• 2.13 MB
  • 2022-04-26 发布

基于含酚废水处理的液液相平衡研究

  • 80页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
广东工业大学硕士学位论文(工学硕士)基于含酚废水处理的液液相平衡研究储国强二○一八年六月n分类号:学校代号:11845UDC:密级:学号:2111506024广东工业大学硕士学位论文(工学硕士)基于含酚废水处理的液液相平衡研究储国强指导教师姓名、职称:李珩德教授学科(专业)或领域名称:化学工程与技术学生所属学院:轻工化工学院论文答辩日期:2018年6月nADissertationSubmittedtoGuangdongUniversityofTechnologyfortheDegreeofMasterofEngineeringStudyonliquid-liquidphaseequilibriumbasedonphenolicwastewatertreatmentMasterDegreeCandidate:ChuGuoqiangSupervisor:Prof.LiHengdeJune2018SchoolofChemicalEngineeringandLightIndustryGuangdongUniversityofTechnologyGuangzhou,Guangdong,P.R.China,510006n摘要摘要苯酚和其衍生物作为一种原型质毒物,是工业废水中常见的高毒性且难降解的有机化合物。目前含酚废水已成为危害严重的工业废水之一,工业上针对含酚废水常用溶剂萃取与生化处理联用的方法以达到排放标准,而溶剂萃取是其中最重要的环节。本研究中,选用了两种绿色高效的脱酚萃取剂:乙酸己酯、磷酸三丁酯和正十二烷复合萃取剂;选取了苯酚、邻/间/对甲酚、间/对苯二酚作为酚类物质的研究对象。本研究中,实验测定(水+酚类化合物+萃取剂)体系的液液相平衡特性数据,验证了乙酸己酯、磷酸三丁酯和正十二烷复合萃取剂处理含酚废水的可行性,为工业废水中酚类物质的回收和分离提供重要的实验支撑和理论依据。本研究中,测定了二元(水+苯酚)、(水+邻/间/对甲酚)、(水+乙酸己酯)和三元(水+苯酚+乙酸己酯)、(水+邻/间/对甲酚+乙酸己酯)、(水+间/对苯二酚+乙酸己酯)以及四元(水+苯酚+正十二烷+磷酸三丁酯)等体系在不同温度下的液液相平衡数据。使用Hand、Bachman和Othmer-Tobias方程对实验数2据进行信赖性检验,关联直线的相关性系数R均大于0.99,证实了本文中实验数据的可靠性。使用NRTL和UNIQUAC两种活度系数模型对三元液液相平衡体系实验数据进行预测计算,获得相应的二元子体系交互作用参数。两种模型的计算值与实验值的平均均方差偏差值都在0.3%以内,均能对各实验体系进行精确的关联。利用得到的二元交互作用参数对(水+苯酚+正十二烷+磷酸三丁酯)四元液液相平衡体系实验数据进行预测,NRTL和UNIQUAC两种模型的计算结果与实验值的平均均方差偏差值分别是0.91%,0.83%,与实验数据相当吻合。实验结果表明:使用乙酸己酯作为萃取剂萃取含酚废水时,苯酚和邻甲酚的分配系数分别能达到360和1700左右,对应的单级萃取率分别为97.9%和99.4%;使用乙酸己酯萃取含二元酚废水时,间苯二酚的分配系数最高为60,单级萃取率最高达89.3%。用正十二烷和磷酸三丁酯复合萃取剂对含苯酚废水进行萃取后,苯酚的分配系数高达3000,单级萃取率高达98.89%。实验表明证明选用乙酸己酯、正十二烷和磷酸三丁酯复合萃取剂对含酚废水进行溶剂萃取,取得良好的萃取效果,且温度越低,萃取性能越好。关键词:乙酸己酯,磷酸三丁酯,酚类化合物,萃取性能,活度系数模型In广东工业大学硕士学位论文AbstractPhenolanditsderivatives,whichcommonlyexistinvariouskindsofindustrialwastewatersasaprototypetoxicsubstance,arehighlytoxicornoteasytodegrade.Atpresentphenolicwastewaterhasbecomeoneofthemostseriousindustrialwastewater,Forthetreatmentofphenolwastewaterinindustry,solventextractionandbiochemicaltreatmentarecommonlyusedtoachieveemissionstandards,andsolventextractionisthemostimportantpart.Inthestudy,twohigh-efficientgreensolventsforphenolremoverwereselected.Hexylacetate,tributylphosphateandn-dodecanecompositecompound;severalkindsofrepresentativephenolswereselected:suchasphenol,o-cresol,m-cresol,p-cresol,resorcinolandhydroquinone.Inthepaper,theliquid-liquidequilibriumsystems(water+phenols+extractant)weredetermined,andthefeasibilityoftreatinghexylphenolwastewaterwithhexylacetate,tributylphosphateandn-dodecanecompositecompoundwasverified.Thisstudywillprovideimportantexperimentalsupportandtheoreticalbasisfortherecoveryandseparationofphenoliccompoundsfromindustrialwastewater.Inthiswork,theliquid-liquidequilibriumsystemsforbinary(water+phenol),(water+o-cresol),(water+m-cresol),(water+p-cresol),(water+hexylacetate),andternary(water+phenol+hexylacetate),(water+o-cresol+hexylacetate),(water+m-cresol+hexylacetate),(water+p-cresol+hexylacetate),(water+resorcinol+hexylacetate),(water+hydroquinone+hexylacetate)andquaternary(water+phenol+n-dodecane+tributylphosphate)weremeasured.TheHand,BachmanandOthmer-Tobiasequationsareusedtotestthereliabilityoftheexperimentaldata;thecorrelationcoefficientsR2ofthelinearequationsaremorethan0.99,whichconfirmsthereliabilityoftheexperimentaldatainthispaper.Inaddition,twoactivitycoefficientmodels(NRTLandUNIQUAC)wereusedtocorrelatetheexperimentaldataofeachsystem,andthecorrespondingbinaryinteractionparametersofthesubsystemswereobtained;twoactivitycoefficientmodels(NRTLandUNIQUAC)wereusedtocorrelatetheexperimentaldataofeachsystem,andthecorrespondingbinaryinteractionparametersofthesubsystemswereobtained;theaveragesofroot-mean-squaredeviations(rmsd’s)betweenthecalculatedandexperimentalvaluesforternary(water+phenols+hexylacetate)systemswerelessthan0.3%fortheNRTLandUNIQUACmodel,thusthetwomodelscouldwellrepresentthestudiedsystems.Theexperimentaldataoftheliquid-liquidphaseequilibriumfor(water+phenol+n-dodecane+IInAbstracttributylphosphate)systemwerepredictedbytheobtainedbianryinteractionparameters;theaveragemeansquaredeviationdeviationsbetweenthecalculatedresultsofNRTLandUNIQUACmodelswere0.91%and0.83%,respectively,whichwereingoodagreementwiththeexperimentaldata.Theexperimentalresultsshowthatthedistributioncoefficientofphenolando-cresolareabout360and1700,respectively,whenhexylacetateisusedasextractantforextractionofphenolwastewater;andthecorrespondingsinglestageextractionrateare97.9%and99.4%,respectively.Fortheextractionofdiphenolwastewaterbyusinghexylacetate,thedistributioncoefficientsofresorcinolareupto60,andthecorrespondingsinglestageextractionrateis89.3%.Intheuseofn-dodecaneandtributylphosphatecompositecompoundfortheextractionofphenolwastewater,thedistributioncoefficientofphenolisashighas3000,andthesinglestageextractionrateis98.89%.Theresultsshowedthatgoodextractioneffectwereobtainedintheextractionofphenolicwastewaterbythehexylacetate,n-dodecaneandtributylphosphatecompositeextractant,andlowextractiontemperaturewashelpfulfortheextractionpropertyofphenols.Keyword:hexylacetate,tributylphosphate,phenols,extractionpropertyIIIn广东工业大学硕士学位论文目录摘要...........................................................................................................................................IAbstract....................................................................................................................................II目录........................................................................................................................................IVContents..................................................................................................................................VI图表目录.............................................................................................................................VIIIChartContents........................................................................................................................XI第一章绪论.............................................................................................................................11.1研究背景............................................................................................................................11.1.1工业含酚废水的来源.............................................................................................11.1.2酚类化合物简介.....................................................................................................11.1.3含酚废水的危害.....................................................................................................21.1.4含酚废水的处理技术.............................................................................................21.2研究内容............................................................................................................................41.3溶剂萃取法处理含酚废水的研究现状............................................................................51.4研究创新点及意义............................................................................................................5第二章实验部分.....................................................................................................................72.1实验试剂与仪器................................................................................................................72.2液液相平衡数据测定........................................................................................................92.2.1实验分析方法.........................................................................................................92.2.2实验步骤.................................................................................................................92.2.3气相色谱仪条件的确定.......................................................................................112.2.4校正因子的测定...................................................................................................142.2.5样品组成的计算...................................................................................................152.3实验结果..........................................................................................................................172.3.1二元体系相平衡数据...........................................................................................172.3.2三元体系相平衡数据...........................................................................................172.3.3四元体系相平衡数据...........................................................................................232.4实验数据的信赖性..........................................................................................................28IVn目录第三章实验数据的计算.......................................................................................................363.1活度系数模型..................................................................................................................363.1.1NRTL模型............................................................................................................373.1.2UNIQUAC模型....................................................................................................383.2相平衡计算过程..............................................................................................................393.2.1二元液液相平衡的计算.......................................................................................393.2.2三元和四元液液相平衡的计算...........................................................................403.3结果与讨论......................................................................................................................403.3.1计算结果...............................................................................................................403.3.2计算结果图分析...................................................................................................45第四章萃取性能..................................................................................................................494.1分配系数..........................................................................................................................494.2选择性系数......................................................................................................................524.3萃取率..............................