- 91.17 KB
- 2022-04-26 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
Thetreatmentofbrewerywastewaterforreuse:StateoftheartGeoffreyS.Simatea,⁎,JohnCluetta,SunnyE.Iyukea,EvansT.Musapatikaa,SehliseloNdlovua,LubindaF.Walubitab,AllexE.AlvarezcaSchoolofChemicalandMetallurgicalEngineering,UniversityoftheWitwatersrand,Johannesburg,P/Bag3,Wits2050,SouthAfricabTTI-TexasA&MUniversitySystem,CollegeStation,TX,USAcDepartmentofCivilEngineering,UniversityofMagdalena,SantaMarta,Magdalena,ColombiaabstractarticleinfoArticlehistory:Received25October2010Receivedinrevisedform11February2011Accepted12February2011nKeywords:BrewerywastewaterBiologicaloxygendemandChemicaloxygendemandPretreatmentTreatmentReuseThebeerbrewingprocessoftengenerateslargeamountsofwastewatereffluentandsolidwastesthatmustbedisposedoffortreatedintheleastcostlyandsafestwaysoastomeetthestrictdischargeregulationsthataresetbygovernmententitiestoprotectlife(bothhumanandanimal)andtheenvironment.Itiswidelyestimatedthatforeveryoneliterofbeerthatisbrewed,closetotenlitersofwaterisused;mostlyforthebrewing,rinsing,andcoolingprocesses.Thereafter,thiswatermustbedisposedofforsafelytreatedforreuse,whichisoftencostlyandproblematicformostbreweries.Asaresult,manybrewersaretodaysearchingfor:(1)waystocutdownonthiswaterusageduringthebeerbrewingprocess,and/or(2)meanstocost-effectivelyandsafelytreatthebrewerywastewaterforreuse.Basedontheavailabledocumentedliterature,thispaperprovidesareviewassessmentofthecurrentstatusofthebrewerywastewatertreatmentprocessesincludingpotentialapplicationsforreuse.Keychallengesforbothbrewerywastewatertreatmentandreusearealsodiscussedinthepaperandincluderecommendationsforfuturedevelopments.©2011ElsevierB.V.Allrightsreserved.Contents1.Introduction..............................................................2362.Legislationandenvironmentalmanagementsystems...........................................2363.Conventionalmethodsofpretreatingbrewerywastewater........................................2363.1.Physicalmethods........................................................2373.2.Chemicalmethods.......................................................2373.3.Biologicalmethods.......................................................2373.3.1.Aerobic........................................................2373.3.2.Anaerobic.......................................................2394.Treatmentofbrewerywastewaterforreuse...............................................2394.1.Membranefiltration.......................................................2404.2.Non-thermalquenchedplasma..................................................2414.3.Membranebioreactor......................................................2424.4.Combinedanaerobicandaerobictreatment............................................2424.5.Theuseofcarbonnanotubes...................................................2434.5.1.Nanosorbents......................................................2434.5.2.Nanofilters.......................................................2444.6.Electrochemicalmethods....................................................244n4.7.Microbialfuelcells.......................................................2444.8.Carbon.............................................................2445.Discussionandsynthesisoffindings..................................................2445.1.Comparisonofprocessesandtechnologies............................................2445.2.Integrationofprocessesandtechnologies.............................................245Desalination273(2011)235–247⁎Correspondingauthor.Tel.:+27117177570,+27761126959(Cell);fax:+27117177599.E-mailaddress:simateg@yahoo.com(G.S.Simate).0011-9164/$–seefrontmatter©2011ElsevierB.V.Allrightsreserved.doi:10.1016/j.desal.2011.02.035ContentslistsavailableatScienceDirectDesalinationjournalhomepage:www.elsevier.com/locate/desal6.Summary...............................................................245Disclaimer.................................................................246References..................................................................2461.IntroductionDespitedischarginglargevolumesofhighlypollutingeffluentsthroughouttheyear[1,2],thebrewingindustryconstituteanimportanteconomicsegmentofanycountry[3,4].Infact,beeristhefifthmostconsumedbeverageintheworldbehindtea,carbonates,milkandcoffee[3].Beerbrewinginvolvestwomainsteps,i.e.,brewingandpackagingofthefinishedproduct[5].Theby-products(e.g.,spentgrainsfrommashing,yeastsurplus,etc)generatedfromthesestepsareresponsibleforpollutionwhenmixedwitheffluents[5].Inaddition,cleaningoftanks,bottles,machines,andfloorsproduceshighquantitiesofpollutedwater[5].Itisestimatedthatfortheproductionof1Lofbeer,3–10Lofwasteeffluentisgenerateddependingontheproductionandspecificwaterusage[1,3,6].Inotherwords,verylargequantitiesofwaterareconsumedduringthebeerbrewingprocess.Similarlyandbecauseofvoluminouswaterusage,thebreweryindustrydischargeslargevolumesofhighlypollutingeffluentsthroughouttheyear[1,2].Itmustalsobenotedthateffluentsfromindividualprocessnstepsarevariable.Forexample,bottlewashingresultsinalargewastewatervolume,butitcontainsonlyaminorpartofthetotalorganicsdischargedfromthebreweryprocesses.Ontheotherhand,effluentsfromfermentationandfilteringarehighinorganics/biochemicaloxygendemand(BOD),butgenerallylowinvolume,accountingforabout3%ofthetotalwastewatervolumebut97%oftheBOD[7].Wastewaterfromabreweryplantmaybedischargedinseveralwaysincludingthefollowing[8,9]:(1)directlyintoawaterway(oceans,rivers,streams,orlakes),(2)directlyintoamunicipalsewersystem,(3)intothewaterwayormunicipalsewersystemafterthewastewaterhasundergonesomepretreatment,and(4)intothebrewery'sownwastewatertreatmentplant.Thedisposalofuntreated(orpartiallytreated)brewerywastewaterintowaterbodiescanconstitutepotentialorseverepollutionproblemstothewaterbodiessincetheeffluentscontainorganiccompoundsthatrequireoxygenfordegradation[10].Forexample,ifwaterofhighorganicmattercontentvalueflowsintoariver,thebacteriaintheriverwilloxidizetheorganicmatterconsumingoxygenfromthewaterfasterthantheoxygendissolvesbackintheriverfromtheair.Furthermore,asregulationsbecomemoreandmorestringentandthecostofwaterincreases,thecallforwaterrecyclingiscurrentlygainingalotofmomentum.Therearemanypapers,suchasthosereviewedbyFillaudeauetal.[3],dealingwithseveralaspectsofbrewerywastewatertreatment.However,areviewofthisliteratureshowsthatonlyinlateryearshasinformationbecomeavailableonwatertreatmentforreuse.Itmustbenoted,however,thatwastewaterreuseisnotcommoninthistypeoftheindustryduetopublicperceptionandthepossibleproductqualitydeteriorationproblems[11].However,thefuturereuseofbrewerywastewaterseemstobeunavoidable,astheissueofwatershortagehasbecomeaseriousglobalandenvironmentalproblem.Thisisparticularlyverycriticalinmostdevelopingcountriessuchasthesub-Saharanregionwheredroughtsareperpetual,thuseverydropofwatermustbepreciouslyconserved.Inthispaper,thepotentialopportunitiesthatmaybeavailablefortreatingbrewerywastewaterforreuseintwoapplicationsarereviewed,namely:(a)primarywaterusedintheproductionofbeer,and(b)secondarywaterthatdoesnotcomeincontactwithbeer;e.g.utilitiescooling,waterusedinthepackagingprocessandgeneralcleaningwater.Oncetechnologyimprovesandthepercep-tionshavechangedregardingtheuseofrecycledwater,beertowaterratiosisperceivedmaybereducedtotheratioofabout1:2.Pertinentchallengesasrelatedtobrewerywastewaterreuse(orrecycling)arealsodiscussedinthepaper.nThetreatment,recoveryandapplicationsofvariousbreweryby-products(e.g.,spentgrains,spenthops,surplusyeast,kieselghursludge,trubandwastelabels)havebeenextensivelydocumentedelsewhere[3,6,8,12–14],thusarenotdiscussedinthispaper.Accordingly,thepaperisorganizedasfollows:abackgroundofthelegislationandenvironmentalmanagementsystemsispresentedfirst,followedconsecutivelybybrewerywastewaterpre-andtreatment-methods.Challengesandfutureprospectsareincludedinthediscussiontowardstheend.Asummaryisthenprovidedtoconcludethepaper.2.LegislationandenvironmentalmanagementsystemsLikeanyotherindustry,thebrewingindustryissubjecttoextensivegovernmentregulations.Someoftheregulationsimposedinvolveproduction,distribution,labeling,advertising,tradeandpricingpractices,credit,containercharacteristics,andalcoholiccontentrequirements[9].Governmentalentitiesalsolevyvarioustaxes,licensefeesandothersimilarchargesandmayrequirebondstoensurecompliancewithapplicablelawsandregulations.Furthermore,themanagementofenvironmentalissuesisofgrowinginterestnowadays.Thereisaneedtounderstandtheimportantenvironmentalimpactsonthecommunityandthenconsidertheadvantagesanddisadvantagesassociatedwithvariouslevelsofenvironmentalmanagement[15].Thismeansthatthebrewingindustrymustalsocomplywithnumerousenvironmentalprotectionlaws.Infact,thebrewingindustryhasshownincreasingawarenessforenvironmentalprotectionandtheneedofsustainableproductionprocesses[16].Furthermore,mostnationalgovernmentswheretheseindustriesoperatehavesignedandratifiedtheKyotoProtocolaimedatreducinggreenhousegasemissions[17].Throughenvironmentalmanagementsystems(EMS)suchas,(1)ISO14001,(2)Eco-ManagementandAuditScheme(EMAS),and(3)Interna-tionalSafetyRatingSystem(ISRS),breweriesshouldbeabletoproactivelymanagetheirimpactsontheenvironment.Infact,EMSsshouldhelpbreweriesfocusoneffectiveandefficientmanagementofbothcurrentandfutureenvironmentalimpacts.TheInternationalFinanceCorporation(IFC)alsohasenvironmental,healthandsafety(EHS)guidelinesforbreweries[18].3.ConventionalmethodsofpretreatingbrewerywastewaterBrewerywastewatertypicallyhasahighchemicaloxygendemand(COD)fromalltheorganiccomponents(sugars,solublestarch,ethanol,volatilefattyacids,etc)[9].Itusuallyhastemperaturesnrangingfrom25°Cto38°C,butoccasionallyreachingmuchhighertemperatures.ThepHlevelscanrangebetween2and12[9]andareinfluencedbytheamountandtypeofchemicalsusedincleaningandsanitizing(e.g.,causticsoda,phosphoricacid,nitricacid,etc.)