- 158.50 KB
- 2022-04-26 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
WORD格式可编辑铁碳微电解和芬顿氧化法在制药废水处理中应用与研究邱国栋1朱沈武2(江苏维尔思环境工程有限公司,江苏盐城)摘要:本研究分别利用铁碳微电解法和铁碳微电解+芬顿氧化法对高浓度的制药废水进行预处理,通过对比实验前后的COD值、氨氮及其去除率,探讨铁碳微电解法和Fenton氧化法对制药废水预处理效果。铁碳微电解+芬顿氧化处理比铁碳微电解处理在高浓度的制药废水的预处理过程中COD降低更加明显、COD去除率更高,提高了废水的可生化性。关键词:铁碳微电解;芬顿氧化法;制药废水;可生化性;去除率ResearchandApplicationofIron-carbonMicro-electrolysisandFentonOxidationinPharmaceuticalWastewaterTreatmentAuthor:QiuGuodong1ZhuShenwu2(JiangsuWealthEnvironmentalEngineeringCo.,Ltd.JangsuYancheng)Abstract:Iron-carbonmicro-electrolysisandFentonoxidationwererespectivelyusedtotreatpharmaceuticalwastewaterinthisstudy.Theeffectofiron-carbonmicro-electrolysisandFentonoxidationinpharmaceuticalwastewatertreatmentwasdiscussedbycomparingtheCODvalue,ammonianitrogenandremovalrate.Comparingiron-carbonmicro-electrolysisandCombinationofiron-carbonmicro-electrolysisandFentonoxidationinhighconcentrationpharmaceuticalwastewatertreatment,theCODwasmoreobviouslydecreased,theCODremovalratewashigher,andthebiodegradabilityofwastewaterwasimproved.Keywords:Iron-carbonMicro-electrolysis;FentonOxidation;PharmaceuticalWastewater;Biodegradability;Removalrate正文1前言近些年来我国制药行业不断发展,伴随着其产生的制药废水也逐渐成为重要的污染源。近几年国家对环保的越来越重视,政府和社会发展环保的力度不断增大,如何处理这种废水也成为当今环境保护的一个重点。制药废水是工业废水中常见且比较难处理的一种废水,具有成分复杂,有机物含量高,毒性大,色度深,含盐量高,COD值高且波动性大,废水的BOD5/CODcr值差异较大,可生化性差等特点,属于难降解高浓度有机废水,易造成水环境污染,威胁人们的健康[1]。2作用机理2.1铁碳微电解2.1.1电化学反应(氧化还原反应)铁碳微电解反应体系实际上是内部和外部双重电解反应,内部反应是铁屑中存在微量的碳化铁与纯铁之间存在明显的氧化还原电位差,产生很多细微的原电池,发生电化学反应[2]。外部反应是该体系的主要反应,废铁屑与惰性碳(如石墨、焦炭、活性炭、煤等)在酸性充氧条件下发生以下的电化学反应:阳极:Fe-2e→Fe2+Eo(Fe2+/Fe)=-0.44V阴极:2H++2e→2[H]→H2Eo(H+/H2)=0.00V该反应体系中,产生的了新生态的Fe2+和原子H,它们具有高化学活性,能改变废水中许多有机物的结构和特性,使有机物发生断链、开环等作用,有机官能团发生改变,从而达到降解有机物的效果,提高了废水的可生化性。当水中存在氧化剂时,亚铁离子将会进一步被氧化为三价铁离子。制药废水中氧化性较强的离子或化合物就会被铁或亚铁离子还原成毒性较小的还原态[3]。专业技术知识共享nWORD格式可编辑2.1.2电场作用铁碳微电解内部和外部双重电解反应产生很多大大小小的微观与宏观的原电池,这些微电池周围将产生一个个微电场,制药废水中分散的胶体颗粒、极性分子、细小污染物受微电场作用后形成电泳,在电泳的作用下聚集在电极上,形成大颗粒沉淀,使废水中COD降低[4]。