................................................................................................54总结与展望............................................................................................................................56参考文献................................................................................................................................58论文发表及投稿情况............................................................................................................63学位论文独创性声明............................................................................................................64致谢........................................................................................................................................65Vn广东工业大学硕士学位论文ContentsAbstract(Chinese)....................................................................................................................IAbstract(English)....................................................................................................................IIContents(Chinese)................................................................................................................IVContents(English).................................................................................................................VIChartcontents(Chinese)...................................................................................................VIIIChartcontents(English).......................................................................................................XIChapter1Introduction..........................................................................................................11.1Thebackgroundofthestudy.............................................................................................11.1.1Thesourceofindustrialphenolicwastewater.........................................................11.1.2Theintroductiontophenoliccompounds................................................................11.1.3Theharmofphenolicwastewater...........................................................................21.1.4Treatmentofphenolicwastewater..........................................................................21.2Researchcontent.................................................................................................................41.3Researchstatusofphenolicwastewaterbysolventextraction...........................................51.4Researchinnovationpointandsignificance.......................................................................5Chapter2Experimentalsection............................................................................................72.1Experimentalreagentsandapparatus.................................................................................72.2DeterminationofLLEdata.................................................................................................92.2.1Experimentalanalysismethod.................................................................................92.2.2Experimentalprocedure........................................................................................102.2.3Determinationofgaschromatographicconditions...............................................112.2.4Determinationofrelativecorrectionfactors.........................................................142.2.5Calculationofsamplecomposition.......................................................................152.3Experimentresults............................................................................................................172.3.1BinarysystemLLEdata........................................................................................172.3.2TernarysystemLLEdata......................................................................................172.3.3QuaternarysystemLLEdata.................................................................................232.4Reliabilityofexperimentaldata.......................................................................................28Chapter3Calculationofactivitycoefficientmodel..........................................................363.1activitycoefficientmodel.................................................................................................363.1.1NRTLmodel..........................................................................................................37VInContents3.1.2UNIQUACmodel..................................................................................................383.2Thecalculationprocess....................................................................................................393.2.1CalculationoftheenergyparametersbybinaryLLE...........................................393.2.2CalculationoftheenergyparametersbyternaryandquaternaryLLE.................403.3Thecalculationresultsanddiscuss..................................................................................403.3.1Calculationresults.................