- 600.00 KB
- 2022-04-26 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
英文原文Sludgereductionduringbrewerywastewatertreatmentbyhydrolyzation-foodchainreactorsystemAbstract:Duringbrewerywastewatertreatmentbyahydrolyzation-foodchainreactor(FCR)system,sludgewasrecycledtotheanaerobicsegment.Withthefunctionofhydrolyzationacidificationintheanaerobicsegmentandtheprocessesofaerobicoxidationandantagonism,predation,interactionandsymbiosisamongmicrobesinmultileveloxidationsegment,residualsludgecouldbereducedeffectively.The6-monthdynamicexperimentsshowthattheaveragechemicaloxygendemand(COD)removalratiowas92.6%andaveragesludgeproductionoftheaerobicsegmentwas8.14%,withtheCODoftheinfluentat960–1720mg/Landhydraulicretentiontime(HRT)of12h.Sincetheproducedsludgecouldberecycledandhydrolyzedintheanaerobicsegment,noexcesssludgewasproducedduringthesteadyrunningforthissystem.Keywordshydrolyzation,multileveloxidation,excesssludge,reduction1.IntroductionDuringthe1980s,themainbrewerywastewatertreatmentlocallyandabroadwastheaerobictechnique,thenthehydrolytic-aerobictechniquesshowedupinthelate1980s.Currently,themaintechnologyforbrewerywastewatertreatmentaretheactivatedsludgeprocess,contactoxidationprocess,andhydrolytic-aerobictechniques.Althoughthesetechniqueshavesomeadvantagesoftheirown,theyallhaveaproblemwithsludgedisposal[1].Thesludgeproductionisabout60%ofthechemicaloxygendemand(COD)removalamountforconventionalactivatedsludgetechnology,andabout30%forconventionalbiofilmmethod[2].Thecostofsludgedisposalhadbecomeaneconomicburdenofthesewageplant.Thesludgeproducedmaybringaboutsecondarypollution.Therefore,thestudyonwatertreatmentprocessesthatcanleadtosludgereductionisbecomingoneoftheimportantissuesinsewagetreatment.Thisstudyadoptedprinciplesofcleanerproduction.Withthehydrolyzation-acidificationinanaerobicsegments,residualsludgecouldbetranslatedintosolubleorganicmatterandsmallorganicmolecules,thenentertheaerobicsegmentasorganicload.Aseriescontactoxidationsystemforfoodchainreactor(FCR)wasappliedintheaerobicsegmenttoformamanualbiogeocenoseandfoodchain.Basedonbiologicaltheory,thelongerthefoodchainis,themorenenergylost,andthuslessenergythatcanbeusedforgrowthoftheorganisms,andlessbiomassleftintheecosystemasaresult.Therefore,prolongingthefoodchainandstrengtheningthepredationofmicrozoansinthefoodchainarebotheffectiveinsludgereduction.‘‘ZeroDischarge’’ofresidualsludgewasachievedduringthebrewerywastewatertreatmentbyahydrolyzation-FCRsystem.Thisstudyexploredthemechanismofsludgereductionduringthehydrolyzationprocessandmultileveloxidationprocess。