[9,16,19].Sanitizingchemicalswhichincludechlorinecompoundsensurethatthesurfacesarefreeofanymicroorganismsharmfultothebrewingindustryandthepublicconsumingthebeer.Nitrogenandphosphoruslevelsaremainlydependentonthehandlingofrawmaterialandtheamountofyeastpresentintheeffluent[9,16,19].Table1isanexampleofthephysicochemicalcharacteristicsofbrewerywastewaterfromtheUnitedBreweriesinIndia[20].236G.S.Simateetal./Desalination273(2011)235–247Infact,thebrewerywastewaterischaracterizedbylargevariationsintheparametersmentionedinTable1[21].Asaresult,mostlargebreweriesrequiresomedegreeofwastewaterpretreatment.Incaseswherethebrewerydoesnotdischargetothemunicipalsewer,thenprimaryandsecondarytreatmentoftheeffluentisrequired.However,ifthebreweryispermittedtodischargeintoamunicipalsewer,pretreatmentmayberequiredtomeetmunicipalbylawsand/ortolessentheloadonthemunicipaltreatmentplant.Insomecases,sewerdischargefeesimposedoneffluentvolume,andonthesuspendedandorganicloads,bythemunicipalitymayencouragethebrewerytoinstallitsowntreatmentfacility.Pretreatmentismeanttoalterthephysical,chemical,and/orbiologicalpropertiesoffeedwater[22],thusimprovingtheperformanceofupstreamprocesses.Therefore,pretreatmentisdonebyphysical,chemical,orbiologicalmethods,orbyacombinationofallthesemethods.Table2liststheunitoperationsincludedwithineachcategory,anddetailedschematicrepresentationofaconventionalwastewatertreatmentprocessescanbefoundinSpellman'sStandardHandbookforWastewaterOperators[23].Table3isasummaryofthegenericadvantagesanddisadvantagesofvariouswastewatertreatmentprocessesasshowninliterature[24].Thesecharacteristics(Table3)generallyrelatetothecostofconstructionandeaseofoperation.Generally,thecomplexityandcostofwastewatertreatmenttechnologiesincreasewiththequalityoftheeffluentproduced.Infact,thewatermanagementandwastedisposalinthebreweryindustryareconsideredassignificantcostfactorsandimportantaspectsintheoperationsofabreweryplant[25,26].3.1.PhysicalmethodsAmongthefirsttreatmentmethodsusedarephysicalunitoperations,inwhichphysicalforcesareappliedtoremovecontaminants.Physicalnmethodsremovecoarsesolidmatter,ratherthandissolvedpollutants.Itmaybeapassiveprocess,suchassedimentationtoallowsuspendedpollutantstosettleoutorfloattothetopnaturally.Ingeneral,thesemethodshaveyieldedlittlesuccess;mostoftenresultinginincompletecontaminantremovaland/orseparation.Forexample,sedimentationhasbeenfoundtobeunsatisfactoryevenwiththeadditionofcoagulantsandotheradditives[27].3.2.ChemicalmethodsDifferentchemicalscanbeaddedtothebrewerywastewatertoalterthewaterchemistry[22].ChemicalpretreatmentmayinvolvepHadjustmentorcoagulationandflocculation.Theacidityoralkalinityofwastewateraffectsbothwastewatertreatmentandtheenvironment.LowpHindicatesincreasingaciditywhileahighpHindicatesincreasingalkalinity.ThepHofwastewaterneedstoremainbetween6and9toprotectorganisms.WasteCO2maybeusedtoneutralizecausticeffluentsfromclean-in-places(CIP)systemsandbottlewashers[28].ThewasteCO2canalsobeusedasacheapacidifyingagentfordecreasingthepHofalkalinewastewatersbeforetheanaerobicreactor,thusreplacingtheconventionallyusedacids[20].NeutralizationwithH2SO4andHClacidsisusuallynotrecommendedbecauseoftheircorrosivenatureandsulfateandchloridedischargelimitations[29],whichmayaddtothecostofeffluenttreatmentoperations[20].Coagulationandflocculationarephysicochemicalprocessescommonlyusedfortheremovalofcolloidalmaterialorcolorfromwaterandwastewater.Inwaterandwastewatertreatment,coagu-lationimpliesthestepwhereparticlesaredestabilizedbyacoagulant,andthismayincludetheformationofsmallaggregatesbyBrownianmotion(perikineticcoagulation).Ontheotherhand,thesubsequentprocessinwhichlargeraggregates(flocs)areformedbytheactionofshearisthenknownasflocculation[30].Aftersmallparticleshaveformedlargeraggregates,colloidalmaterialcanthenbemoreeasilyremovedbyphysicalseparationprocessessuchassedimentation,flotation,andfiltration.3.3.BiologicalmethodsBiologicalwastetreatmentprocessesplayacentralroleinthewaysocietymanagetheirwastewaters.Itisbasedontheactivityofawiderangeofmicroorganisms,convertingthebiodegradableorganicpollutantsinthewastewaters.Infact,breweryeffluentshavingbothchemical(withveryhighorganiccontent)andmicrobialcontaminantsaregenerallytreatedbybiologicalmethods[31].Therefore,afterthebrewerynwastewaterhasundergonephysicalandchemicalpretreatments,thewastewatercanthenundergobiologicaltreatment.Comparedtophysicochemicalorchemicalmethods,biologicalmethodshavethreeadvantages[32]:(1)thetreatmenttechnologyismature,(2)highefficiencyinCODandBODremoval,rangingfrom80to90%,and(3)lowinvestmentcost.However,thoughbiologicaltreatmentprocessesareparticularlyeffectiveforwastewatertreatment,theyrequireahighenergyinput[33].Biologicaltreatmentofwastewatercanbeeitheraerobic(withair/oxygensupply)oranaerobic(withoutoxygen)[9].TheaerobicandanaerobicprocessesareshowngraphicallyinFig.1[34].Theseprocessesarediscussedinmoredetailsinthesubsequentsections.Generally,aerobictreatmenthassuccessfullybeenappliedforthetreatmentofbrewerywastewaterandrecentlyanaerobicsystemshavebecomeanattractiveoption[9].Table4presentsageneralcomparisonbetweenanaerobicandaerobicbiologicaltreatmentsystemssuchasactivatedsludge.3.3.1.AerobicAerobicbiologicaltreatmentisperformedinthepresenceofoxygenbyaerobicmicroorganisms(principallybacteria)thatmetabolizetheorganicmatterinthewastewater,therebyproducingmoreTable1Characteristicsofbrewerywastewater[20].ParameterValuepH3–12Temperature(°C)18–40COD(mgL−1)2000–6000BOD(mgL−1)1200–3600COD:BODratio1.667VFA(mgL−1n)1000–2500PhosphatesasPO4(mgL−1)10–5TKN(mgL−1)25–80TS(mgL−1)5100–8750TSS(mgL−1)2901–3000TDS(mgL−1)2020–5940Table2Wastewatertreatmentunitoperationsandprocesses.Physicalunitoperations-Screening-Comminution-Flowequalization-Sedimentation-Flotation-Granular-mediumfiltrationChemicalunitoperations-Chemicalprecipitation-Adsorption-Disinfection-Chlorination-OtherchemicalapplicationsBiologicalunitoperations-Activatedsludgeprocesses-Aeratedlagoons-Tricklingfilters-Rotatingbiologicalcontactorsn-Pondstabilization-Anaerobicdigestion-Biologicalnutrientremoval237G.S.Simateetal./Desalination273(2011)235–247microorganismsandinorganicend-products(principallyCO2,NH3andH2O).Aerobictreatmentutilizesbiologicaltreatmentprocesses,inwhichmicroorganismsconvertnon-settle-ablesolidstosettle-ablesolids.Sedimentationtypicallyfollows;allowingthesettle-ablesolidstosettleandseparateout.Threeoptionsinclude:Activatedsludgeprocess.Intheactivatedsludgeprocess,thewastewaterflowsintoanaeratedandagitatedtankthatisprimedwithactivatedsludge.Thiscomplexmixturecontainingbacteria,fungi,protozoans,andothermicroorganismsiscollectivelyreferredtoasthebiomass.Inthisprocess,thesuspensionofaerobicmicroorganismsintheaerationtankismixedvigorouslybyaerationdevices,whichalsosupplyoxygentothebiologicalsuspension.Attachedgrowth(biofilm)process.Thesecondtypeofaerobicbiologicaltreatmentsystemiscalled“attachedgrowth(biofilm)process”anddealswithmicroorganismsthatarefixedinplaceonasolidsurface.This“attachedgrowthtype”aerobicbiologicaltreatmentprocesscreatesanenvironmentthatsupportsthewastewaterAerobicprocesssludgeElectronacceptor:O2,1-2mg/LAnaerobicprocessHeatnsludgemethaneElectronacceptor:SO4,PO4,organics50%50%90%10%Fig.1.Anillustrationofaerobicandanaerobicprocesses[34].Table3Genericadvantagesanddisadvantagesofconventionalandnon-conventionalwastewatertreatmenttechnologies[24].TreatmenttypeAdvantagesDisadvantagesAquaticsystemsStabilizationlagoons–LowcapitalcostRequiresalargeareaofland–Lowoperationandmaintenancecost–Mayproduceundesirableodors–LowtechnicalmanpowerrequirementsAeratedlagoonsRequiresrelativelylittlelandarea–Requiresmechanicaldevicestoaeratebasins–ProducesfewUndesirableodors–ProduceeffluentsWithahighsuspendedsolidsconcentrationTerrestrialsystemsSeptictanks–Canbeusedbyindividualhouseholds–Providesalowtreatmentefficiency–Easytooperateandmaintain–Mustbepumpedoccasionally–Canbebuiltinruralareas–RequiresalandfillforperiodicdisposalofsludgeandseptageConstructedwetland–Removesupto70%ofsolidsandbacteria–Remainslargelyexperimentaln–Minimalcapitalcost–Requiresperiodicremovalofexcessplantmaterial–Lowoperationandmaintenancerequirementsandcosts–BestusedinareaswheresuitablenativeplantsareavailableMechanicalsystemsFiltrationsystemsMinimallandrequirements–Requiresmechanicaldevices–Relativelylowcost–Canbeusedforhouseholdscaletreatment–EasytooperateVerticalbiologicalreactors–Highlyefficienttreatmentmethod–Highcost–Requireslittlelandarea–Complextechnology–Applicabletosmallcommunitiesforlocalscaletreatmentandtobigcitiesforregionalscaletreatment–Requirestechnicallyskilledmanpowerforoperationandmaintenance–Needssparepartsavailability–HasahighenergyrequirementActivatedsludge–Highlyefficienttreatmentmethod–Highcost–Requireslittlelandarea–Requiressludgedisposalarea(sludgeusuallyland-spread)–Applicabletosmallcommunitiesforlocalscaletreatmentandtobigcitiesforregionalscaletreatment–Requirestechnicallyskilledmanpowerforoperationandmaintenancerequirement238G.S.Simateetal./Desalination273(2011)235–247growthofmicroorganismsthatprefertoremainattachedtoasolidmaterial.Tricklingfilterprocess.Inthetricklingfilterprocess,thewastewaterissprayedoverthesurfaceofabedofroughsolids(suchasgravel,rock,orplastic)andisallowedto“trickledown”throughthemicroorgan-ism-coveredmedia.nBiofiltrationtowers.Avariationofatricklingfiltrationprocessisthebiofiltrationtowerorotherwiseknownasthebiotower.Thebiotowerispackedwithplasticorredwoodmediacontainingtheattachedmicrobialgrowth.Rotatingbiologicalcontactorprocess.Therotatingbiologicalcontactorprocessconsistsofaseriesofplasticdisksattachedtoacommonshaft.Lagoons.Theseareslow,cheap,andrelativelyinefficient,butcanbeusedforvarioustypesofwastewater.Theyrelyontheinteractionofsunlight,algae,microorganisms,andoxygen(sometimesaerated).Sludgetreatmentanddisposal.Ingeneral,aerobictreatmentsystemsliketheactivatedsludgesystemproducerelativelylargequantitiesofsludge,whichrequiresdisposal.Thesludgecanundergoadewateringtreatmenteitherbyreconsolidatedcentrifugation,vacuumfiltration,orinapressurefilter.3.3.2.AnaerobicAnaerobicwastewatertreatmentisthebiologicaltreatmentofwastewaterwithouttheuseofairorelementaloxygen.Anaerobictreatmentischaracterizedbybiologicalconversionoforganiccompoundsbyanaerobicmicroorganismsintobiogas,whichcanbeusedasafuel;mainlymethane55–75vol%andcarbondioxide25–40vol%withtracesofhydrogensulfide[35].Inbreweries,directutilizationofbiogasinaboilerisusuallythepreferredsolution.Thereasonforthisisthatinvestmentcostsforacombinedheatandpowerunit(CHP)arehigherandmoreextensivebiogastreatmentisrequired[36].Inthecontextofdecreasingfossilfuelreserves,anaerobicwastewatertreatmentmakesabrewerymoreindependentfromexternalfuelsupply.Furthermore,itcontributestoamoresustainablebrewingprocess.UpflowAnaerobicSludgeBlanket.OneofthemostpopularanaerobicprocessesistheUpflowAnaerobicSludgeBlanket(UASB).IntheUASBreactor,thewastewaterentersaverticaltankatthebottom.Thewastewaterpassesupwardsthroughadensebedofanaerobicsludgewherethemicroorganismsinthesludgecomeintocontactwithwastewatersubstrates[34].Thissludgeismostlyofagranularnature(1–4mm)havingsuperiorsettlingcharacteristics(i.e.,atarateofmorethan50mh−1n).Theorganicmaterialsinthesolutionareattackedbythemicrobes,whichreleasebiogas.Asthebiogasrises,itcarriessomeofthegranularmicrobialblanket.AtthetopoftheUASBreactor,asocalledthree-phaseseparatorseparatesthebiomassfromthebiogasandwastewater[16].Thethree-phaseseparatorisalsoknownasthegas–liquid–solid-separator[34].Fig.2showsagraphicalillustrationoftheUASBprocess[34].FluidizedBedReactor.InaFluidizedBedReactor(FBR),wastewaterflowsinthroughthebottomofthereactor,andupthroughamedia(usuallysandoractivatedcarbon)thatiscolonizedbyanactivebacterialbiomass.Themediaprovidesagrowthareaforthebiofilm.Thismediais“fluidized”bytheupwardflowofwastewaterintothevessel,withthelowestdensityparticles(thosewithhighestbiomass)movingtothetop.4.TreatmentofbrewerywastewaterforreuseThedischargedwastewaterfromthebiologicalpretreatmentprocess-escanbefurthertreated.InthissectionvariousmethodsthatmaybeusedbiogasgascapSludgebedbafflesgasbubblessludgegranulesinfluenteffluentthreephaseseparatornFig.2.UASBanaerobicprocess[34].Table4Anaerobictreatmentascomparedtoaerobictreatment[16].AerobicsystemsAnaerobicsystemsEnergyconsumption-High-LowEnergyproduction-No-YesBiosolidsproduction-High-LowCODremoval(%)-90–98-70–85Nutrients(N/P)removal-High-LowSpacerequirement-High-LowDiscontinuousoperation-Difficult-Easy239G.S.Simateetal./Desalination273(2011)235–247totreatbrewerywastewaterforreuseareexplored.Itmustbenoted,however,thatrecyclingofregeneratedwaterasbrewingwaterisconsideredinappropriateandwouldrequirethatdrinkingwaterstandardsarecompliedwith[1].Table5showsthemostimportantstandardsforrinsing,coolinganddrinkingwater[1].AmongtheparametersinTable5,themostimportantparameterforrecyclingwaterorrequiredtobemeasuredistheCOD[1,37].CODisameasureoftheoxygenequivalentoftheorganicmattercontentofasamplethatissusceptibletooxidationbyastrongoxidant[38].TheCODisconsideredanappropriateindexforshowingtheamountoforganicsinwater[39].TheCODvalueofawastewatermainlyrepresentsthebiodegradableandnon-biodegradableorganiccomponents(Fig.3),althoughinorganiccom-poundsmaybesignificantincertaincases[37].However,ingeneral,breweryeffluentsareeasilybiodegradablewithBOD/CODratiointherange0.6–0.7[19,20,36].Theorganiccomponentsinthebreweryeffluent(expressedasCOD)consistofsugars,solublestarch,ethanol,volatilefattyacids,etc[1,36].4.1.MembranefiltrationTheseparationbyporousmembranesisofgreatinterestinenvironmentalandchemicalengineeringprocesses[40–42].Infact,filtrationtechnologyisconsideredasanintegralcomponentofdrinkingwaterandwastewatertreatmentapplications[43].Membranefiltrationcanbedividedintofourcategories,dependingontheeffectiveporesizeofthemembrane,andhencethesizeoftheimpuritiesremoved.Inorderofndecreasingporesize,theyareasfollows:microfiltration,ultrafiltration,nanofiltration,andhyperfiltration.Table6summarizestheessentialfeaturesoftheseprocesses,suchasporesizeandoperatingpressure[30].However,thecharacteristicslistedinTable6arenotexhaustive,thusdifferentrangesmaybequotedelsewhere.Fig.4showstwowaysofoperatingamembranefilter,i.e.,deadendfiltrationandcross-flowfiltration.Indead-endfiltration,allofthefeedwaterflowsthroughthemembrane(aspermeate)sothatallimpuritiesthataretoolargetopassthroughtheporesaccumulateinthefiltermodule.Somemeansofremovingtheseisnecessary.Cross-flowfiltrationinvolvesflowingthefeedwaterparalleltothemembranesurface,withonlyaproportionpassingthroughthemembrane.Theretainedimpuritiesremainintheretentate,whichisnormallyrecirculated.Membranescanbeclassifiedaccordingtotheirmaterialofconstruction[34].Thereisavarietyofmaterialsthatareusedforthemanufactureofmembranefilters,e.g.,ceramicsandpolymers[30,44].Polymermaterialsusedformembranemanufactureare,forinstance,celluloseacetate,polyamides,polypropylene,andpolysulfone[34].Ceramicmembranesareusuallymanufacturedfrommetaloxides,suchasalumina,oftenusingsomeformofasol–gelprocess.Inwastewatertreatment,theuseofnanofiltration/reverseosmosisfororganic/saltremovalisnormallypracticed[45].Nanofiltration(NF)isactuallyarelativelyrecentmembranefiltrationprocessusedmostoftenwithlowtotaldissolvedsolidswatersuchassurfacewaterandfreshgroundwater,withthepurposeofsoftening(polyvalentcationremoval)andremovalofdisinfectionby-productprecursorssuchasnaturalorganicmatterandsyntheticorganicmatter[46].Thenominalporesizeofthemembraneistypicallyabout1nm.However,nanofiltermembranes(justlikeothermembranes)aretypicallyratedbynominalmolecularweightcut-off(MWCO)ratherthannominalporesize.TheMWCOisanexpressionoftheretentioncharacteristicsofthemembraneintermsofmoleculesofknownsizes[44].ThenominalMWCOofthemembranemaybedefinedastherelativemolecularmassofthecomponentthatisrejectedby90%[47].Inotherwords,MWCOisanattributeoftheporesizeandisrelatedtotherejectionofasphericalsoluteofagivenmolecularweight[48].Thereasonthattheword‘nominal’isusedisthattheshapeandchargeonthemoleculewillinfluenceitsrateofmigrationthroughthemembrane[44].TheMWCOistypicallylessthan1000atomicmassunits(daltons).TheNFisacross-flowfiltrationtechnologywhichliesnsomewherebetweenultrafiltration(UF)andreverseosmosis(RO)(Table6).Thesemembranesareabletoremoveparticlesbelow100nminsize.Inaddition,thetransmembranepressure(pressuredropacrossthemembrane)required(upto3MPa)isconsiderablylowerthantheoneusedforRO,thusreducingtheoperatingcostsignificantly.Braekenetal.