................................................................................403.3.2Analysisofcalculationresultsdiagrams...............................................................45Chapter4Extractionproperty...........................................................................................494.1Distributioncoefficient.....................................................................................................494.2Selectivecoefficient.........................................................................................................524.3Extractionrate..................................................................................................................54Summaryandprospect........................................................................................................56Reference...............................................................................................................................58Publishedpapers...................................................................................................................63Statementoforiginalcreation.............................................................................................64Acknowledgement................................................................................................................65VIIn广东工业大学硕士学位论文图表目录图1-1酚类化合物的化学结构式..........................................................................................2图1-2萃取剂的化学结构式..................................................................................................6图2-1分体式高精度恒温槽...................................................................................................8图2-2安捷伦7820A气相色谱仪..........................................................................................8图2-3色谱柱程序升温示意图.............................................................................................12图2-4气相色谱图.................................................................................................................13图2-5(水+苯酚+正十二烷+磷酸三丁酯)四元液液相平衡体系在T=293.15K时的示意图................................................................................................................................28图2-6(水+苯酚+乙酸己酯)体系数据的信赖性验证.................................................30图2-7(水+邻甲酚+乙酸己酯)体系数据的信赖性验证.............................................31图2-8(水+间甲酚+乙酸己酯)体系数据的信赖性验证.............................................31图2-9(水+对甲酚+乙酸己酯)体系数据的信赖性验证.............................................32图2-10(水+间苯二酚+乙酸己酯)体系数据的信赖性验证.......................................33图2-11(水+对苯二酚+乙酸己酯)体系数据的信赖性验证.......................................34图2-12{水+苯酚+正十二烷+磷酸三丁酯(M1)}体系数据的信赖性验证..................34图2-13{水+苯酚+正十二烷+磷酸三丁酯(M2)}体系数据的信赖性验证..................35图2-14{水+苯酚+正十二烷+磷酸三丁酯(M3)}体系数据的信赖性验证..................35图3-1(水+苯酚+乙酸己酯)三元液液相平衡体系相图............................................45图3-2(水+邻甲酚+乙酸己酯)三元液液相平衡体系相图........................................45图3-3(水+间甲酚+乙酸己酯)三元液液相平衡体系相图........................................46图3-4(水+对甲酚+乙酸己酯)三元液液相平衡体系相图........................................46图3-5(水+单元酚+乙酸己酯)三元液液相平衡体系在T=298.15K时的相图.......47图3-6(水+酚类化合物+萃取剂)体系在T=303.15K时酚类物质的分布曲线.......47图4-1(水+苯酚+正十二烷+磷酸三丁酯)液液相平衡体系在不同温度下苯酚的分配系数....................................................................................................................................49图4-2(水+酚类化合物+乙酸己酯)液液相平衡体系在不同温度下酚类化合物的分配系数....................................................................................................................................50图4-3(水+酚类化合物+乙酸己酯)液液相平衡体系在T=298.15K下酚类物质的分VIIIn图表目录配系数....................................................................................................................................51图4-4(水+苯酚+萃取剂)液液相平衡体系在T=313.15K下苯酚的分配系数.......52图4-5(水+苯酚+萃取剂)液液相平衡体系在不同温度下苯酚的选择性系数.........53图4-6(水+酚类化合物+萃取剂)液液相平衡体系在T=313.15K下酚类化合物的选择性系数................................................................................................................................53图4-7(水+酚类化合物+萃取剂)液液相平衡体系在313.15K下的萃取率.............54表2-1主要实验试剂...............................................................................................................7表2-2主要实验仪器...............................................................................................................7表2-3气相色谱分析条件.....................................................................................................12表2-4实验体系各物质的分子量及其相对校正因子.........................................................15表2-5二元相互溶解度数据.................................................................................................17表2-6{水(1)+苯酚(2)+乙酸己酯(3)}三元液液相平衡数据..........................................18表2-7{水(1)+邻甲酚(2)+乙酸己酯(3)}三元液液相平衡数据......................................19表2-8{水(1)+间甲酚(2)+乙酸己酯(3)}三元液液相平衡数据......................................20表2-9{水(1)+对甲酚(2)+乙酸己酯(3)}三元液液相平衡数据......................................21表2-10{水(1)+间苯二酚(2)+乙酸己酯(3)}三元液液相平衡数据................................22表2-11{