2Materialandmethods2.1CharacteristicsofwastewaterTheexperimentalwaterisaman-madesimulantbrewerywastewater,whichcontainsbottledbeer,NH4Cl,KH2PO4,MgSO4,andCaCl2.Thebiodegradabilityindex,theratioofconcentrationsofbiochemicaloxygendemandfor5days(BOD5)andCOD,isabout0.4–0.5.Table1showsthemainwaterqualityproperties.2.2ExperimentalapparatusandexperimentalflowTheexperimentalapparatuswasahybridbiologicalreactor(ShanghaiBestEnvironmentalTechnologyCorporation,Shanghai,China)asshowninFig.1.TheaerobicsectofFCRwasdividedintofourpartsalongthetreatmentprocessandtheirefficientvolumeswerew0.12,0.09,0.09,and0.06m3,respectively(theateris0.97mdeep).Sewagewaspouredintothereactor,thenflowedintoeachtank,withthefunctionofgravitationalactionandarotameteradjustingtheflow.Volumetricratioofthehydrolyzationsegmentandmultileveloxidationsegmentwas0.8:1.Sewagewastreatedduringthehydrolyzationsegmentandalltanksofthemultileveloxidationsegment,thenflowedintoasedimentationtankwheresludgeandwaterwereseparated.Theexcessivesludgewasdischargedregularly,andrecycledintothehydrolyzation-acidificationsegment.Atthebottomofthemultileveloxidationsegmentwasanaerationdevice.nFig.1Diagramoftheexperimentaldevice1.high-positionedflume,2.volume-constantflume,3.hydrolyzationtank,4.multileveloxidationFCRsystem,5.fillers,6.baffle,7.entering-waterpipeforsedimentationtank,8.sedimentationtank,9.outletpipe,10.dischargepipe,11.aerationdevice,12.rotameter,13.ride,14.aerationdiffuse2.3OperationparametersDuringthetwo-monthexperimentalduration,theroomtemperaturewasintherangeof14–27uC.Thetotalhydraulicretentiontime(HRT)ofthissystemwas12h,andtheHRTofthehydrolyzationsegmentwas5.5h.Concentrationsofdissolvedoxygenwere2–6mg/L.2.4AnalysismethodsTheindicatorsofsourcewaterweremeasuredaccordingtomonitoringandanalyticalmethodsofwaterandwastewater[3].3Experimentalresultsanddiscussion3.1RemovaleffectofCODFigure2showstheCODremovaleffectofthehydrolyzation-FCRsystemduringthesteadyrunningtimeperiodWhentheconcentrationsofCODintheinfluentwere960–1720mg/L,andHRTwas12h,theremovalratioofCODwasabove90%,andtheconcentrationofCODintheeffluentwas45–95mg/L.ThewaterqualityoftheeffluentmetthefirstclassoftheIntegratedWastewaterDischargeStandard[4].nFig.2CODremovalefficiencyduringthecontinuousrunningtimeperiod3.2SludgeremovaleffectSludgeproducedbythissystemwasrecycledtothehydrolyzationsegmentwhereitwashydrolyzedandtranslatedintoorganicloadandpouredintothemultileveloxidationsegment.Thispartoftheorganicmatterwasmostlyreleasedasenergyexceptforarelativelysmallportiontranslatedintoorganism.Inarealoperation,theremightbenegativegrowthofsludgeinthehydrolyzationsegmentsincethemicrobeofwhichneedslotsofenergyaswell.Asaresult,therecycledsludgecouldbeasupplyforthehydrolyzationsegment.Theoretically,‘‘ZeroDischarge’’ofresidualsludgecouldbeachievedandtheexperimentalresultshaveverifiedthispoint.ThesludgeproductionoftheFCRsystemwascontinuouslyinvestigatedduringthetwo-monthsteadyrunningperiod,andtherelationshipbetweentotalsludgeproductionandtotalCODremovalamountwasanalyzed.Figure3showsthattheratioofsludgeproductionwas6%–10%,andtheaveragesludgeproductionwas8.15%,whichisabout15%ofconventionalactivatedsludgetechnologyand25%ofconventionalbiofilmmethod.TheresultsshowthattheFCRsystemhasgreateffectonsludgereduction.nFig.3Sludgeproductionofthemultileveloxidationsegmentduringthesteadyrunningtimeperiod4MechanismanalysisThebiologicalfunctionofthecarrierandtherunningmodeofmultileveloxidationFCRmadetheconcentrationofthesewagegradientalonewithcurrent,whichformedthreedifferentzonesinthetank:polysaprobic,mesosaprobic,andoligosaprobiczones.Eachzonehasadifferentmicroorganismcommunity(fromthebasictoadvanced),whichformedarelativelyintegratedecologicalstructureandafoodchainasbacteria-protozoa-metazoa-daphnia.BytheanalysisoftheFCRsystem,muchmoremicrobesindifferentkindsandqualitywerefoundthantheconventionalaerobicprocess.Asaresult,thefoodchaininthissystemwasmorecomplicatedthanotherprocesses.Figure4showsthecompositionsofthefoodchainoftheFCRsystem.Basedonbiologicaltheory,thefoodchainisgettinglongerandmorecomplex,therelationshipbetweenmicrobesinthefoodchainismorecomplex.Throughtheprocessofantagonist,predation,interactionandsymbiosisamongmicrobes,themicrobesystemisbalanced,andnoneofthespecificpopulationcouldover-develop[8,9].Highertrophicdegreeofthepredator,moreenergyconsumed,andlessenergythatcanbeusedforthegrowthoforganisms[10–12].Withtheeffectofallthesefactors,theecosystemcouldmaintainarelativelystableterm.Asaresult,lesssludgewouldbeproducedinpractice.nFig.4CompositionsofthefoodchainoftheFCRsystem5Conclusions(1)WhentheconcentrationsofCODintheinfluentwere1200–1800mg/L,HRTwas12h,andaverageCODremovalratiowas92.6%.‘‘ZeroDischarge’’ofresidualsludgewasachievedduringthesteadytimerunningforthissystem,sincetheproducedsludgecouldberecycledandhydrolyzedtotheanaerobicsegment.Withoutsludgedisposalequipmentadded,thismethodcouldhavebotheconomicandenvironmentalprofitinpractice.(2)TheprocessofmultileveloxidationFCRcouldformamicrobeecosystemjustlikethenaturalmicrobeecosystem,andafullydevelopedfoodchain.Throughtheprocessesofantagonism,predation,interaction,andsymbiosisamongmicrobes,sludgewaseffectivelyreduced.DuringthesteadyrunningofmultileveloxidationFCR,theaveragesludgeproductionoftheFCRsystemwas8.15%.1DepartmentofEnvironmentalEngineering,UniversityofScienceandTechnologyBeijing,Beijing100083,China2DepartmentofEnvironmentalScience&Engineering,HarbinInstituteofTechnology,Harbin150090,ChinaReferencesn1.ChenYP,FuYS,LiXM,etal.Charactersandtreatmentofbrewerywastewater.PollutionControlTechnology,2003,16(4):148–151(inChinese)2.AndreottolaG,FoladoriP,etal.Areviewandassessmentofemergingtechnologiesfortheminimizationofexcesssludgeproductioninwastewatertreatmentplants.EnvironmentalScience&Health,2006