2.1.3物理吸附作用铁碳微电解处理后废水酸度会大大降低,PH呈现弱酸性。在弱酸性溶液中,铸铁是一种多孔性的物质,其表面具有较强的活性,能吸附废水中的有机污染物,净化废水[3]。2.1.4混凝作用铁碳微电解处理后废水中含有大量的Fe2+和Fe3+,将废水调制中性后,通过曝气等手段补充充足的O2,将会产生絮凝性极强的Fe(OH)3,吸附废水中的悬浮物[5]。它的吸附能力高于一般药剂水解得到的Fe(OH)3的吸附能力[6]。2.2芬顿氧化芬顿(Fenton)氧化法整个反应体系的作用机理比较复杂,主要是芬顿试剂在酸性条件下H2O2在Fe2+的催化作用下对废水中有机物的氧化和混凝。对有机物的氧化作用是指二价铁离子(Fe2+)与双氧水(H2O2)经过一系列的复杂反应,生成具有极强氧化能力的羟基自由基·OH与废水中有机物进行的自由基反应[7]。废水中的大分子有机物在该反应体系中被氧化降解为小分子有机物或者直接被矿化为CO2和H2O等无机物。例外,反应中也会生成的Fe(OH)3胶体,具有絮凝、吸附功能,能够去除部分有机物,从而达到降解废水中的COD的效果[8]。3实验内容3.1实验一3.1.1实验目的对某制药厂车间酸性废水进行铁碳微电解和生化实验,了解废水COD的可降解性。3.1.2实验水质来源实验用水取自某制药厂101A车间的三个不同工段(代号分别是904、905、906)的酸性废水。3.1.3实验试剂及仪器试剂:铁屑、活性炭、盐酸、氢氧化钠等仪器:反应罐、恒流泵、生化柱、曝气机等3.1.4分析方法化学需氧量(COD):重铬酸钾法(CODcr,GB11914-89)pH:PHS-2F型酸度计,上海雷磁仪器厂氨氮:纳氏试剂分光光度法3.1.5实验方法① 分别对904、905、906的酸性制药废水通入铁碳微电解装置中进行铁碳微电解反应,铁碳微电解装置的废水必须呈酸性,且整个反应期间保持酸性状态。② 调节铁碳微电解反应出水的PH值,维持在9~10,保证废水中絮凝沉淀。③ 对生化柱中微生物进行培养,生化驯化培养成功后注入铁碳微电解装置的出水进行生化处理。为保证生化处理能够顺利进行,应使生化进水COD值控制在3000CODmg/L左右。④ 3月26日下午开始进906铁炭微电解水,稳定出水后测定进出水的PH值、COD值和氨氮。⑤ 4月1日中午进905铁炭微电解水,用无氨水将其稀释8倍,再进入生化柱生化处理,稳定出水后测定进出水的PH值、COD值和氨氮。⑥ 4月5日进904铁炭微电解水,用无氨水将其稀释40倍,再进入生化柱生化处理,稳定出水后测定进出水的PH值、COD值和氨氮。3.2实验二3.1.1实验目的专业技术知识共享nWORD格式可编辑对某制药厂车间酸性废水分别进行铁碳微电解处理和铁碳微电解+芬顿氧化处理,再进行极限曝气对比两者工艺的对制药废水的预处理效果。3.1.2实验水质来源取某制药厂的103车间丙(白班)8#塔釜经汽提后的采出液4L3.1.3实验方法由于进入铁碳微电解装置的废水必须呈酸性,而水样的pH=8.0,因此,向废水中投入酸液约0.4L,调节pH到2。① 将调节过pH的废水倒入一个已洗干净的三光气桶(约25L),再将约4L的铁碳填料投入三光气桶中。② 将废水连续曝气约3小时。记录pH的变化。③ 将经过铁碳微电解的废水分成两份,各2L。一份进行芬顿氧化;一份留置。④ 进行芬顿氧化的水样投加双氧水氧化1小时以后,再向水样中投加石灰进行中和沉淀,在沉淀过程中投加约0.2L的PAM-,用于提高污泥的沉降速度。将污泥进行过滤,滤液中投加约0.255L厌氧污泥,连续曝气12小时、24小时、36小时均取样测COD。⑤ 留置的水样中投加石灰进行中和沉淀,在沉淀过程中投加约0.2L的PAM-,用于提高污泥的沉降速度。将污泥进行过滤,滤液中投加约0.255L厌氧污泥,连续曝气12小时、24小时、36小时均取样测COD。⑥ 将COD数据进行统计,核算两种工艺对高浓废水的处理效果。