水(1)+对苯二酚(2)+乙酸己酯(3)}三元液液相平衡数据................................23a表2-12{水(1)+苯酚(2)+正十二烷(3)}三元液液相平衡数据......................................24表2-13{水(1)+苯酚(2)+正十二烷(3)+磷酸三丁酯(4)M1}三元液液相平衡数据......25表2-14{水(1)+苯酚(2)+正十二烷(3)+磷酸三丁酯(4)M2}三元液液相平衡数据......26表2-15{水(1)+苯酚(2)+正十二烷(3)+磷酸三丁酯(4)M3}三元液液相平衡数据......27表2-16Hand和Othmer-Tobias方程参数...........................................................................30表2-17Hand和Bachman方程参数....................................................................................33表3-1纯组分的结构参数.....................................................................................................39表3-2{水(1)+苯酚/邻甲酚/间甲酚(2)+乙酸己酯(3)}三元液液相平衡体系计算结果................................................................................................................................................41表3-3{水(1)+对甲酚/间苯二酚/对苯二酚(2)+乙酸己酯(3)}三元液液相平衡体系计算结果....................................................................................................................................42表3-4(水+酚类化合物+乙酸己酯)三元液液相平衡体系RMSD均值....................43IXn广东工业大学硕士学位论文表3-5(水+苯酚+正十二烷+磷酸三丁酯)四元液液相平衡体系计算结果.............44XnChartContentsChartContentsFigure1-1Chemicalstructureofphenoliccompounds...........................................................2Figure1-2Chemicalstructureofextractant.............................................................................6Figure2-1High-precisionthermostaticbath............................................................................8Figure2-2Agilent7820AGC..................................................................................................8Figure2-3Schematicdrawingofprogrammedtemperature..................................................12Figure2-4Gaschromatogramofexperiment........................................................................13Figure2-5Typeofquaternaryliquid-liquidequilibriumdiagramatT=293.15K...............28Figure2-6Reliabilitytestof(water+phenol+hexylacetate)system.................................30Figure2-7Reliabilitytestof(water+o-cresol+hexylacetate)system...............................31Figure2-8Reliabilitytestof(water+m-cresol+hexylacetate)system..............................31Figure2-9Reliabilitytestof(water+p-cresol+hexylacetate)system...............................32Figure2-10Reliabilitytestof(water+resorcinol+hexylacetate)system..........................33Figure2-11Reliabilitytestof(water+hydroquinone+hexylacetate)system....................34Figure2-12Reliabilitytestof{water+phenol+dodecane+TBP(M1)}system.................34Figure2-13Reliabilitytestof{water+phenol+dodecane+TBP(M2)}system.................35Figure2-14Reliabilitytestof{water+phenol+dodecane+TBP(M3)}system.................35Figure3-1TernarydiagramforLLEdataof(water+phenol+hexylacetate)system.........45Figure3-2TernarydiagramforLLEdataof(water+o-cresol+hexylacetate)system.......45Figure3-3TernarydiagramforLLEdataof(water+m-cresol+hexylacetate)system......46Figure3-4TernarydiagramforLLEdataof(water+p-cresol+hexylacetate)system.......46Figure3-5TernarydiagramforLLEdata(water+phenols+hexylacetate)at298.15K....47Figure3-6Distributioncurvesofphenolsfor(water+phenols+extractant)systemsat303.15K..................................................................................................................................47Figure4-1Distributioncoefficientofphenolversusthemolefractionofphenolintheorganicphaseatdifferenttemperature...................................................................................49Figure4-2Distributioncoefficientofphenolsversusthemolefractionofphenolsintheorganicphaseatdifferenttemperature...................................................................................50Figure4-3DistributioncoefficientofphenolsversusthemolefractionofphenolsintheorganicphaseatT=298.15K.................................................................................................51Figure4-4DistributioncoefficientofphenolversusthemolefractionofphenolintheorganicphaseatT=313.15K.................................................................................................52XIn广东工业大学硕士学位论文Figure4-5Selectivecoefficientofphenolfor(water+phenol+extractant)systemsatdifferenttemperature..............................................................................................................53Figure4-6Selectivecoefficientofphenolsfor(water+phenols+extractant)systemsatT=313.15K.............................................................................................................................53Figure4-7ExtractionrateofLLEdata(water+phenols+extractant)atT=313.15K.......54Table2-1Experimentalreagentsusedinthestudy..................................................................7Table2-2Experimentalequipments.........................................................................................7Table2-3Chromatographicconditions..................................................................................12Table2-4Molecularweightandcorrectionfactorsofpurecomponents...............................15Table2-5Experimentalmutualsolubilitydata......................................................................17Table2-6TernaryLLEtie-linedataof{water(1)+phenol(2)+hexylacetate(3)}............18Table2-7TernaryLLEtie-linedataof{water(1)+o-cresol(2)+hexylacetate(3)}..........19Table2-8TernaryLLEtie-linedataof{water(1)+m-cresol(2)+hexylacetate(3)}.........20Table2-9TernaryLLEtie-linedataof{water(1)+p-cresol(2)+hexylacetate(3)}..........21Table2-10TernaryLLEtie-linedataof{water(1)+resorcinol(2)+hexylacetate(3)}.....22Table2-11TernaryLLEtie-linedataof{water(1)+hydroquinone(2)+hexylacetate(3)}................................................................................................................................................23Table2-12TernaryLLEtie-linedataof{water(1)+phenol(2)+dodecane(3)}................24Table2-13TernaryLLEtie-linedataof{water(1)+phenol(2)+dodecane(3)+TBP(4)M1}................................................................................................................................................25Table2-14TernaryLLEtie-linedataof{water(1)+phenol(2)+dodecane(3)+TBP(4)M2}................................................................................................................................................26Table2-15TernaryLLEtie-linedataof{water(1)+phenol(2)+dodecane(3)+TBP(4)M3}................................................................................................................................................27Table2-16HandandOthmer-Tobiasequationsparameters..................................................30Table2-17HandandBachmanequationsparameters...........................................................33Table3-1Structuralparametersforpurecomponents...........................................................39Table3-2Calculatedresultsof{water(1)+phenol/o-cresol/m-cresol(2)+hexylacetate(3)}..............................................................................................................................41Table3-3Calculatedresultsof{water(1)+p-cresol/resorcinol/hydroquinone(2)+hexylacetate(3)}..............................................................................................................................42Table3-4AverageoftheRMSDsfor(water+phenols+hexylacetate)systems................43Table3-5Calculatedresultsof(water+phenol+dodecane+TBP)systems......................44XIIn第一章绪论第一章绪论1.1研究背景1.1.1工业含酚废水的来源近年来,化工行业高速发展。在化工生产过程中,水是各种工艺中常用的介质,因此容易产生大量废水。其中含酚废水毒性极大,主要污染物包括酚类化合物,诸如炼油厂、石油化工、煤化工、塑料化工、药物化工等行业生产中都可能产生含酚废4水,来源十分广泛。在这些工业废水中酚类化合物的浓度有的高达10ppm,非挥发3[1-3]酚的含量有的高达10ppm。含酚废水会对生态环境造成极大危害,但废水中的酚类化合物又是极具价值的有机合成材料。在国家政策严格管控下,要兼顾经济效益最大化,寻求一种不仅能大幅度减小废水中酚类化合物的浓度,又能回收废水中的酚类化合物的方法是摆在化工行业面前的一个重要课题。1.1.2酚类化合物简介苯环或者芳香烃环上的氢原子(-H)被一个或两个以上的羟基(-OH)取代生成的化合物,一般称之为酚类化合物,其通式是ArOH。这类芳香族碳氢化合物的结构十分[4]相似、种类非常庞杂,其中苯酚,邻/间/对甲酚等(见图1-1)是常见的酚类化合物。通常根据芳香烃环或苯环上的取代羟基数目,将酚类物质划分为一元酚与多元酚;根据酚类化合物是否能与水同时沸腾、同时挥发,将其划分为挥发酚与不挥发酚。在自然界中植物生命活动会生成大量酚类物质,一般将植物体内所含有的酚类物质称之为内源性酚,其他的酚类物质则称之为外源性酚。在各种外源性酚中,苯酚的毒性最高,一般在含酚废水中含量最高的酚类物质是苯酚和邻甲酚、间甲酚或对甲酚[5],且目前环境污染监测指标一般以苯酚和邻甲酚、间甲酚或对甲酚等挥发酚的含量为重要参考。在物理方面,酚类物质散发特殊的芳香气味,置于空气环境中易被氧化,其颜色表现为由白色转变为粉红色或红色。酚类化合物的结构与性质息息相关,其沸点、熔点、密度和在水中的溶解度等物理性质与取代羟基数目密切相关;在化学方面,酚类1n广东工业大学硕士学位论文物质能发生芳烃取代反应,可与羟基反应,且酚类化合物中羟基上的氢原子易被电离,呈弱酸性的酚类物质可与强碱发应,生成物主要以酚盐为主。注:(a)苯酚;(b)邻甲酚;(c)间甲酚;(d)对甲酚l;(e)间苯二酚;(f)对苯二酚图1-1酚类化合物的化学结构式Figure1-1Chemicalstructureofphenoliccompounds1.1.3含酚废水的危害文献报道中将酚类化合物列为最有害的污染物之一,即使含有低浓度的酚类物[6,7]质,也有极高的毒性,且非挥发性二元酚(例:间/对苯二酚)甚至比苯酚毒性更[8,9]大。各种生物个体都会受到酚类化合物不同程度的毒害作用,酚类物质可通过眼睛、皮肤等接触,从而迅速被生物体所吸收,进入到肝脏、肺、肾和血管系统等器官组织的酚类物质会对生物体造成极大危害。人若长时间处于含酚类物质的环境中,轻[2]者会出现昏迷、抽搐、黄萎病等症状,重者直接致死。此外,灌溉农作物时如果用到低浓度的含酚类化合物废水,一定量的酚类化合物则会在谷类、禾麦等作物的果实[10]内富集,人一旦食用该农作物果实后,身体器官组织会受到一定程度的破坏。因此,很多国家都对地表水中含酚类化合物的浓度(我国排放标准为0.5ppm)作[5,8]了严格规定,在工业含酚废水排放至自然水体前,为了将酚类物质从含酚废水中分[11]离出来,做了持续不断的努力。可见,若不通过一系列工序处理含酚废水,直接将其排放至生态系统中,会对生态环境带来极大的危害,严重影响生态的发展。同时酚类化合物的用途又非常广泛,因此对从废水中分离出来的酚类化合物进行提纯并回收利用的意义十分重大。1.1.4含酚废水的处理技术针对化工生产过程中产生的含酚废水,尤其是高浓度的二元酚,一般通过一系列工序对其进行回收并加工成工业品,其中间苯二酚和对苯二酚常被用作相机中的显影[12]剂,抗氧化剂和聚合物抑制剂等。一般依据废水中酚类物质浓度的多寡,将其划分2n第一章绪论为低浓度和高浓度含酚废水。通常对含酚量低于1000ppm的废水,考虑到其回收难度较大,直接采用降解的方法;对含酚量高于1000ppm的废水,通常会设计一系列工艺来回收废水中的酚类化合物,然后再对其采用无害化处理。一般物理法、生物法和化学法等是常用的处理方法,其中物理法用来回收利用废水中的酚类化合物,利用生物法降解废水中的酚类化合物,在利用生物法进行预处理后再用化学法做进一步的处理[13]。上述处理方法的简要介绍如下:(1)物理法液液萃取法是物理法之一,该法利用酚类化合物在不同有机溶剂中溶解度大小不同的差异,选用合适的萃取剂来分离出废水中的酚类化合物,不仅可以减小废水中的酚类化合物含量,而且可以回收废水中的酚类化合物。杨芳等针对其所在企业的工业[14]含酚废水,选用企业生产工艺中的中间产物异丙苯作为萃取剂,用来处理该企业的含酚废水,且使用碱液处理萃取相达到回收废水的酚类化合物的目的。在该治理方案中,异丙苯可循环利用。经处理后,废水化学需氧量(COD)从开始的5000mg/L左右降到2000mg/L以下,不仅大幅度减小了废水中酚类化合物的含量,也为企业创造了显著的经济效益。使用一些具有较大比表面积、多孔结构等特性的吸附剂来对废水中的酚类化合物进行吸附的方法,通常称之为吸附法。该法工艺简单、耗能少且吸附效果好,对设备[13]需求较低,整个处理过程环保高效。渠佳慧等采用FeNi/D301磁性树脂吸附废水[15]中的酚类化合物,且讨论了吸附效果与初始温度、酸碱度、浓度以及反应时间等反应条件之间的关系;Qiu等研究了利用丙烯聚酸酯制备的BMS树脂来处理含苯酚废水[16],吸附量较大,其中BMS树脂经过处理可重复利用,吸附效果保持不变;El-Nass[17]等研究了利用枣椰核制备的活性炭来吸附含酚废水,吸附率达86%以上;(2)生物法根据资料记载,微生物可用于处理废水中的酚类化合物,该法主要通过降解作用使废水中的酚类化合物转化为对环境友好的物质,从而使废水中酚类化合物含量明显减少。该法中所用微生物可通过对选用的微生物培养方式的优化,使对含酚废水的处理效果。生物法主要包括生物膜法、生物流化床法、活性污泥法、酶处理方法等多种方法,操作十分简单。