,41(9):1853–18723.StateEnvironmentalProtectionofChina.AnalysisWaterandWastewater.4thed.Beijing:ChineseEnvironmentalSciencePress,2002,88–223(inChinese)4.StateQualityandTechniqueSupervisionBureau.IntegratedWastewaterDischargeStandard(GB8978–2002).Beijing:ChineseEnvironmentalSciencePress,1996,10(inChinese)5.AiHY,XieWM,WangQH,LiXS.Removaloforganicsubstancesandammonianitrogenfromrestaurantwastewaterbyusingfoodchainringsystem.ChinaWaterandWastewater,2005,21(10):49–51(inChinese)6.ZhangLK,YuDS,KongFL,etal.Explorationofprocessforreducingsludgebymicrozoon.EnvironmentalEngineering,2005,5(inChinese)7.WeiY,VanHoutenRT,BorgerAR,etal.Minimizationofexcesssludgeproductionforbiologicalwastewatertreatment.WaterResearch,2003,37:4453–44678.RocherM,GomaG,BegueAP,etal.Towardsareductioninexcesssludgeproductioninactivatedsludgeprocesses:Biomassphysicochemicaltreatmentandbiodegradation.Appl.Microbiol.Biotechnol.,1999,51(2):883–8909.HammanST,IngridC,StrombergerME.Relationshipsbetweenmicrobialcommunitystructureandsoilenvironmentalconditionsinarecentlyburnedsystem.SoilBiology&Biochemistry,2007,39(7):1703–171110.RatsakCH,VerkuijlenJ.Sludgereductionbypredatoryactivityofaquaticoligochaetesinwastewatertreatmentplants.Hydrobiologia,564(1):197–21111.LiangP,HuangX,QianY,etal.Determinationandcomparisonofsludgereductionratescausedbymicrofaunas’predation.BioresourceTechnology,2006(97):854–86112.SaktaywinW,TsunoH,NagareH,etal.Advancedsewagetreatmentprocesswithexcesssludgereductionandphosphorusrecovery.WaterResearch,2005,39(5):902–910n通过水解食物链反应系统减少啤酒废水处理中的污泥量摘要在用FCR系统处理啤酒废水时,污泥在厌氧段被回收。通过厌氧段和好氧段微生物的作用,再加上多级氧化阶段,可以有效的减少剩余污泥。6个月的动态实验表明,COD进水在960-1720mg/L和水力停留时间(HRT)为12小时时,平均化学耗氧量(COD)去除率为92.6%,好氧部分平均污泥生产的是8.14%。由于生产的污泥可以循环在厌氧段再水解,而无剩余污泥的产生。这个系统可以稳定的运行。关键词水解多级氧化剩余污泥减少1简介在20世纪80年代,主要的啤酒废水处理技术是好氧技术,在20世纪晚80年代水解好氧技术出现了。目前,啤酒厂的废物水处理的主要技术为是活性污泥法,接触氧化法,水解好氧技术。虽然这些技术有其自己的一定优势,,他们都有一个与污泥处置问题。污泥产量约60%的化学需氧量(COD)去除量是常规活性污泥法,约30%的常规生物膜法。污泥处理的成本已成为该污水处理厂的经济负担。该污泥产生可能带来的二次污染。因此,对水处理工艺的研究可导致污泥减量成为一个污水处理的重要问题。本研究通过了清洁生产的原则,分析通过厌氧段的水解酸化是剩余污泥转化为可溶解的小分子。让后让其进入好氧反应阶段。于是FCR系统被应用于生物处理系统。基于生物理论,时间越长,食物链越长,越损失能量,从而可减少能源使用的增长的有机体,并作为一个生态系统的生物量在减少的结果。所以延长食物链,稳固食物链关系,可以有效地减少污泥量。FCR系统可以在啤酒废水的处理中实现活性污泥的零排放。本文章着力于研究在厌氧和多级好氧过程中减少活性污泥的方法。2材料和方法2.1污水特性。实验水是一种人造模拟啤酒厂废水,其中载有瓶装啤酒,氯化铵,磷酸二氢钾,硫酸镁和氯化钙。其生物降解性指数,BOD和COD浓度氧气的比例约是0.4-0.5。表1显示了主要的水质特性。n2.2实验仪器和实验流程。实验装置是一个复合式生物反应器如图所示。FCR的有氧处理分为四个部分,他们的有效容积分别为,0.12,0.09,0.09,0.06立方米。污水倒进了反应器,然后流入每个部分,在重力作用下通过流量计调节流量。多层次的氧化部分水解段体积比是0.8:1。污水在水解段和所有的反应器的多级氧化部分被处理,然后流入二沉池将污泥和水分离。过多的污泥被定期的回收进入水解氧化处理阶段。在多层次的氧化部分的底部是一个曝气装置。图1实验装置2.3操作参数在长达两个月的试验期间,房间温度范围的14-27℃总水力停留时间为12个小时,水解反应是5.5小时。主反应区溶解氧浓度是2-6毫克/升。2.4分析方法通过检测原水和废水,以及处理水获得数据。3实验结果与讨论3.1去除COD的影响图2显示了在运行平稳时期.当进水COD浓度960-1720毫克/L时,水力停留为12h时,COD的去除率为90%以上,而污水中COD浓度为45-95毫克/升,出水水质达到了污水综合排放第一类标准n图2,COD去除率随时间的变化曲线3.2污泥去除效果该系统由水解部分回收系统中产生的污泥并将其转化成有机负荷然后让其进入多级氧化阶段。在此过程中绝大部分有机物释放了能量除了一小部分转化成了微生物有机体。在水解工程中有可能因为微生物需要大量能量而产生负增长。同时回收的污泥可以进入水解部分。。从理论上说,“零排放”剩余污泥可达到,实验结果证实了这一点。在两个月的稳定运行过程中,系统产生的污泥被连续的记录。同时记录了活性污泥和COD去除之间的关系。图三显示污泥产生率是6%–10%平均为8.14%。15%的污泥来自于传统活性污泥法,25%污泥来自传统生物膜法。结果显示FCR系统对污泥量的减少具有显著作用。图3稳定运行中多级氧化处理段的活性污泥产生量n4.机理分析在生物作用下,不同的细菌和运行方式在多级氧化处理阶段产生3个不同的区域。重污染区,中污染区,轻污染区.每个区域都有不同的微生物系统(从低级到高级)由,由细菌,原生动物,后生动物等组成了一个完整的生物链。通过分析系统、多种微生物在不同种类和质量都比传统的有氧运动过程中发现的优秀。因此,在这个系统是食物链比其它进程更加复杂。图4显示了在FCR系统中微生物食物链的组成。根据生物学理论,食物链越长,微生物越多,微生物之间的关系也越复杂,通过共生,竞争,捕食等相互作用微生物群落达到稳定,不会有一种微生物过度生长。营养程度较高的捕食者消耗的能量也更多,因此只有较少的能量被用于微生物增长。通过这些现象微生物可以维持在一个较好的生存状态,同时只有很少的污泥被生产出来。图4微生物的组成系统5结论(1)当COD的浓度进水为1200-1800mg/L时,水力停留时间为12h,平均COD的去除率为92.6%。零排放的剩余污泥是在这个系统的稳定运行时间可以实现,因为所生产的污泥可以在厌氧段循环再水解。无污泥处理设备的增加,这个方法可能在经济和环境上获得双重效益。(2)在多级氧化系统中可以形成类似自然界的微生物系统和先进的食物链。通过微生物间的捕食,共生,竞争等关系有效地减少了污泥量。在稳定运行中的多级氧化FCR系统平均的污泥产生量仅为8.15%n作者:1环境工程学院,北京科技大学北京100083,中国,2环境科学与工程系,哈尔滨工业大学,哈尔滨150090,中国参考文献1.ChenYP,FuYS,LiXM,etal.Charactersandtreatmentofbrewerywastewater.PollutionControlTechnology,2003,16(4):148–151(inChinese)2.AndreottolaG,FoladoriP,etal.Areviewandassessmentofemergingtechnologiesfortheminimizationofexcesssludgeproductioninwastewatertreatmentplants.EnvironmentalScience&Health,2006,41(9):1853–18723.StateEnvironmentalProtectionofChina.AnalysisWaterandWastewater.4thed.Beijing:ChineseEnvironmentalSciencePress,2002,88–223(inChinese)4.StateQualityandTechniqueSupervisionBureau.IntegratedWastewaterDischargeStandard(GB8978–2002).Beijing:ChineseEnvironmentalSciencePress,1996,10(inChinese)5.AiHY,XieWM,WangQH,LiXS.Removaloforganicsubstancesandammonianitrogenfromrestaurantwastewaterbyusingfoodchainringsystem.ChinaWaterandWastewater,2005,21(10):49–51(inChinese)6.ZhangLK,YuDS,KongFL,etal.Explorationofprocessforreducingsludgebymicrozoon.EnvironmentalEngineering,2005,5(inChinese)7.WeiY,VanHoutenRT,BorgerAR,etal.Minimizationofexcesssludgeproductionforbiologicalwastewatertreatment.WaterResearch,2003,37:4453–44678.RocherM,GomaG,BegueAP,etal.Towardsareductioninexcesssludgeproductioninactivatedsludgeprocesses:Biomassphysicochemicaltreatmentandbiodegradation.Appl.Microbiol.Biotechnol.,1999,51(2):883–8909.HammanST,IngridC,StrombergerME.Relationshipsbetweenmicrobialcommunitystructureandsoilenvironmentalconditionsinarecentlyburnedsystem.SoilBiology&Biochemistry,2007,39(7):1703–171110.RatsakCH,VerkuijlenJ.Sludgereductionbypredatoryactivityofaquaticoligochaetesinwastewatertreatmentplants.Hydrobiologia,564(1):197–21111.LiangP,HuangX,QianY,etal.Determinationandcomparisonofsludgereductionratesncausedbymicrofaunas’predation.BioresourceTechnology,2006(97):854–86112.SaktaywinW,TsunoH,NagareH,etal.Advancedsewagetreatmentprocesswithexcesssludgereductionandphosphorusrecovery.WaterResearch,2005,39(5):902–910