4实验分析4.1实验一数据分析表1铁炭微电解实验数据序号实验用水实验前进水CODmg/LpH实验后出水CODmg/LpHCOD去除率备注1.904酸水989823127968.41%2.905酸水162681.5239729.5—47.35%该实验重复多次COD均为增长168401.5250259—48.60%3.906酸水16562021152489.630.41%图1铁炭微电解实验前后COD的对比(注:906酸水实验前后COD值太大,为便于图表的直观显示,将其缩小十倍,取10%的906酸水的数据)专业技术知识共享nWORD格式可编辑表2生化实验数据序号实验用水实验前实验后CODmg/L氨氮pHCODmg/L氨氮pHCOD去除率1.904酸水313906.542208.6306506.539708.6平均值310240986.81%2.905酸水292307.8837109.23292207.7534609.15平均值292335987.7%3.906酸水330808.14371408.92301808.644251328.98294008.483981619.14平均值308942086.40%下图生化处理实验前后COD的对比① 铁炭微电解对三股制药车间的不同工段废水的COD均有明显影响。对904酸水、906酸水的影响是直接降低COD;对905酸水中的大分子物质则是直接分解,分解后的物质可以通过重铬酸钾法检测出来(好现象),提高可生化性。② 三股废水的生化实验均有很好的效果,COD明显下降,COD的去除率均在85%以上,出水COD值都在500以下。③ 906酸水进入生化系统后氨氮从无到有。本实验中生化系统也未能将906酸水中的氮有效地去除掉。4.2实验二数据分析芬顿氧化处理工艺COD(mg/L)PH去除率铁碳微电解处理工艺COD(mg/L)PH去除率原水86008.0原水86008.0铁碳微电解4755244.71%铁碳微电解4755244.71%芬顿氧化3300230.60%////极限曝气12小时30048.08.97%极限曝气12小时50527.8-6.25%极限曝气24小时15427.848.67%极限曝气24小时46267.58.43%极限曝气36小时14897.83.44%极限曝气36小时44027.54.84%专业技术知识共享nWORD格式可编辑总去除率82.69%总去除率48.82%下图为铁碳微电解工艺与芬顿氧化工艺处理同一股废水COD变化情况对比① 铁炭微电解对该制药废水的COD降低有效果显著,COD的去除率较高。② 铁炭微电解后的废水直接进行极限曝气,COD去除率较低。③ 芬顿氧化使COD明显下降,经过芬顿氧化处理后的废水,极限曝气降解COD的效果更加明显。④ 经过芬顿氧化处理后的废水,极限曝气24小时这一阶段COD去除率最高,效果最明显。⑤ 铁碳微电解+芬顿氧化处理对制药废水进行预处理,效果显著,COD去除率可达到80%以上。5结论从试验的结果和数据分析中可得知铁碳微电解+芬顿氧化处理比铁碳微电解处理在高浓度的制药废水的预处理过程中效果更加明显,实际应用的可操性更强。高浓度制药废水预处理过程采用铁炭微电解对COD的降解有明显效果,可极大的提高废水的生化性。铁碳微电解+芬顿氧化+极限曝气处理后的制药废水,出水COD较低,有利于减小后续工艺的规模。铁碳微电解法可以利用工业生产产生的废料(如铁粉及焦炭等)来处理废水,以废治废,其缺陷是对高浓度、难降解的有机物处理不彻底,必须后续其他处理工艺;而芬顿氧化法对高浓度制药废水处理效果好,但需要投加Fe2+和H2O2,成本较高。铁碳微电解为后投加的双氧水提供Fe2+,形成强氧化性的芬顿试剂氧化分解污水中的大分子污染物,从而降低污水COD。该方法在高浓度、难降解的废水处理中有广泛的应用前景[3]。参考文献[1]孙洪涛,秦霄鹏,高磊.制药废水处理方案的确定及试验效果分析[J].环境工程,2009,27(2):51-54.[2]任拥政,章北平,张晓昱,等.铁碳微电解对造纸黑液的脱色处理[J].水处理技术,2006,32(4):68—70.[3]原金海,雷菊,党亮.铁碳微电解及Fenton氧化法在染料废水处理中的应用[J].重庆科技学院学报(自然科学版),2O10,12(1):77—80.[4]文善雄,边虎,赵瑛,等.浅谈微电解技术研究进展[J].甘肃科技,2006,22(5):138—139.[5]杨玉杰,孙建辉.铁屑法处理活性艳红废水动力学模型[J].化工环保,1996,16(3):137—141.专业技术知识共享nWORD格式可编辑[6]王敏欣,朱书全,李发生,等.微电解法用于模拟废水脱色的研究[J].黑龙江科技学院学报,2001,11(1):6—10.[7]包木太,王娜,陈庆国,等.Fenton法的氧化机理及在废水处理中的应用进展[J].化工进展,2008,27(5):660-665.[8]XuXiangrong,LiHuabin,WangWenhua.DegradationofdyesSolutionsbytheFentonProcess[J].Chemosphere,2004,57(7):595-600.专业技术知识共享