李德君等使用活性污泥污水处理工艺(SBR)处理废水中的酚[18]类化合物,经预处理过的含酚废水进入含有微生物的SBR池。经处理后,含酚废3n广东工业大学硕士学位论文水的COD值从2000~3000mg/L降到不足360mg/L,酚类化合物的脱除率达90%,生化需氧量(BOD)、油脂、氨氮、总酚含量去除率也达到90%以上;刘在进等通过生[19]物法组合工艺,高浓度废水经相对较低浓度的废水进行稀释后,引入兼氧/好氧(A/O)生化反应池,经处理后取得良好效果。(3)化学法光催化氧化法是利用在紫外光照射条件下,通过羟基自由基的高氧化电位对难降解的有机物进行化学降解,含酚废水中的酚类物质可被降解为二氧化碳和水。徐建华[20]等研究了通过光催化氧化技术降解含苯酚废水,经过光催化氧化后,苯酚的脱除率达35.06%,经处理后含酚废水的COD值明显降低。将Fenton试剂氧化法和湿式空气氧化技术相融合形成的方法,称之为湿式氧化法。该法的反应条件非常温和,且处理性能极佳。孟志国等使用该法处理含高浓度的[21]苯酚丙酮废水。经处理后,废水COD值从开始的5200mg/L降到780mg/L以下,苯酚的去除率可达85%,且BOD与COD的比值从0.01增加至0.45。1.2研究内容利用溶剂萃取法对工业含酚废水进行处理成本低,处理量高且商业效益可观又兼具环保的优势。在本研究中,选用了一些绿色高效、对人畜低毒、对作物安全的高选择性的有机溶剂作为萃取剂,通过液液萃取法分离废水中的酚类化合物,使含酚废水经处理后可达到较低的排放浓度标准。本研究以苯酚、邻甲酚、间甲酚、对甲酚、间苯二酚和对苯二酚六种酚类化合物作为研究对象,经过实验探索,发现乙酸己酯、正十二烷和磷酸三丁酯(TBP)混合溶液都是性能优良的脱酚萃取剂。本研究中,在常压下以及283.15K、293.15K、298.15K、303.15K和313.15K等5个不同温度下,采用Tie-Line法探究萃取剂和含酚水溶液之间的液液相平衡关系。通过气相色谱仪测定液液相平衡数据,分析萃取剂的萃取效能;采用Hand、Bachman和Othmer方程对液液相平衡数据进行信赖性验证;通过NRTL、UNIQUAC活度系数模型对各体系液液相平衡实验数据进行计算,使有限的液液相平衡数据得到有效的扩展。在本研究中,研究的体系主要包括:(1)二元体系(水+苯酚/邻甲酚/间甲酚/对甲酚/乙酸己酯);(2)三元体系(水+苯酚+正十二烷);(3)三元体系(水+苯酚/邻甲酚/间甲酚/对甲酚/间苯二酚/对苯二酚+乙酸己酯);(4)四元体系(水+苯酚+正十二烷+磷酸三丁酯)。通过测4n第一章绪论定、讨论、分析以上各体系液液相平衡数据,探究乙酸己酯、正十二烷和磷酸三丁酯复合萃取剂两种萃取对含酚废水的萃取效果。1.3溶剂萃取法处理含酚废水的研究现状在溶剂萃取含酚废水过程中,液液相平衡数据是进行计算、模拟和优化的基础[22],在各类工业对废水中的酚类化合物的处理工艺中,研究萃取剂与含酚废水之间的[23]液液相平衡关系十分重要。近年来,有很多关于使用溶剂萃取法来对含酚废水进行[24]处理的文献报道。其中,居红芳等测定了水-苯酚-异丙醚体系;Marasimhan等用乙[25]酸异戊酯作为萃取剂对含苯酚废水进行处理;HosseinGhanadazadeh等在温度为[26]298.2K的常压条件下,用Tie-line法测定了水-苯酚-环己烷体系;JTZhang等选用[27]碳酸二甲酯作为萃取剂对含苯酚废水机械能处理,以期有效预防二次污染问题;Y.[28,29]Chen等用了甲基叔丁基醚、甲基异丙基酮等多种有机溶剂萃取含酚废水;[30]GremingerD等证明了甲基异丁酮对含苯酚,苯二酚和联苯三酚废水的萃取性能要优于二异丙基醚;任小花等使用氢氧化钠和煤油与磷酸三丁酯混合溶液(磷酸三丁酯[31]的质量浓度为30%)反萃取剂体系成功回收了高浓度含酚废水中的酚类化合物;JingFan等使用了[Cnmim][PF6](n=4,6,8)和[Cnmim][BF4](n=6,8)两种离子液[32]体萃取含酚废水;H.G.Gilani等测定了正辛醇,2-乙基-1-己醇,环己酮和乙酸异丁[33]酯萃取含酚废水的液液平衡数据;C.Yang等测定了甲基异丁基酮萃取含苯酚和[34,35]1,2-苯二酚废水的液液平衡数据;GaojieXu等在T=298.15K,303.15K,318.15K[36]和323.15K等四个不同温度,测定了水,苯酚和庚酮之间的液液相平衡数据;文献[37]中也有关于水-苯酚-异丙叉丙酮三元液液相平衡体系的记载,其中证明含酚水溶液经异丙叉丙酮处理后,废水中苯酚的浓度明显降低;最近有研究证明桉叶油醇对含酚[38]废水也有萃取效果;更有研究者利用活度系数模型和萃取过程模拟技术筛选萃取剂[39]来处理含酚废水,用活度系数模型从40种有机溶剂中(包括烷类,芳烃类,醚类,酯类和酮类)筛选出最具潜力的萃取剂。1.4研究创新点及意义本研究中,以乙酸己酯、正十二烷和磷酸三丁酯混合溶液(其化学结构式见图1-2)为研究对象,探讨它们在萃取含酚水溶液过程中的液液相平衡数据。在本研究中,使用Tie-Line法,在T=283.15K,293.15K,298.15K,303.15K和313.15K等五5n广东工业大学硕士学位论文个不同温度下,利用气相色谱仪测定在常压下(水+苯酚/邻甲酚/间甲酚/对甲酚/间苯二酚/对苯二酚+萃取剂)共10个体系的液液相平衡数据,以及所研究体系中的二元部分互溶子体系的相互溶解度数据。注:(a)乙酸己酯;(b)正十二烷;(c)磷酸三丁酯图1-2萃取剂的化学结构式Figure1-2Chemicalstructureofextractant本文立意的创新点在于:一、乙酸己酯在常温常压下表现为一种无色油状液体,性质稳定并极难溶于[40]水,能与乙醇、苯等溶剂以任意比混溶。含酚废水中的酚类化合物在乙酸己酯萃取过程中获得非常高的分配系数和选择性系数,且其毒性极低,因此是一种理想的绿色萃取剂,符合理想萃取剂的条件。在本研究中,首次将其用来萃取含酚废水,结果表明含酚水溶液经乙酸己酯萃取后,能高效地去除水中的酚类物质。二、磷酸三丁酯在常温常压下表现为一种无色液体,性质稳定且难溶于水,在[41]25℃下在水中仅能溶解0.1%。在本研究中,使用磷酸三丁酯作为主萃取剂用于对含酚废水的萃酚处理,酚类化合物获得非常高的分配系数。因磷酸三丁酯的黏性较大,在工业应用中操作成本较高,在本研究中首次采用非极性溶剂正十二烷作为稀释剂,同时正十二烷起到萃取水体中有机物的协同作用。结果显示,使用含30%的磷酸三丁酯和正十二烷混合溶液作为萃取剂在不同温度下均能获得不小于98.7%的单级萃取率。在本研究中,测定上述萃取剂与含酚水溶液之间的液液相平衡数据,对溶剂萃取法处理含酚废水,及其过程设计与优化具有重要的理论与实践支撑意义。6n第二章实验部分第二章实验部分在本研究中,使用Tie-Line法,在T=(283.15,293.15,298.15,303.15,313.15)K五个不同温度下,利用气相色谱仪测定在常压下(水+苯酚/邻甲酚/间甲酚/对甲酚/间苯二酚/对苯二酚+萃取剂)共10个体系的液液相平衡数据,并研究所选用萃取剂的萃取效能。由于乙酸己酯、磷酸三丁酯、正十二烷、二甲基亚砜和酚类物质的沸点较低(最高不超过290℃),故本研究中利用气相色谱技术对各体系的相平衡组成进行了定量分析。2.1实验试剂与仪器实验所需试剂在101.3kpa、20℃时的物性数据信息见表2-1.表2-1主要实验试剂Table2-1Experimentalreagentsusedinthestudy-3试剂名称沸点/℃密度/g·cm纯度生产厂家水100.00.998—广东工业大学科研实验室苯酚181.91.059AR,99.9%阿拉丁试剂邻甲酚190.81.050≥99.7%阿拉丁试剂间甲酚202.81.030≥99.0%阿拉丁试剂对甲酚201.91.01898%阿拉丁试剂间苯二酚276.51.270AR,99.0%阿拉丁试剂对苯二酚287.01.328AR,99.0%阿拉丁试剂二甲基亚砜189.01.105AR,99.9%阿拉丁试剂磷酸三丁酯182.00.975AR,99%天津市科密欧化学试剂正十二烷216.00.784AR,99%天津市科密欧化学试剂乙酸己酯170.00.85898%阿拉丁试剂a二甲基甲酰胺153.00.946≥99.9%阿拉丁试剂a:二甲基甲酰胺作为有机相助溶剂使用,避免待测样品因温度波动出现相分离现象。实验所需主要仪器见表2-2:表2-2主要实验仪器Table2-2Experimentalequipments仪器名称生产厂家GC-7820A气相色谱仪美国安捷伦公司电子分析天平日本岛津公司分体式高精度恒温槽上海比朗仪器有限公司单道移液器L-2MLXLS美国RAININ(瑞宁)公司7n广东工业大学硕士学位论文IKA磁力搅拌器德国IKA公司2mL医用无菌注射器浙江欧健医用器材有限公司KQ-50B超声波清洗器昆山市超声仪器有限公司DH系列电热恒温干燥箱天津市中环实验电炉有限公司在本研究中,测定了15℃、20℃、30℃、40℃、45℃等5个不同温度下各液液相平衡体系数据,用分体式高精度恒温水槽对温度进行控制。图2-1为高精度恒温水槽,槽底配有搅拌功能的磁力搅拌器,其温度精确度可达0.1℃。图2-1分体式高精度恒温槽Figure2-1High-precisionthermostaticbath本研究中,使用气相色谱仪分析各液液相平衡体系中各组分的浓度,使用的安捷伦GC7820A气相色谱仪核心配置有自动进样器、热导检测器(TCD,ThermalConductivityDetector)、氢火焰离子检测器(FID,HydrogenFlameIonizationDetector)、DB-624中性柱(接FID)、DB-WAXetr强极性柱(接TCD)和安捷伦EZChromEdition工作站。图2-2安捷伦7820A气相色谱仪Figure2-2Agilent7820AGC8n第二章实验部分2.2液液相平衡数据测定2.2.1实验分析方法在本研究中,气相色谱分析法为主要分析方法。在分析过程中,首先针对待测物质对分析条件进行探索与优化;自动进样器将待测物质送至进样口气化,气化后的待测样品中的各组分在色谱柱中完成分离;从色谱柱中流出的待测样品经检测器检测;依据待测样品中的各组分在气相色谱图上呈现的峰图(各峰的保留时间和峰面积存在差异),进行定性和定量分析。(1)定性分析在本研究中,各个液液相平衡体系的待测样品中涉及的有机物种类较少,且其对应的标准品在市面上皆有售卖,故直接根据标准品在谱图中的保留时间信息与待测物质在谱图中的保留时间信息之间的差异,来判断待测各组分是否为对应的标准品。其中在实验分析过程中遇到复杂样品的分析时,一般采取气相色谱法与其他分析方法联用(GC-MS,IR,UV等),从而达到准确鉴定物质成分的目的。(2)定量分析本研究中,使用的内标法需要加入一种合适的内标物到待测样品中,内标物应是与待测样品中的组成成分完全不同的纯物质,且其与待测样品各组分色谱峰的位置应相接近,此外其添加量应与待测物质的添加量相接近;归一化法一般不需要标准物,当待测物质各组分都能顺利出峰且在检测器上响应程度相当,即可直接利用待测样品中各组分的峰面积或峰高进行归一化计算。综合上述定量分析方法与本研究中待测物质的特性,采用内标法测定各体系液液相平衡体系水相各组分含量;采用归一化法测定各体系液液相平衡体系有机相各组分含量。2.2.2实验步骤本研究采用Tie-Line法(又称平衡釜法)测定各体系的液液相平衡数据,该法操作简单,可直接测定两共轭相的液液相平衡数据,对于溶解度较小的体系同时适用[42]。Tie-Line法包括:配制一定量总组成已知的混合溶液,在恒定温度下充分搅拌,静置足够的时间使各相达到平衡状态;混合物分层后取各相区溶液进行分析。