[1]usedNFinanattempttotreatbrewerywastewaterforrecycling.TheresultsofthisstudyshowedthattheremovalofCOD,Na+,andCl−(averaging100%,55%and70%removal,respectively)withNFwassufficientforthebiologicallytreatedwastewater,whereastheotherthreewastewaterstreams(bottlerinsingwater,rinsingwaterofTable5Qualitystandardsforrinseandcoolingwater,andaimedvaluefordrinkingwater[1].QualitystandardrinsingwaterQualitystandardcoolingwaterQualitystandarddrinkingwaterCOD(mgO2L−1)0–20–20–2Na+(mgLn−1)0–200/20Cl−(mgL−1)50–25/25pH6.5–9.56.5–9.56.5–9.5Conductivity(μscm−1)//400/:Notspecified.Non-oxidisableNon-biologicallydegradableTotalOrganicCarbon(TOC)Chemicallyoxidisable(COD)Biologicallydegradable(BOD)Fig.3.Therelationshipbetweentheorganiccarbonfractionsinwastewater.Table6Typicalcharacteristicsofmembraneprocesses[30].ProcessOperatingpressure(bar)Poresize(nm)nMolecularweightcut-offrangeSizecut-offrange(nm)Microfiltrationb4100–3000N500,00050–3000Ultrafiltration2–1010–2001000–1,000,00015–200Nanofiltration5–401–10100–20,0001–100Reverseosmosis(hyperfiltration)15–150b2b200b1240G.S.Simateetal./Desalination273(2011)235–247thebrightbeerreservoir,andrinsingwaterofthebrewingroom)werenotsuitableforrecyclingusingNF.Theseresultsclearlyshowtheimportanceofpretreatmentprocesses.Thoughnanofiltrationisvitalforthetreatmentofwastewaters,themajorlimitationisfouling.However,coagulation/flocculationcanbeusedtoenhancenanofiltrationperformancetowardswaterreuseandminimizationoffouling[49].Thisisbecausecoagulation/flocculationreducetheconcentrationofimpuritiesandhenceimprovethepermeatefluxaftersedimentation.Asmentionedearlier,ROisnormallypracticedfortheremovaloforganic/saltinwastewaters[45].TheROisthetightestpossiblemembraneprocessinliquid/liquidseparationandthereforeproducesthehighestwaterqualityofanypressuredrivenmembraneprocess[34].TheROmembranesareclassifiedbypercentagerejectionofNaClandrangesfrom95to99.5%[34].ThesuccessofROinlarge-scaledesalinationandmunicipalwastewatertreatmenthasledmanyindustriestoviewthistechnologyasameansofpollutionabatementandcostsavingsthroughreuse[50].InfactwastewatertreatmentusingROhavebeenemployedinchemical,textile,petrochemical,electrochemical,pulpandpaper,andfoodindustriesaswellasformunicipalwastewater[51].MadaeniandMansourpanah[39]reviewedseveralstudiesofROapplicationsandfoundthatROmaydecreasetheCODoftheeffluentbymorethan90%orcompletely.Infact,teststoreduceCODvaluesshowedthatROisthebestmethodtoseparateorganicsfromwater.ROisalsousuallycombinedwithotherphysicalseparationtechniques,aswellasbiologicalandphysiochem-nicaltreatment,toproduceeffluentssuitableforreuse.Forexample,acombinationofultrafiltration(UF)andROhaveproducedhighqualitywater[52,53].InstudiesbyMadaeniandMansourpanah[39],biologicallytreatedwastewaterfromanalcoholmanufacturingplanthavingCODintherangeof900to1200mgL−1wastreatedbyvariouspolymericROandNFmembranes.ThepolyethyleneterphetalateROmembraneyieldedoutstandingresultswithhigherflux(33kgm−2h−1)andextremeCODremoval(100%).Inanotherstudy,brewerybio-effluentwasobtainedusinganinternalaerobicmembranebioreactor(internalMEMBIOR)[54].Inthisstudy,theCODofbrewerywastewatervariedstronglyfrom1500to3500mgL−1,butaftertheinternalMEMBIORtheCODwasaround30mgL−1regardlessoftheCODfluctuationsoftheinfluent.Thesuspendedsolidswerecompletelyretainedbytheflatplatemembrane.Thismadetheeffluentperfectlysuitedforre-useviareverseosmosisasprocesswater,omittingtheneedforexpensivepretreatmentmethods.Insummary,areviewofseveralliteratureshasshownthatROisapreferredconditioningmethodforthebrewingindustrybecauseofitsenvironmentallyfriendlyapplications,itssimplicityregardingautomation,itsuser-friendlyaspects,andthesmallamountofspaceitnrequires.Furthermore,itrequiresnoregeneratingchemicals,whichmeansnoadditionalsaltshavetobeaddedforwastewaterneutralization.4.2.Non-thermalquenchedplasmaPlasmaisahighlyionizedgasthatoccursathightemperatures.Theintermolecularforcescreatedbyionicattractionsandrepulsionsgivethesecompositionsdistinctproperties;forthisreason,plasmaisdescribedasafourthstateofmatter[55].Likegas,plasmadoesnothaveadefiniteshapeoradefinitevolumeunlessenclosedinacontainer;unlikegas,intheinfluenceofamagneticfield,itmayformstructuressuchasfilaments,beamsanddoublelayers.Somecommonplasmasarestarsandneonsigns.Insummary,aplasmausuallyresultsfromtheincreaseoftheenergyofagasprovidedbyvarioussources,suchaselectric,magnetic,mechanical(shockwavesandultrasound),thermalorevenoptical(laser)sources[56].Apartofthegaseousmatteristhuschangedfromthestartingmoleculesoratomstoanelectricallyneutralmixtureofions(anionsandcations)andelectrons,involvingotherheavyspeciesandphotons[56].Doublaetal.[5]reportedtheuseofhumidairplasmacreatedbyanelectricglidingarcdischargeinhumidairtolowerorganicpollutantsinbrewerywastewater.Theglidingarcdischargeinhumidairgenerates.NOand.OHradicals,whichhavestrongoxidizingcharacteristics.The.OHradicalisaverypowerfuloxidizingagent[E0(.OH/H2O)=2.85V/NHE]andthusresponsibleforoxidationreactionswithorganictargets,bothduetoitsownpropertiesandtoitsderivativeand/orparentmoleculeH2O2asshowninEq.(1)[5]:nH2O2↔2OHð1ÞInitially,NOleadstotheformationofnitriteinneutralmediums,butisfurtheroxidizedtonitrateionsasstablespecies.Additionally,thehighstandardoxidation-reductionpotentialsoftheHNO2/NO(1.00V)andNO3−/HNO2(1.04V)systemsreflecttheoxidizingpowerofthenitrateion[5].Inotherwords,thenitrateionsparticipateintheoxidizingcharacteristicsofthehumidairplasma.InthestudybyDoublaetal.[5],theBODremovalefficiencyoftheprocesswithbreweryindustrialwatersofBODvaluesof385and1018mgL−1were74and98%,respectively.ThealkalinewastewaterswerealsorapidlyneutralizedduetopHloweringeffectoftheplasmatreatmentemanatingfromtheproductionofnitrateions[56].Thisprocesscanbecoupledwithbiologicalprocesstreatmentstofurtherlowertheorganicpollutantconcentrationmoreeasilyandrapidlytoanacceptablelevelforreuse[5].pressurepermeatemembranesfeedpressureretentatenpermeateFiltecaker(a)(b)Fig.4.Twoformsofmembranefiltration,(a)dead-endand(b)cross-flowfiltration.241G.S.Simateetal./Desalination273(2011)235–2474.3.MembranebioreactorDepletionofwaterresources,increasingwaterprice,andstringentregulationhascausedthedevelopmentofvariouscombinationsofmembraneswithotherconventionaltreatmentcomponents[45].Membranebioreactor(MBR)isbecomingoneofsuchflourishingtechnologyinwaterandwastewatertreatmentfields[45].TheMBRcombinestwoproventechnologies,i.e.,enhancedbiologicaltreatmentusingactivatedsludge,andmembranefiltrationasshowninFig.5[57].Dependingonhowthemembraneisintegratedwiththebioreactor,twoMBRprocessconfigurationscanbeidentified:side-streamandsubmerged(Fig.6).Inside-streamsMBRs,membranemodulesareplacedoutsidethereactor,andthereactormixedliquorcirculatesoverarecirculationloopthatcontainsthemembrane.InsubmergedMBRs,themembranesareplacedinsidethereactor,submergedinthemixedliquor.Theside-streamMBRsaremoreenergyintensivecomparedtosubmergedMBRs[34,58]duetohigheroperationaltransmembranepressures(TMP)andtheelevatedvolumetricflowrequiredtoachievethedesiredcross-flowvelocity[58].However,submergedMBRsusemoremembraneareaandoperateatlowerfluxlevels[34].TheMBRhasbeenstudiednotonlyforwastewaterbutalsofordrinkingwatertreatment[59,60],andisappliedtomunicipalwastewatertreatmentatfullscale[61].LiandChu[59]foundthatnearly60%ofinfluenttotalorganiccarbon(TOC)wasremovedbyMBR,accompaniedbymorethan75%reductionintrihalomethanesformationpotential(THMFP).TheMBRtechnologyisalsoappliedtothebrewerywastewaterforreuse[32].TheCODreductioninMBRinfluent(i.e.,UASBreactoreffluentrangingfrom500to1000mgO2L−1n)ofuptoanaverageof96%wasreportedbyDaietal.[32].Brewerywastewaterwasalsoconductedbyvariousotherresearchers[62–64].Inmostofthesestudies,significantamountsofCODremovals(~90%)werereported.Withthesepromisingresults,itcanbeconcludedthattheMBRprocessisanattractiveoptionforthetreatmentandreuseofindustrialandmunicipalwastewaters.Table7showstheoperatingparametersandsomeoftheresultsoftheanaerobicdigestion-ultrafiltrationprocess[45].Justlikeothermembraneseparationprocesses,membranefoulingisthemostseriousproblemaffectingsystemperformanceofMBRsand,thereforeneedtobecleanedfrequently[34].Membranefoulingcanbeclassifiedasreversibleandirreversible[65].Itresultsfrominteractionbetweenthemembranematerialandthecomponentsoftheactivatedsludgeliquor,whichincludebiologicalflocsformedbyalargerangeoflivingordeadmicroorganismsalongwithsolubleandcolloidalcompounds.Foulingleadstoasignificantincreaseinhydraulicresistance,manifestedaspermeatefluxdeclineorTMPincreasewhentheprocessisoperatedunderconstant-TMPorconstant-fluxconditionsrespectively.Theorganicfoulingofthemembraneismainlydependentonseveralfactorsincludingthefollowing[65]:(1)thecomponentsoforganicmattersuchascolloidalfractionanddissolvedfraction,(2)organiccharacteristicssuchashydrophobicityandmolecularsizeandconfiguration,(3)solutionchemistrysuchaspH,divalentionsconcentrationandionicstrength,and(4)membranepropertiessuchasporesizeandsurfaceroughness.Inpractice,membranefoulingcanbecontrolledbytwotypesofapproaches,i.e.,(1)periodicalairscouring,backwashingandchemicalcleaning[67],and(2)theadditionofadsorbentsandpretreatmentbycoagulation[68,69].Arecentstudyhasshownthatdirectadditionofacoagulantinthebioreactorwasabletomitigatemembranefouling[66].TheintegrationofcoagulationintoMBRistermedmembranecoagulationbioreactor(MCBR).Infact,themostimportanttrendinthedevelopmentofmembranefiltrationforwatertreatmentistheintegrationofdifferentpretreatmentstrategiestoimprovetheperformanceoflowpressuremembranes[22].4.4.CombinedanaerobicandaerobictreatmentAnaerobicandaerobictreatmentsareoftencombinedinbrewerywastewatertreatment[16,70,71].AsshowninFig.7,thereareessentiallyfourtypesofintegratedanaerobic–aerobicbioreactors[72].TheattributesFig.5.SimplifiedschematicdescriptionoftheMBRprocess[57].npermeatemembraneunitbioreactorwastewaterbioreactorpermeatewastewaterSide-streamMBRSubmergedMBRFig.6.Membranebioreactorconfigurations[57].Table7Meanoperatingcriteriaofanaerobicdigestion-ultrafiltrationplantstreatingvariousindustrialeffluents[45].Operatingparameter/resultsBreweryWinedistilleryMaltingEggprocessMaizeprocessVolumeofdigester(m3)0.052.43.0802610Operationalperiod(month)3185836FeedCOD(kg/L)6.7373.584–15PermeateCOD(kg/L)0.180.260.800.350.30nCODremoval(%)9793779597Spaceloadrates(kgCOD/m3·d)17.012.05.06.03.0Sludgeloadrate(kgCOD/kgVSS·d)0.70.580.50.330.24HRT(day)0.83.30.81.35.2Temperature(°C)3535353035MLSS(kg/m3)30–50501010–3023Membranearea(m2)0.441.759.6200800Flux(L/m2·h)10–4040–8020–4015–3010–70Inletpressure(kPa)340400500500600Crossflowvelocity(m/s)1.52.01.81.81.6Tubediameter(mm)9.012.79.012.79.0242G.S.Simateetal./Desalination273(2011)235–247ofintegratedanaerobic–aerobicbioreactorsareasfollows[36]:Firstly,intheanaerobicreactorthebulkoftheCOD,70–85%,isconvertedintobiogasonasmallsurfacearea.Secondly,inanaerobic/anoxicpost-treatmentstep,upto98%oftheCODandnutrientsareremoved.Furthermore,someoftheimportantadvantagesofcombinedaerobic/anaerobictreatmentofbreweryeffluentovercompleteaerobicincludeapositiveenergybalance,reduced(bio)sludgeproductionandsignificantlowspacerequirements[16].Recentdevelopmentoftallslenderanaerobic(e.g.,internalcirculationreactors)andaerobic(e.g.,airliftreactors)reactorsallowsforextremecompacteffluenttreatmentplantdesignstillmeetingstringentrequirementsofsurfacewaterquality[16].4.5.TheuseofcarbonnanotubesSincethe‘rediscovery’ofcarbonnanotubes(CNTs)in1991[73]byIijima[74],severalresearchersworldwidecuttingacrossalldisciplineshaveembarkedonstimulatingresearchtoutilizethemyriaduniquepropertiesofthesenanomaterials.TheCNTsconsistofhoneycombnstructuresofgraphenesheetsrolledupintocylinderswithadiameterofafewnanometers,butlengthofmanymicronorevencentimeters[75,76].Alotofmethodsandcarbonsourcesforthegrowthofcarbonnanotubeshavebeenactivelypursuedinthepastfewyears,andthesehavebeenoutlinedinseveralreviewpapers[77–82].TherearetypicallytwoformsofCNTsaccordingtothenumberofrolledupgraphenelayersthatformthetube,i.e.,single-walledcarbonnanotubes(SWCNT)andmulti-walledcarbonnanotubes(MWCNT).Themodelrepresentationsofmulti-walledCNTandsingle-walledCNTareshowninFig.8[83,84].TheuniquepropertiesofCNTsarisefromtheirspecialatomicandelectronicstructures[85].Owingtotheiruniquestructural,mechanical,andelectronicproperties,CNTspossessgreatpotentialinalargevarietyofpromisingapplicationssuchaschemicalsensors,fieldemissionmaterialsandcatalystsupports[75,78,81,86].SomeoftheimportantapplicationsofCNTswithrespecttowatertreatmentarediscussedbelow.4.5.1.NanosorbentsCarbonnanotubeshaveshownexceptionallygoodadsorptioncapabilityandhighadsorptionefficiencyforvariousorganicpollu-tants[87–91]andinorganicpollutantssuchasfluoride[92].TheCNTshavealsobeenfoundtobesuperiorsorbentsforheavymetals[89,93,94].TheCNTsareparticularlyattractiveassorbentsbecause,onthebasisofmass,theyhavelargersurfaceareasthanbulkparticles,andcanbefunctionalizedwithvariouschemicalgroupstoincreasetheiraffinitytowardstargetcompounds[95].TheCNTsalsohavesmallsize,andhollowandlayeredstructures,whichareveryimportantcharacteristicattributesforadsorption[96].TheabilityoffunctionalizedCNTstoadsorbvariousimpuritiesfromwastewatercanbeextendedtotheremovalofCODfrombrewerywastewater.AreviewoftheliteraturehasshownthatalthoughCNTshavebeenproventopossessgoodpotentialassuperioradsorbents,tothebestoftheauthors'knowledgenopublishedworkisavailableregardingtheiruseascoagulantsand/orflocculants.However,itcanbetheorizedthatifCNTscanadsorbonseparatecolloidalparticles,thentheparticlescanbedrawntogether;aphenomenonknownasbridgingfloccula-tion.Furthermore,theadsorptionofCNTsontoparticlesurfacescanalsoresultinchargeneutralization,resultinginanearzeronetcharge.Oncethesurfacechargehasbeenneutralized,theionicclouddissipatesandtheelectrostaticpotentialdisappearssothatthecontactamongcolloidalparticlesoccursfreely.Chargeneutralizationniseasilymonitoredandcontrolledusingzetapotential[97].Fromthetwophenomenaabove(adsorptionandcoagulation),itcanbeascertainedthatforthetreatmentofwastewaters(includingbrewerywastewaters)containingbothdissolvedandsuspendedorganics,CNTsmaywellbeappliedtoremovedissolvedorganicsbyadsorption,andsuspendedsolidorganicbyheterogeneouscoagulation(bridgingandneutralization),atthesametime.However,alotofchallengesariseinattemptingtouseCNTsintheirpresentstateascoagulantsorflocculants.Firstly,theCNTslackdispersionandsolubility.However,therehavebeenseveralsuccessfulattemptstopreparewatersolublecarbonnanotubesbyvarioustechniques[98–100],andimprovementsintheirdispersivitythroughIntegratedbioreactorswithphysicalseparationofanaerobic-aerobiczoneIntegratedbioreactorswithoutphysicalseparationofanaerobic-aerobiczoneAnaerobic-aerobicSequencingBatchReactor(SBR)Combinedanaerobic-aerobicculturesystemAnaerobic-aerobicsystemusinghighratebioreactorsConventionalanaerobic-aerobicsystemIntegratedanaerobic-aerobicbioreactorsnAnaerobic-aerobictreatmentFig.7.Typesofcombinedanaerobic-aerobicsystem[71].Fig.8.Modelsandrepresentationofmulti-walledCNTandsingle-walledCNT[82,83].243G.S.Simateetal./Desalination273(2011)235–247functionalization[101].Secondly,theCNTsareveryexpensive,thustheyrequiretoberegeneratedafteruse.IftheCNTsareappliedintheformofslurry,anefficientseparationprocessdownstreamsuchasmembranefiltrationisneededtoretainandrecycletheCNTs.Retentionofnanomaterialsiscriticalnotonlybecauseofthecostassociatedwithlossofnanomaterials,butalso,andmoreimportantly,becauseofthepotentialimpactsofnanomaterialsonhumanhealthandecosystems[102–104].4.5.2.NanofiltersThesuccessfulfabricationofcarbonnanotubefiltershavebeenreported[105].Thesefiltrationmembranesconsistofhollowcylinderswithradiallyalignedcarbonnanotubewalls.Srivastavaetal.[105]efficientlycarriedoutfiltrationofheavierhydrocarbonspecies,CmHn(mN12),fromhydrocarboneceousoilforexample,petroleumCmHn(n=2m+2,m=1to12),andintheremovalofEscherichiacolifromdrinkingwaterandfiltrationofthenanometer-sizedpoliovirus.ThehighorganiccontentofbreweryeffluentisclassifiedashighstrengthwasteintermsofCOD,from1000mgL−1to4000mgL−1andBODofupto1500mgL−1[6].ThismakesbrewerywastewateragoodcandidatefortreatmentwiththeseCNTfilters.nMembranesthathaveCNTsasporescouldbeusedindesalinationanddemineralization.Billionsofthesetubesactastheporesinthemembrane.Amembranefilterpossessingbothsuper-hydrophobicityandsuper-oleophilicitywassynthesizedfromvertically-alignedmulti-walledcarbonnano-tubesonastainlesssteelmeshforthepossibleseparationofoilandwater[106].Bothsuper-hydrophobicityandsuperoleophilicitycouldbeobtainedduetothedual-scalestructure,needle-likenano-tubegeometryonthemeshwithmicro-scalepores,combinedwiththelowsurfaceenergy[106].Thenano-tubefiltercouldseparatedieselandwaterlayers,andevensurfactant-stabilizedemulsions.Thesuccessfulphaseseparationofthehighviscositylubricatingoilandwateremulsionswasalsocarriedout.Theseparationmechanismcanbereadilyexpandedtoavarietyofdifferenthydrophobicandoleophilicliquidssuchasbrewerywastewater.4.6.ElectrochemicalmethodsElectrochemicalmethodofwastewatertreatmentcameintoexistencewhenitwasfirstusedtotreatsewagegeneratedonboardbyships[107].Thereafter,theapplicationofelectrochemicaltreatmentwaswidelyreceivedintreatingindustrialwastewatersthatarerichinrefractoryorganicsandchloridecontent[108,109].Theelectrochemicalmethodoftreatmentiswell-suitedfordegradingbiorefractoryorganicpollutants,becauseitispossibletoachievepartialorcompletedecompositionoftheorganicsubstances.Theelectrochemicalmethodsoftreatmentarefavored,becausetheyareneithersubjecttofailureduetovariationinwastewaterstrengthnorduetothepresenceoftoxicsubstancesandrequirelesshydraulicretentiontime.Vijayaraghavanetal.[108]developedanovelbrewerywastewatertreatmentmethodbasedoninsituhypochlorousacidgeneration.Thegeneratedhypochlorousacidservedasanoxidizingagentthatdestroyedorganiccompoundspresentinthebrewerywastewater.AninfluentCODvalueof2470mgL-1wasreducedto64mgL−1(over97%reduction).Thehypochlorousacidwasgeneratedusingagraphiteanodeandstainlesssteelsheetasacathodeinundividedelectrolyticreactor.Initially,duringelectrolysis,chlorinewasproducedattheanodeandhydrogengasatthecathode.Sincetheanodeandcathodewerekeptinanundividedelectrolyticreactor,thechlorinenthatwasgeneratedundergoesadisproportionationreaction,resultinginhypochlorousacid[108]asindicatedinEq.(2)below:Cl2þH2O→HOClþHClð2ÞFurtherdisproportionofOCl−toClO3−wasacceleratedathightemperature(75°C)andunderalkalineconditions(Eq.(3)).3OCl−→ClO−3þ2Cl−ð3Þ4.7.MicrobialfuelcellsRecently,brewerywastewaterhasbeensimultaneouslytreatedwhilegeneratingelectricityfromorganicmatterinwastewater[33,110–112].Thisdevicethattreatswastewaterandgenerateselectricityatthesametimeistermedmicrobialfuelcell(MFC)[113,114].TheMFCisacombinedsystemwithanaerobicandaerobiccharacteristics.Theyaredesignedforanaerobictreatmentbybacteriainthesolutionneartheanode,withthecathodeexposedtooxygen(oranalternativechemicalelectronacceptor).Electronsreleasedbybacterialoxidationoftheorganicmatteraretransferredthroughtheexternalcircuittothecathodewheretheycombinewithoxygentoformwater[33].Consequently,acombinationofanaerobic–aerobicnprocessescanbeconstructedusingadouble-chamberMFC,inwhichtheeffluentoftheanodechambercouldbeuseddirectlyastheinfluentofthecathodechambersoastobetreatedfurtherunderaerobicconditionstoimprovethewastewatertreatmentefficiency[112].Fengetal.