物处理与处置课程设计第五组PVC管。导气管四周设石笼透气层,即铅丝网包拢的级配碎石滤料,用于填埋气体导排的碎石不应该使用石灰石,粒径宜为10mm~50mm,导气石笼直径1500mm。导气系统的铺设是随着填埋作业面逐层上升而逐段加高的,导气管靠导气管接头联结不断加高。排气系统采用分散排放方式,即每根导气管均设一根排气管,填埋区顶端以横管串联每根排气管,将填埋气汇集以便回收利用。2.5.5填埋气体的利用根据《生活垃圾填埋场污染控制标准》,设计填埋量大于250万吨且垃圾填埋厚度超过20米的生活垃圾填埋场,应建设甲烷利用设施或火炬燃烧设施处理含甲烷填埋气体。目前,国内外填埋气体的可利用方式主要有以下四种:直接用作锅炉或工业炉窑燃料;用于燃气轮机或内燃机发电;净化处理后制成压缩天然气;用作汽车燃料。因填埋场工程较大,处理的垃圾量也较大,产生的沼气数量可观,持续的时间长,所以本工程主要把填埋气体用作发电。工艺流程如下图:图7填埋气用于发电的工艺流程图2.6封场覆盖2.6.1封场覆盖的作用及选择26n固体废弃物处理与处置课程设计第五组填埋场的填埋容量使用完毕后,需对整个填埋场或填埋单元进行最终覆盖。目的是将垃圾与环境隔离,减轻感官上的不良印象,避免为病原菌提供滋生的场所,便于设备的使用和车辆的行驶,为植被的生长提供土壤,控制填埋气体的迁移扩散并使地表水的渗入量最小化从而减少渗滤液的产生。同时提供一个可供景观美化和填埋土地再用的表面。填埋场的最终覆盖有粘土覆盖和人工材料覆盖两种,采用人工材料覆盖。2.6.2封场覆盖系统组成生活垃圾填埋场的封场系统自上而下组成分别为排气层、防渗层、雨水导排层、最终覆土层、植被层。1、排气层排气层的作用是降低沼气对封场覆盖层的顶托力,有效地导出沼气。按照规范,排气层应采用导排性能好、抗腐蚀的粗粒或多孔材料,粒径为25~50mm;厚度应大于或等于30cm,故选取垃圾体上的鹅卵石、建筑垃圾排气层厚度为30cm,渗透系数应大于1×10-2cm/s。排气层应与导气管相连。导气管应高出最终覆土层上表面100cm以上。填埋场封场覆盖系统应设置排气层,施加于防渗层的气体压强不应大于0.75kPa。2、防渗层防渗层的作用是防止下渗水进入填埋废物中以及填埋气体的溢出,是系统必不可少的基本层。人工材料覆盖系统中的防渗层由膜下保护层、HDPE土工膜以及膜上保护层组成。按照规范,膜下保护层的粘土厚度宜为20~30cm;HDPE土工膜厚度不应小于1mm;膜上保护层宜采用粗粒或多孔材料,厚度宜为20~30cm。土工膜选择双糙面厚度大于0.75mm的高密度聚乙烯(HDPE),渗透系数小于1×10-7cm/s。但土工膜上下表面应设置土工布。故设计HDPE土工膜上下保护层厚度均为25cm,HDPE膜厚度为0.75mm。3、排水层为了排除覆盖层水分,提高边坡稳定性,设置排水层,排水层宜采用粗粒或多孔材料厚度应为20~30cm。故使用有过滤层的沙砾,厚度为30cm。4、植被层植被层应采用营养土厚度应根据种植植物的根系深浅确定。26n固体废弃物处理与处置课程设计第五组封场系统的建设应与生态恢复相结合,并防止植物根系对封场土工膜的损害。为了恢复填埋场的生态环境,有助于植物生长,设计拟采用20cm营养表土,根据《水土保持综合治理技术规范》,填埋场可按照荒地进行育林育草,但应根据填埋气候条件和稳定性条件进行选择确定。封场初期绿化宜选择根前的对氨气,二氧化硫,氯化氢,硫化氢等有抗性的植物,选用常绿灌木和种植草皮。封场覆盖结构示意图如下图:图8封场覆盖(人工材料覆盖)结构示意图2.6.3封场系统控制坡度填埋场封场顶面坡度不应小于5%,边坡大于10%时,宜采用多级台阶进行封场,台阶间边坡坡度不宜大于1:3,台阶宽度不宜小2m。根据上述规范,选取封场顶面坡度为5%,因为是山谷型填埋场,边坡坡度较大,故采用多级台阶进行封场,台阶间边坡坡度选为1:3,台阶宽度为2m。2.6.4封场后要求及土地回用最终封场后至少3年内(即不稳定期)不得做任何方式的使用,并要进行封场监测,注意防火防爆。封场后进入后期维护与管理阶段的生活垃圾填埋场,应继续处理填埋场产生的渗滤液和填埋气,并定期进行监测。填埋场的稳定化程度直接决定其土地回用的可能性,不同的回用目的对填埋场的稳定性要求也不同。判断填埋场的稳定化指标主要有填埋场表面沉降速度、渗滤液水质、释放气体的质和量、垃圾体的温度、垃圾矿物化的程度等。但是,到目前为止还没有填埋场稳定化的定量标准。国外对填埋场的封场后的土地回用有以下规定:1、填埋场满容后,即填埋场停止填埋垃圾后,至少在5年内(即不稳定期)要对其封场检测,不准使用,要坚持防火、防爆;2、3年后经过鉴定达到稳定阶段后方可使用;3、作出场地使用规划,按规划逐步回用填埋场土地;4、处于稳定阶段的填埋场可做绿化用地、人造景观用地、堆肥厂用地,废弃物无害化处理厂以及无机物质堆放场用地等;26n固体废弃物处理与处置课程设计第五组5、未经长期观测和环境卫生专业技术部门鉴定之前,填埋场地绝对禁止作为工厂、商店、机关、学校、住宅以及公共场所的建筑用地。26

相关文档