[33]foundthatwithaninfluentCODofbrewerywastewaterof2250±418mgL−1,theCODremovalefficiencywas85%and87%at20°Cand30°C,respectively.Performanceofsequentialanode-cathodeMFCachievedCODremovalefficiencyofmorethan90%(e.g.,CODof1250±100mgL−1wasreducedto60mgL−1)[112].Furthermore,upto94%CODremovalhasalsobeenreportedbyotherresearcherswiththismethod[111].SincehighCODremovalefficiencieswereachievedinthesestudies,itcanbeconcludedthatMFCs,particularly,sequentialanode–cathodetype,canprovideanewapproachforbrewerywastewatertreatmentwhileofferingavaluablealternativetoenergygeneration.4.8.CarbonThecharacteristicsofawatertreatmentplanthaveagreatinfluenceonthecharacteristicpropertiesoftheendproduct.Evenwhentheincomingprocesswaterisfromamunicipaldrinkingwatersource,thewatermaycontainresidualtastes,odors,disinfectionby-products,andfreeandcombinedchlorine.Moleculeswithcarbon–sulfurbondsoftensmellandtastebad,buttheseareoftenpreferentiallyadsorbedoncarbon.Thesameistrueofmoleculesnwitharomaticrings.Carbon'sde-chlorinatingcapabilityresultsfromitsabilitytoactasareducingagentthatreactswithstrongoxidizingagentssuchashypochlorousacidorchlorinedioxide.Thetreatmentoftannicacidforflavorandodorremovalisaprocessapplicationinbrewingwherecarbonadsorptionisused.Carbonisalsousedtoremovecolorfrommaltsforuseinclearbeersandotherflavoredmaltbeverages.Severalgranularandpowderedproductscanbeusedforthistypeofapplication.Activatedcarbonsareaneffectivetreatmenttoassurewaterthatiscontaminant,taste,andodorfree.5.DiscussionandsynthesisoffindingsThissectionprovidesadiscussionandsynthesisofthereviewfindingsofthispaper.Thisdiscussionincludesacomparisonandpossibleintegrationoftheprocessesandtechnologies.Inanutshell,thediscussionprimarilyaddressesthefollowingtwofundamentalquestions:(a)Howdotheprocessesandtechnologiescomparewitheachother?(b)Cantheybeintegratedwitheachother,andifso,whatarethepotentialchallengesandbenefits?5.1.ComparisonofprocessesandtechnologiesThisreviewhighlightedtheneedfortreatmentofbrewerywastewater,andlookedatvariousmethodsthatmaybeusedtosafelyandcost-effectivelytreatbrewerywastewaterforreuse.Inaddition,somechallengesassociatedwiththesemethodswerediscussed.Itshouldbenotedandemphasizedhereinthatthetreatmentofbrewerywastewatereffluentisacostlyandrelatively244G.S.Simateetal./Desalination273(2011)235–247complexactivity;particularlywiththeneedtomeetgovernmentalregulationsandenvironmentalfriendliness[6,115].Conventionalseparationmethodssuchascoagulation/flocculation,centrifugation,andgravityseparationexhibitshortcomingsincludingincompleteCODremoval.Thesemethodsaregenerallyassociatedwithlowseparationefficiency,highoperationcosts,largesetupsize,andthegenerationofsecondarypollutants.Itwasalsonoticedthatbiologicaltreatmentiswidelyappliedasapretreatmentmethod.Generally,aerobictreatmenthasbeenappliedforthetreatmentofbrewerywastewaterandrecently,anaerobicsystemshavebecomeanattractiveoption,amongotheradvantages,becauseoftheirhighCODcontentremoval.Thoughthesebiologicalmethodshavefoundwidespreadapplicationforthetreatmentofthecharacteristicallyhighnorganiccontentofthebrewerywastewater,furthertreatmentisrequiredforwaterreuse.Nevertheless,thisreviewhasshownsomepromisingresultswithquenchedplasma,MBR,electrochemicalmethods,andmicrobialfuelcells.Thesemethodshavegreatpotentialtobeusedtotreatbrewerywastewaterforreuseandneedstobefurtherinvestigatedwithrespecttodifferentchallengesandopportunitiesinvolved.Forexample,beerbrewerywastewatermightbeagoodsourceforelectricitygenerationinMFCsduetoitsnatureofhighcarbohydratesandlowammonium–nitrogenconcentration.Theauthorshavealsonotedthatrecentadvancessuggestthatmanyoftherecentproblemsinvolvingwaterqualitycouldbesolvedorgreatlyamelioratedusingcarbonnanotubesassorbents.Therefore,itisexpectedthatthebreweryindustrywillalsobenefitfromthesediscoveries.However,theknowledgerequiredforthelarge-scaledesignandapplicationoftheprocessesdiscussedinthisreviewisperhapsstilllacking.Itisfurtherrecommendedtocarryoutsomestudiestoestablishestimatedcapitalcostsofthesepromisingprocesses.Ontheotherhand,theapplicationofmembranefiltration(e.g.,NFandRO)todrinkingwatertreatmentandwastewaterreuse,thoughwellestablished,hasundergoneaccelerateddevelopmentinthepastdecadewiththeimprovementinmembranequalityandthedecreaseinmembranecost.Averyimportanttrendinthedevelopmentofmembranefiltrationforwatertreatmentistheintegrationofdifferentpretreatmentstrategiestoimprovetheirperformance.TheRO,inparticular,hasbeenshowntobeanefficientandcosteffectiveprocessforthetreatmentofbrewerywastewaterforreuse.Table8showsasummaryofsomeofthestudiesconductedonbrewerywastewater,showingtheCODreductions,andwhethertheeffluentissuitableasaprimaryorsecondarywaterbasedonthecriterialistedinTable5.Itmustbenoted,however,thatthesestudieshaddifferentexperimentaldesigns.5.2.IntegrationofprocessesandtechnologiesItcanbebeenseeninTable8thatnoneofthemethods(apartfromRO)canbeusedindividuallyinbrewerywastewatertreatmentapplicationswithgoodeconomicsandhighdegreeofenergyefficiency.Couplingtheseprocessestogetherastwoorthreestageprocesseswouldbemoreappropriate.Subsequently,differentprocesscombinationsareproposedanddiscussed.nThedemandforrenewableenergyinoursocietyiseverincreasing[111].Therefore,theMFCsisrecommendedtobethefirstpretreat-mentstageofeveryintegratedprocessparticularlywithfiltrationtechniques.MFCshaveoperationalandfunctionaladvantagesoverthetechnologiescurrentlyusedforgeneratingenergyfromorganicmatter[111].First,thedirectconversionofsubstrateenergytoelectricityenableshighconversionefficiency,unlikethebiologicalprocessesreactorswherethemetabolizedproducts(e.g.,NH3)havetobeusedinboilersforenergygeneration.Second,MFCsoperateefficientlyatambienttemperature.Third,anMFCdoesnotrequiregastreatmentbecausetheoff-gassesofMFCsareenrichedincarbondioxideandnormallyhavenousefulenergycontent.Fourth,MFCsdonotneedenergyinputforaerationprovidedthecathodeispassivelyaerated[116].Fifth,MFCshavepotentialforwidespreadapplicationinlocationslackingelectricalinfrastructuresandcanalsooperatewithdiversefuelstosatisfyenergyrequirements.ThehighCODremovalefficiency(seeTable8)couldalsoreducetheloadinothercoupledstages.Theusesofothertechniquesasfirststagesinanintegratedprocessdonotofferanyforeseeablebenefits.Electrochemicalmethodscanbewellsuitedtobecoupledinthelatterstagesoftheintegratedprocess.Sanitizingagents(oftencalleddisinfectants)whicharepresentinbrewerywastewatercontainchlorinecompounds.Thesecompoundsproducechlorineduringelectrolysisand,thereafter,chlorinegenerateshypochlorousacidwhichoxidizesorganiccompounds.Chlorineisoneofthemostwidelyuseddisinfectants.Itisveryapplicableandveryeffectiveforthedeactivationofpathogenicmicroorganisms.Therefore,electrochem-icalmethodsifcoupledinthelatterstagescanserveasanorganicoxidationanddisinfectingstage.Plasmamethodsthoughveryeffective(seeTable8),theprocessisexpensivebecauseofthehighenergyrequirementsbythegas,andthecostofenergysourcessuchaslaser.Therefore,ifcoupledwithothermethods,theprocessescanbeveryexpensive.CNTshaveshownremarkableadsorptionpower.CombiningCNTswithUFwillresultinsubstantialremovaloforganics.However,theadditionofCNTswouldrapidlyincreasethetransmembranepressurerapidlyduetotheformationofCNTcakeonthemembranesurface.Inthiscase,CNTsmayneedtobeoflargeenoughdiameterstoreducethetransmembranepressureeffect.AsfortheMBRorfiltrationingeneral,foulingmitigationcanpotentiallybedonebycouplingcoagulationandflocculationtotheprocess[117].6.SummarynWaterisacommonelementinthelivesofallpeopleandsocieties.Waterhasbeenthefoundationandsometimes,theundoingofmanyTable8Summaryofbrewerywastewatertreatmentprocesses.ProcessInitialCOD(mg/L)FinalCOD(mg/L)CODreduction(%)PotentialuseReferencePrimary(processwater)Secondary(non-processwater)Quenchedplasma1018a18a98NoNo[5]UASB(*1)1947–3079Notgiven73–91NoNo[21]AerobicreactorNotgivenNotgiven90–98NoNo[16]Combinedbioreactor(*1)NotgivenNotgiven98NoNo[36]Membranebioreactor500–10004096NoNo[32]Electrochemicalmethod24706497NoNo[107]Microbialfuelcells(*2)171010594NoNo[110]Nanofiltration369214396NoNo[1]Reverseosmosis8500100YesYes[39]aBODfigures;(*1)hasaddedvalueofenergyproductionfrombiogas;(*2)hasaddedvalueofelectricityproduction.n245G.S.Simateetal./Desalination273(2011)235–247greatcivilizations.Today,watercontinuestobeessentialforlifesustenance(bothhumanandanimals),agricultural,economicandindustrialactivitiesthathelpsocietytodevelop.Lessthanacenturyago,itwaswidelyassumedthattherewereenoughfreshwatersuppliesintheworldforeveryone.Yettoday,increaseduseoffreshwaterforindustrial,agricultural,anddomesticusehascreatedacutewatershortagesinsomeareasoftheworld,particularlythedevelopingcountries.Theseshortagesarestimulatingorworseninginternationalconflictsoverwater,whichhasjoinedoilasamajorcommoditytriggeringwars.Thepresenceofpollutantsinrawwaterduetohumanactivitieshasalsoexacerbatedthesituation.Ontheotherhand,wastewaterreclamationandreusehasbecomeanimportantoption,sinceindustrializationandurbanizationhaveacceleratedenvironmentalwaterpollution,makingitalimitedresourceforwatersupply[118].Whenproperlytreatedandrecycled,wastewatercanbeanalternativewatersourcethatcanbeneficiallyandcost-effectivelyreducethedemandsforfreshwater.Itcanbeconcludedthat,alongwiththegrowingworldpopulationandindustrialactivitiescoupledwithstringentenvironmentalrequirements,thecostofwaterisincreasing.Asaresult,thedemandforwaterreuseinthebreweryindustryisexpectedtoincreaseatanunprecedentedrate.Consequently,anincreasingneedofprocessescapableofachievinganefficienttreatmentunderextremeoperationalconditionsthatsimultaneouslyoptimizeoperationalcostscanbeexpectedinthefuture.Informationobtainedfromthisreviewshowsthatinordertoremoveimpuritiesefficiently,integrationofdifferentprocessesisrecommended.DisclaimerThecontentsofthispaperreflecttheviewsoftheauthorswhoareresponsibleforthefactsandaccuracyofthedatapresentedhereinanddonotnecessarilyreflecttheofficialviewsorpoliciesofanyagencyorinstitute.Thispaperdoesnotconstituteastandard,specification,norisitintendedfordesign,construction,bidding,contracting,orpermitpurposes.References[1]L.Braeken,B.VanderBruggen,C.Vandecasteele,Regenerationofbrewerywastenwaterusingnanofiltration,WaterResearch38(13)(2004)3075–3082.[2]W.Parawira,I.Kudita,M.G.Nyandoroh,Astudyofindustrialanaerobictreatmentofopaquebeerbrewerywastewaterinatropicalclimateusingafull-scaleUASBreactorseededwithactivatedsludge,ProcessBiochemistry40(2)(2005)593–599.[3]L.Fillaudeau,P.Blanpain-Avet,G.Daufin,Water,wastewaterandwastemanagementinbrewingindustries,JournalofCleanerProduction14(2006)463–471.[4]L.Fillaudeau,B.Boissier,A.Moreau,P.Blanpain-Avet,S.Ermolaev,N.Jitariouk,A.Gourdon,Investigationofrotatingandvibratingfiltrationforclarificationofroughbeer,JournalofFoodEngineering80(2007)206–217.[5]A.Doubla,A.Laminsi,A.Nzali,E.Njoyim,J.Kamsu-Kom,J.-L.Brisset,Organicpollutantsabatementandbiodecontaminationofbreweryeffluentsbyanon-thermalquenchedplasmaatatmosphericpressure,Chemosphere69(2007)332–337.[6]K.Kanagachandran,R.Jayerantene,Utilisationpotentialofbrewerywastewatersludgeasanorganicfertilizer,JournaloftheInstituteofBrewing112(2)(2006)92–96.[7]InstituteofBrewingandDistilling,Examinersreports2005to2009,DiplomainBrewingModuleOne,2005–2009.[8]N.J.Huige,Breweryby-productsandeffluents,in:F.G.Priest,G.G.Stewart(Eds.),HandbookofBrewing,CRCPress,BocaRaton,2006.[9]T.Goldammer,TheBrewers'Handbook,2ndeditionApexPublishers,Clifton,2008.[10]Y.Sarfo-Afriye,1999,AStudyofIndustrialWasteManagementinKumasi(CaseStudy),KumasiBreweriesLimited,TheCoca-ColaBottlingCompanyofGhana,2009.[11]T.Janhom,S.Wattanachira,P.Pavasant,Characterisationofbrewerywastewaterwithspectrofluorometryanalysis,JournalofEnvironmentalManagement90(2009)1184–1190.[12]W.Fischer,Reprocessingordisposalofkieselguhr?BrauweltInternational1(1992)60–65.[13]G.Hrycyk,Therecoveryanddisposalofdiatomaceousearthinbreweries,MBAATechnicalQuarterly34(1)(1997)293–298.[14]V.I.Kaur,Incorporationofbrewerywasteinsupplementaryfeedanditsimpactongrowthinsomecarps,BiosourceTechnology91(2004)101–104.n[15]D.Norman,Normanenvironmentalmanagementsystems,GlassTechnology38(5)(1997)146–149.[16]W.Driessen,T.Vereijken,Recentdevelopmentsinbiologicaltreatmentofbreweryeffluent,TheInstituteandGuildofBrewingConvention,Livingstone,Zambia,March2–7,2003.[17]UN,KyotoProtocoltotheUnitedNationsFrameworkConventiononClimateChange,19928http://unfccc.int/resource/docs/convkp/kpeng.html.[18]IFC,Environmental,HealthandSafetyGuidelinesforBreweries,20078http://www.ifc.org/ifcext/enviro.nsf/AttachmentsByTitle/gui_EHSGuidelines2007_Breweries/$FILE/Final+−+Breweries.pdf.[19]A.G.Brito,J.Peixoto,J.M.Oliveira,J.A.Oliveira,C.Costa,R.Nogueira,A.Rodrigues,Breweryandwinerywastewatertreatment:somefocalpointsofdesignandoperation,in:V.Oreopoulous,W.Russ(Eds.),UtilisationofBy-productsandTreatmentofWasteintheFoodIndustry,Vol.3,Springer,NewYork,2007.[20]A.G.Rao,T.S.K.Reddy,S.S.Prakash,J.Vanajakshi,J.Joseph,P.N.Sarma,pHregulationofalkalinewastewaterwithcarbondioxide:acasestudyoftreatmentofbrewerywastewaterinUASBreactorcoupledwithabsorber,BioresourceTechnology98(2007)2131–2136.[21]C.Cronin,K.V.Lo,AnaerobictreatmentofbrewerywastewaterusingUASBreactorsseededwithactivatedsludge,BioresourceTechnology64(1998)33–38.[22]H.Huang,K.Schwab,J.G.Jacangelo,Thepretreatmentforlowpressuremembranesinwatertreatment:areview,EnvironmentalScienceandTechnology43(9)(2009)3011–3019.[23]F.R.Spellman,Spellman'sStandardHandbookforWastewaterOperators,Vol.1,TechnomicPublishers,Lancaster,1999.[24]UnitedNationsEnvironmentProgramme,SourceBookofAlternativeTechnol-ogiesforFreshWaterAugmentationinLatinAmericaandtheCaribbean,OrganisationofAmericaStates,WashingtonDC,19978http://www.oas.org/DSD/publications/Unit/oea59e/ch25.htm.[25]K.Unterstein,Energyandwatergotomakebeer,BrauweltInternational18(5)(2000)368–370.[26]M.Perry,G.DeVilliers,Modelingtheconsumptionofwaterandotherutilities,nBrauweltInternational5(3)(2003)286–290.[27]G.J.Sheehan,P.F.Greenfield,Utilisation,treatmentanddisposalofdistillerywastewater,WaterResearch14(1980)257–277.[28]L.Lampinen,F.Quirt,Effluentneutralizingwithfluegas,TechnicalQuarterlyMasterBrewersAssociationoftheAmericas24(3)(1987)86–89.[29]T.Lom,Anewtrendinthetreatmentofalkalinebreweryeffluents,TechnicalQuarterlyMasterBrewersAssociationoftheAmericas14(1977)50–58.[30]J.Gregory,ParticlesinWater:PropertiesandProcesses,IWAPublishing/CRCPress,London,2006.[31]Degrémont,WaterTechnicalHandbook,9thedition,Degrémont,Paris,1989.[32]H.Dai,X.Yang,T.Dong,Y.Ke,T.Wang,EngineeringapplicationofMBRprocesstothetreatmentofbeerbrewingwastewater,ModernAppliedScience4(9)(2010)103–109.[33]Y.Feng,X.Wang,B.E.Logan,H.Lee,Brewerywastewatertreatmentusingair-cathodemicrobialfuelcells,AppliedMicrobiologyandBiotechnology78(2008)873–880.[34]M.Seneviratne,APracticalApproachtoWaterConservationforCommercialandIndustrialFacilities,Elsevier,Oxford,2007.[35]D.E.Briggs,C.A.Boulton,P.A.Brookes,R.Stevens,Brewing:ScienceandPractice,WoodheadPublishingLimited,Cambridge,2004.[36]Biothane,BiogasProductioninBreweries,20108http://www.biothane.com/en/articles/14856.htm.[37]B.K.Ince,O.Ince,P.J.Sallis,G.K.Anderson,InertCODproductioninamembraneanaerobicreactortreatingbrewerywastewater,WaterResearch34(16)(2000)3943–3948.[38]APHA,StandardMethodsfortheExaminationofWaterandWastewater,20thedition,AmericanPublicHealthAssociation/WaterEnvironmentFederation,WashingtonDC,1996.[39]S.S.Madaeni,Y.Mansourpanah,ScreeningmembranesforCODremovalfromdilutewastewater,Desalination197(1–3)(2006)23–32.[40]J.K.Holt,H.G.Park,Y.Wang,M.Stadermann,A.B.Artyukhin,C.P.Grigoropoulos,nA.Noy,O.Bakajin,Fastmasstransportthroughsub-2-nanometercarbonnanotubes,Science312(5776)(2006)1034–1037.[41]M.A.Shannon,P.W.Bohn,M.Elimelech,J.G.Georgiadis,B.J.Marinas,A.M.Mayes,Scienceandtechnologyforwaterpurificationinthecomingdecades,Nature452(7185)(2008)301–310.[42]X.Peng,J.Jin,Y.Nakamura,T.Ohno,I.Ichinose,Ultrafastpermeationofwaterthroughprotein-basedmembranes,NatureNanotechnology4(2009)353–357.[43]V.K.Gupta,Suhas,Applicationoflow-costadsorbentsfordyeremoval—areview,JournalofEnvironmentalManagement90(8)(2009)2313–2342.[44]T.D.Brock,MembraneFiltration:AUser'sGuideandReferenceManual,Springer-Verlag,NewYork,1983.[45]C.Visvanathan,D.Pokhrel,Roleofmembranebioreactorsinenvironmentalengineeringapplications,in:S.Roussos,C.R.Soccol,A.Pandey,C.Augur(Eds.),NewHorizonsinBiotechnology,KluwerAcademicPublishers,Dordrecht,TheNetherlands,2003.[46]R.D.Letterman(Ed.),WaterQualityandTreatment,5thed.,AmericanWaterWorksAssociationandMcGraw-Hill,NewYork,1999.[47]S.Lee,G.Parka,G.Amy,S.-K.Hong,S.-H.Moon,D.-H.Lee,J.Cho,Determinationofmembraneporesizedistributionusingthefractionalrejectionofnonionicandchargedmacromolecules,JournalofMembraneScience201(1–2)(2002)191–201.[48]L.Malaeb,G.M.Ayoub,Reverseosmosistechnologyforwatertreatment:stateoftheartreview,Desalination267(2011)1–8.246G.S.Simateetal./Desalination273(2011)235–247[49]A.Y.Zahrim,C.Tizaoui,N.Hilal,Coagulationwithpolymersfornanofiltrationpre-treatmentofhighlyconcentrateddyes:Areview,Desalination266(1–3)(2011)1–16.[50]C.S.Slater,R.C.Ahlert,C.G.Uchrin,Applicationsofreverseosmosistocomplexindustrialwastewatertreatment,Desalination48(1983)171–187.[51]A.Ghabris,M.Abdel-Jawad,J.Aly,Municipalwastewaterrenovationbyreverseosmosis:stateoftheart,Desalination75(1989)213–240.[52]I.Koyuncu,F.Yalcin,I.Ozturk,Colorremovalofhighstrengthpaperandnfermentationindustryeffluentswithmembranetechnology,WaterScienceandTechnology40(11–12)(1999)241–248.[53]F.Yalcin,I.Koyuncu,I.Oztürk,D.Topacik,PilotscaleUFandROstudiesonwaterreuseinCorrugatedBoardIndustry,WaterScienceandTechnology40(4–5)(1999)303–310.[54]E.R.Cornelissen,W.Janse,J.Koning,WastewatertreatmentwiththeinternalMEMBIOR,Desalination146(2002)463–466.[55]A.P.Sutton,ElectronicStructureofMaterials,ClarendonPress,Oxford,1993.[56]B.Benstaali,D.Moussa,A.Addou,J.-L.Brisset,Plasmatreatmentofaqueoussolutes:somechemicalpropertiesofaglidingarcinhumidair,EuropeanPhysicalJournalAppliedPhysics4(1998)171–179.[57]http://www.iwawaterwiki.org/xwiki/bin/view/Articles/MembraneBioreactor.[58]D.Jeison,Anaerobicmembranebioreactorsforwastewatertreatment:feasibilityandpotentialapplications.PhDThesis.WageningenUniversity,Wageningen,TheNetherlands,2007.[59]X.Y.Li,H.P.Chu,Membranebioreactorfordrinkingwatertreatmentofpollutedsurfacewatersupplies,WaterResearch37(19)(2003)4781–4791.[60]F.S.Fan,H.D.Zhou,Interrelatedeffectsofaerationandmixedliquorfractionsonmembranefoulingforsubmergedmembranebioreactorprocessesinwastewa-tertreatment,EnvironmentalScienceandTechnology41(7)(2007)2523–2528.[61]S.Lyko,D.Al-Halbouni,T.Wintgens,A.Janot,J.Hollender,W.Dott,T.Melin,Polymericcompoundsinactivatedsludgesupernatant-characterisationandretentionmechanismsatfullscale–scalemunicipalmembranebioreactor,WaterResearch41(17)(2007)3894–3902.[62]S.Kimura,Japan'saquarenaissance'90project,WaterScienceandTechnology23(7–9)(1991)1573–1582.[63]A.Nagano,E.Arikawa,H.Kobayashi,Thetreatmentofliquorwastewatercontaininghigh-strengthsuspendedsolidsbymembranebioreactorsystem,WaterScienceandTechnology26(3–4)(1992)887–895.[64]A.Fakhru'l-Razi,Ultrafiltrationmembraneseparationforanaerobicwastewatertreatment,WaterScienceandTechnology30(12)(1994)321–327.[65]B.Tansel,W.Y.Bao,I.N.Tansel,Characterisationoffoulingkineticsinultrafiltrationsystemsbyresistancesinseriesmodel,Desalination129(2000)7–14.[66]J.Tian,H.Liang,X.Li,S.You,S.Tian,G.Li,Membranecoagulationbioreactorn(MCBR)fordrinkingwatertreatment,WaterResearch42(2008)3910–3920.[67]W.S.Ang,S.Lee,M.Elimelech,Chemicalandphysicalaspectsofcleaningoforganic-fouledreverseosmosismembranes,JournalofMembraneScience272(1–2)(2006)198–210.[68]A.Bagga,S.Chellam,D.A.Clifford,Evaluationofironchemicalcoagulationandelectrocoagulationpretreatmentforsurfacewatermicrofiltration,JournalofMembraneScience309(1–2)(2008)82–93.[69]J.S.Kim,Z.X.Cai,M.M.Benjamin,Effectsofabsorbentsonmembranefoulingbynaturalorganicmatter,JournalofMembraneScience310(1–2)(2008)356–364.[70]W.Driessen,L.Habets,T.Vereijken,Novelanaerobicandaerobicprocessestomeetstricteffluentplantdesignrequirements,Ferment10(4)(1997)243–250.[71]W.Driessen,P.Yspeert,P.Yspeert,T.Vereijken,Compactcombinedanaerobicandaerobicprocessforthetreatmentofindustrialeffluent,EnvironmentalForum,Columbia–Canada:SolutionstoEnvironmentalProblemsinLatinAmerica,CartegenadeIndias,Columbia,May24–26,2000.[72]Y.J.Chan,M.F.Chong,C.L.Law,D.G.Hassell,Areviewonanaerobic–aerobictreatmentofindustrialandmunicipalwastewater,ChemicalEngineeringJournal155(1–2)(2009)1–18.[73]M.Monthioux,V.L.Kuznetsov,Whoshouldbegiventhecreditforthediscoveryofcarbonnanotubes?Carbon44(2006)1621–1623.[74]S.Iijima,Helicalmicrotubulesofgraphiticcarbon,Nature354(1991)56–58.[75]H.Dai,Carbonnanotubes:opportunitiesandchallenges,SurfaceScience500(2002)218–241.[76]D.Tasis,N.Tagmatarchis,A.Bianco,M.Prato,Chemistryofcarbonnanotubes,ChemicalReviews106(3)(2006)1105–1136.[77]C.Journet,P.Bernier,Productionofcarbonnanotubes,AppliedPhysicsA67(1998)1–9.[78]M.S.Dresselhaus,G.Dresselhaus,P.Avouris(Eds.),Carbonnanotubes:Synthesis,Structure,PropertiesandApplications,Springer,NewYork,2001.[79]C.E.Baddour,C.Briens,Carbonnanotubesynthesis:areview,InternationalJournalofChemicalReactorEngineering3(2005)R3.[80]A.E.Agboola,R.W.Pike,T.A.Hertwig,H.H.Lou,ConceptualdesignofcarbonnXnanotubeprocesses,CleanTechnologiesandEnvironmentalPolicy9(2007)289–311.[81]M.Paradise,T.Goswami,Carbonnanotubes—productionandindustrialapplica-tions,MaterialsandDesign28(2007)1477–1489.[82]G.S.Simate,S.E.Iyuke,S.Ndlovu,C.S.Yah,L.F.Walubita,Theproductionofcarbonnanotubesfromcarbondioxide:challengesandopportunities,JournalofNaturalGasChemistry19(5)(2010)453–460.[83]A.Merkoci,Carbonnanotubesinanalyticalsciences,MicrochimicaActa152(3–4)(2006)157–174.[84]R.Liu,Thefunctionalisationofcarbonnanotubes.PhDThesis.UniversityofNewSouthWales,Australia,2008.[85]B.K.Teo,C.Sigh,M.Chowalla,W.I.J.Milne,EncyclopediaofNanoscienceandNanotechnology,vol.1,AmericanScientificPublishers,LosAngeles,2003.[86]J.Robertson,RealisticapplicationsofCNTs,MaterialsToday7(10)(2004)46–52.[87]C.Lu,Y.-L.Chung,K.-F.Chang,Adsorptionoftrihalomethanesfromwaterwithcarbonnanotubes,WaterResearch39(2005)1183–1189.[88]J.Goering,U.Burghaus,Adsorptionkineticsofthiopheneonsingle-walledcarbonnanotubes(CCNTs),ChemicalPhysicsLetters447(2007)121–126.[89]Y.-H.Li,Y.M.Zhao,W.B.Hu,I.Ahmad,Y.Q.Zhu,J.X.Peng,Z.K.Luan,Carbonnanotubes—thepromisingadsorbentinwastewatertreatment,JournalofPhysics:ConferenceSeries61(2007)698–702.[90]C.Lu,F.Su,Adsorptionofnaturalorganicmatterbycarbonnanotubes,SeparationandPurificationTechnology58(2007)113–121.[91]Y.Shih,M.Li,Adsorptionofselectedvolatileorganicvapoursonmultiwallcarbonnanotubes,JournalofHazardousMaterials154(2008)21–28.[92]Y.-H.Li,S.Wang,X.Zhang,J.Wei,C.Xu,Z.Luan,D.Wu,Adsorptionoffluoridefromwaterbyalignedcarbonnanotubes,MaterialsResearchBulletin38(3)(2003)469–476.[93]Y.-H.Li,J.Ding,Z.Luan,Z.Di,Y.Zhu,C.Xu,D.Wu,B.Wei,CompetitiveadsorptionofPb2+,Cu2+andCd2+ionsfromaqueoussolutionsbymultiwalledcarbonnanotubes,Carbon41(2003)278–2792.[94]Y.-H.Li,Y.Zhu,Y.Zhao,D.Wu,Z.Luan,Differentmorphologiesofcarbonnnanotubeseffectontheleadremovalfromaqueoussolutions,DiamondandRelatedMaterials15(2006)90–94.[95]N.Savage,M.S.Diallo,Nanomaterialsandwaterpurification:opportunitiesandchallenges,JournalofNanoparticleResearch7(2005)331–342.[96]C.H.Wu,Adsorptionofreactivedyeontocarbonnanotubes:equilibrium,kineticsandthermodynamics,JournalofHazardousMaterials144(2007)93–100.[97]Zeta-MeterInc.,EverythingYouNeedtoKnowAboutCoagulationandFlocculation-guide,Zeta-MeterInc.,Virginia,1993.[98]B.Zhao,H.Hu,R.C.Haddon,Synthesisandpropertiesofawater-solublesingle-walledcarbonnanotube-poly(m-aminobenzenesulfonicacid)graftedcopolymer,AdvancedFunctionalMaterials14(1)(2004)71–76.[99]B.Zhao,H.Hu,A.P.Yu,D.Perea,R.C.Haddon,Synthesisandcharacterizationofwatersolublesingle-walledcarbonnanotubegraftcopolymers,JournaloftheAmericanChemicalSociety127(2005)8197–8203.[100]T.Zhang,M.Xu,L.He,K.Xi,M.Gu,Z.Jiang,Synthesis,characterizationandcytotoxicityofphosphorylcholine-graftedwater-solublecarbonnanotubes,Carbon46(2008)1782–1791.[101]N.Zhang,J.Xie,V.K.Varadan,Functionalisationofcarbonnanotubesbypotassiumpermanganateassistedwithphasetransfercatalyst,SmartMaterialsandStructures11(2002)962–965.[102]M.N.Moore,Donanoparticlespresentecotoxicologicalrisksforthehealthoftheaquaticenvironment,EnvironmentalInternational32(2006)967–976.[103]S.K.Smart,A.I.Cassady,G.Q.Lu,D.J.Martin,Thebiocompatibilityofcarbonnanotubes,Carbon44(2006)1034–1047.[104]M.R.Wiesner,G.V.Lowry,P.Alvarez,D.Dionysiou,P.Biswas,Assessingtherisksofmanufacturednanomaterials,EnvironmentalScienceandTechnology40(14)(2006)4336–4337.[105]A.Srivastava,O.N.Srivastava,S.Talapatra,R.Vajtai,P.M.Ajayan,Carbonnanotubefilters,NatureMaterials3(2004)610–614.[106]C.Lee,S.Baik,Vertically-alignedcarbonnano-tubemembranefilterswithsuperhydrophobicityandsuperoleophilicity,Carbon48(8)(2010)2192–2197.[107]J.O.H.Bockris,EnvironmentalChemistry,PlenumPress,NewYork,1977.[108]K.Vijayaraghavan,D.Ahmad,R.Lesa,Electrolytictreatmentofbeerbrewerynwastewater,IndustrialandEngineeringChemistryResearch45(2006)6854–6859.[109]C.Barrera-Díaz,I.Linares-Hernández,G.Roa-Morales,B.Bilyeu,P.Balderas-Hernández,Removalofbiorefractorycompoundsinindustrialwastewaterbychemicalandelectrochemicalpretreatments,IndustrialandEngineeringChemistryResearch48(2009)1253–1258.[110]X.Wang,Y.J.Feng,H.Lee,Electricityproductionfrombeerbrewerywastewaterusingsinglechambermicrobialcell,WaterScienceandTechnology57(7)(2008)1117–1121.[111]A.S.Mathuriya,V.N.Sharma,Treatmentofbrewerywastewaterandproductionofelectricitythroughmicrobialfuelcelltechnology,InternationalJournalofBiotechnologyandBiochemistry6(1)(2010)71–80.[112]Q.Wen,Y.Wu,L.Zhao,Q.Sun,F.Kong,Electricitygenerationandbrewerywastewatertreatmentfromsequentialanode-cathodemicrobialfuelcell,JournalofZhejiangUniversity:ScienceB11(2)(2010)87–93.[113]H.P.Bennetto,Microbialfuelcells,in:A.M.Michelson,J.V.Bannister(Eds.),LifeChemistryReports,Vol.2,HarwoodAcademic,London,1984.[114]W.Habermann,E.H.Pommer,Biologicalfuelcellswithsulphidestoragecapacity,AppliedMicrobiologyandBiotechnology25(1)(1991)128–133.[115]R.Reed,G.Henderson,Waterandwastewatermanagement—itsincreasingimportancetobreweryandmaltingproductioncosts,Ferment12(6)(1999)13–17.[116]S.E.Oh,B.Min,B.E.Logan,Cathodeperformanceasafactorinelectricitygenerationinmicrobialfuelcells,EnvironmentalScienceTechnology38(2004)4900–4904.[117]T.Leikness,Theeffectofcouplingcoagulationandflocculationwithmembranefiltrationinwatertreatment:areview,JournalofEnvironmentalSciences21(2009)8–12.[118]G.T.Seo,Y.Suzuki,S.Ohgaki,Biologicalpowderedactivatedcarbon(BPAC)microfiltrationforwastewaterreclamationandreuse,Desalination106(1996)39–45.247G.S.Simateetal./Desalination273(2011)235–247n