实验步骤主要包括样品配制、样品搅拌、样品静置、样品分析等四个部分。9n广东工业大学硕士学位论文(1)样品配制根据物系相互溶解度关系,配制一系列总组成不同的混合物,其中水相和有机相两相液层体积相当。通过直接配制法或稀释配制法获得所需的含酚水溶液,按照一定比例将所制的含酚水溶液与萃取剂混合加入到150mL的平衡玻璃平衡釜瓶,并加入大小适中的搅拌子,对配制好的混合溶液做好标记工作(在本研究中含酚水溶液与萃取剂的比例为1:1,含酚水溶液体积为30mL)。(2)样品搅拌将做好标识的平衡玻璃样品瓶置于高精度恒温槽中,打开槽底搅拌器(转速统一为600rpm),并设置好所需温度(分别为10℃、20℃、25℃、30℃、40℃)。经文献[43]调研,搅拌和静置时间一般在1h到10h之间。为确定本研究中最佳搅拌时间,做了如下探测实验:设置搅拌同种混合溶液的时间依次为1h、2h、3h、4h,然后统一静置10h以上后,分别测定其水相、有机相的组成。结果显示,搅拌时间2h、3h和4h后,静置分层后两相中的各组分含量相差极小,1h搅拌时间未能使混合液充分混合。根据所做测试结果,将混合溶液置于恒温槽中恒温搅拌3h,转速为600rpm。(3)样品静置样品搅拌3h后,关闭槽底搅拌器,继续置于恒温水槽中静置10h以上,使其达到平衡状态(静置温度与搅拌时保持一致)。充分静置后,平衡釜中分为水相和有机相两层,各相透明澄清且存在明显相界面。(4)取样分析使用接有软胶管的医用注射器对达到平衡状态的两相进行抽样(抽取量约为1mL)。在本研究中,利用FID检测器定量分析水相中的各组分。在本研究中要测定水相中水的含量,但水在FID检测器中不响应,故采用内标法;利用TCD定量分析有机相中的各组分,因TCD检测器可检测到有机相中的各组分,故采用面积归一化法。其中在测定水相环节,用注射器抽取约1mL水相混合液至小试管中,然后利用移液器定容量取880uL水相混合液至另一试管中,再添加800uL二甲基亚砜(内标物),加入搅拌子放置磁力搅拌器搅拌5min后静置2min,再用移液器定容量取1.5mL加入色谱进样瓶,置于GC7820A自动进样器等待自动进样;在测定有机相环节,为保证分析结果准确且具有时效性,实行立取立测,直接用注射器抽取约1.5mL有机相混合液至色谱进样瓶中,放于GC7820A自动进样器等待自动进样。上述每个待测样品皆用GC7820A重复分析3遍,取平均值,保证分析结果的相对误差低于0.5%。10n第二章实验部分2.2.3气相色谱仪条件的确定在本研究中,使用Agilent7820A气相色谱仪检测分析各体系样品中的组分含量,因所涉及的待测物质种类较少,且市面上皆有售卖对应的标准样品,故在确定最优气相色谱仪分析条件后,直接根据各标准样品在谱图中的保留时间来对待测样品中各物质进行定性,根据待测物质在谱图中的峰面积或峰高与其添加量进行定量分析。(1)载气的选择和流速的确定本研究中,使用H2作为载气;在使用FID检测器时,使用N2作为载气。此外,通入气相色谱仪中的载气流速大小对待测样品在色谱柱内的分配平衡影响很大,若流速过小,待测样品中各组分的保留时间相应变长,也可能会损坏热导池中的铼钨丝;若流速过大,会影响待测样品中各组分的分离效果和检测灵敏度。在本研究中,经过-1-1多次探索、优化,最终确定载气流速为2.5mL•min和1.8mL•min,待测物质各组分在谱图中的峰图能够分得开且峰形美观。(2)进样口温度和进样量的确定本研究中,主要考虑待测物质的沸点范围等因素确定进样口温度,保证待测物质到达进样口时能够全部气化,具体进样口温度信息见表2-3。在本研究中将进样量为1.1uL。根据经验,将分流比设置为50:1(前进样口)和10:1(后进样口)。(3)气相色谱柱的选择和柱温的确定本研究中,选用固定液为94%二甲基硅氧烷和6%氰丙基苯的中性柱DB-624(30m×0.32mm×1.8µm),与FID相连,以完成对水相各组分的分离;选用固定液为100%聚乙二醇的强极性柱DB-WAXetr(30m×0.32mm×0.5µm),与TCD相连,以完成对有机相各组分的分离,上述两种色谱柱都是毛细管柱。本研究中,水、乙酸己酯、二甲基亚砜、正十二烷等几种物质出峰时间较早,若温度设置过高,则同体系的两种物质的峰容易连在一起,甚至重合;苯酚、邻甲酚、间苯二酚等几种物质出峰时间较晚,若温度设置过低,则苯酚、邻甲酚、间苯二酚等几种物质出峰时间拖沓,甚至不出峰。故本研究采用程序升温,具体信息见图2-3和表2-3。11n广东工业大学硕士学位论文图2-3色谱柱程序升温示意图Figure2-3Schematicdrawingofprogrammedtemperature(4)检测器温度的确定在本研究中,GC7820A气相色谱仪配备TCD和FID两种检测器。TCD检测器是应用十分广泛的一种非破坏性检测器,在本研究中将TCD检测器温度确定为300℃;FID检测器可响应绝大多数有机化合物,且其灵敏度通常比TCD检测器高出3个数量级,本研究中FID检测器可成功检测出在水相中残余量低达10ppm的酚类化合物,将FID检测器温度确定为300℃,具体信息见表2-3。表2-3气相色谱分析条件Table2-3Chromatographicconditions条件/单位水相有机相载气N2H2辅助气H2,干空气N2检测器FIDTCD-1流速/mL·min2.51.8前进样口温度/℃—300后进样口温度/℃300—检测器温度/℃300300程序升温初始温度/℃120140程序升温终止温度/℃200240-1升温速率/℃·min1020进样量/μL1.11.1分流比10:150:1图2-4是选取的(水+对苯二酚+乙酸己酯)体系中水相(以二甲基亚砜为内标12n第二章实验部分物)的色谱图,从谱图可见各组分能很好分离。图2-4气相色谱图Figure2-4Gaschromatogramofexperiment13n广东工业大学硕士学位论文2.2.4校正因子的测定绝对校正因子(见式2-1)在通常情况下只在同一种检测器中适用,即使更换了同种类型的检测器,因灵敏度的差别也会导致绝对校正因子有所差异,甚至当一个检测器的使用时限和条件设置发生变化,其灵敏度也会随之发生变化,从而绝对校正因子也会随之发生变化,因此绝对校正因子在实际应用中存在非常大的不确定性和局限性,故引入了相对校正因子的概念,相对校正因子(见式2-2)是待测物质的绝对校正因子和基准物质的绝对校正因子之比。mf=ii(2-1)Ai式中f——绝对校正因子;im——待测物质i的质量;iA——待测物质色谱峰的峰面积。ifm//Ammiiiisfi=(2-2)fm//AAAsssis式中f——相对校正因子;if——待测物质i的绝对校正因子;if——基准物质s的绝对校正因子;sm——待测物质i的质量;im——基准物质s的质量;sA——待测物质i的峰面积;iA——基准物质s的峰面积。s在本研究中,相对校正因子的测定方法是:选取合适的标准物质,配制一系列浓度相当的待测物质与基准物质的混合溶液,记录所称量物质的质量;使用GC7820A对该系列混合溶液进行气相分析;利用所记录各物质的质量和各谱图中峰面积,分别以AA/和mm/为横轴和纵轴,代入各体系的实验数据并绘制关系直线,该条回归isis线的斜率即为所求。14n第二章实验部分在本研究中,考虑水相和有机相中所含组分含量的差异,测定水相各物质的相对校正因子时,以二甲基亚砜为基准物质;测定有机相各物质的相对校正因子时以N,N-二甲基亚酰胺为基准物质。所求结果具体信息见表2-4。表2-4实验体系各物质的分子量及其相对校正因子Table2-4Molecularweightandcorrectionfactorsofpurecomponents-1相对校正因子物质分子量/g·mol水相有机相水18.02—0.6031苯酚94.110.41691.2583邻甲酚108.140.44821.5800间甲酚108.140.43061.7125对甲酚108.140.44591.4762间苯二酚110.100.54661.6563对苯二酚110.100.57011.7112正十二烷170.331.95680.3820乙酸己酯143.200.61651.0746磷酸三丁酯266.320.55972.32922.2.5样品组成的计算在本研究中,使用GC7820A对水相中各组分(除水之外)进行定量分析,采用内标法,计算公式(见式2-3)为:fAmwiis(2-3)ifAmss式中fi——待测组分i的相对校正因子;Ai,As——待测组分i和基准物质s的峰面积;ms,m——基准物质i和样品的质量。有机相中各组分的测定使用归一化法,计算公式(见式2-4)为:mfAiiiwi%n100%(2-4)mmm12nfAiii115n广东工业大学硕士学位论文将上述质量分数转化为摩尔分数(见式2-5):wM/iix(2-5)inwMii/i1式中x——待测组分i的摩尔分数;iM——待测组分i的相对分子质量;iwi——待测组分i的质量分数;n——总组分数。16n第二章实验部分2.3实验结果2.3.1二元体系相平衡数据在本研究中,在常压下运用气相色谱仪测定T=(283.15,298.15,313.15)K三个温度下(水+酚类物质)、(水+乙酸己酯)等二元液液相平衡数据,实验数据信息见表2-5。表2-5二元相互溶解度数据Table2-5ExperimentalmutualsolubilitydataTAqueousphaseOrganicphaseIIIKx2x1Water(1)+phenol(2)283.150.01570.6280298.150.01720.6699313.150.02030.7004Water(1)+o-cresol(2)283.150.004260.4578298.150.004470.4839313.150.005390.5022Water(1)+m-cresol(2)283.150.003950.4506298.150.004380.4691313.150.005190.5029Water(1)+p-cresol(2)283.150.003460.4818298.150.003630.5202313.150.003910.5601Water(1)+hexylacetate(2)283.150.00004050.0371298.150.00004620.0436313.150.00005140.04882.3.2三元体系相平衡数据在本研究中,采用Tie-Line法测定了(水+苯酚+乙酸己酯)、(水+邻甲酚+乙酸己酯)、(水+间甲酚+乙酸己酯)、(水+间甲酚+乙酸己酯)、(水+间苯二酚+乙酸己酯)、(水+对苯二酚+乙酸己酯)共6个三元体系在T=(283.15,298.15,313.15)K三个温度下的液液相平衡数据,通过色相色谱分析了相平衡中各组分的组成(摩尔分数)。上述各体系的实验数据信息见表2-6至表2-11。17n广东工业大学硕士学位论文表2-6{水(1)+苯酚(2)+乙酸己酯(3)}三元液液相平衡数据Table2-6TernaryLLEtie-linedataof{water(1)+phenol(2)+hexylacetate(3)}aFeedAqueousphaseOrganicphaseExtractionability22Ib4I3IIIII10w0(10w2)10x210x3x1x2DSET=283.15K0.0160.000580.01120.04360.03600.00021190527096.350.0800.00200.03830.04430.03820.00085221580497.500.4000.00900.17300.04510.04150.0047270651097.742.0000.04200.80510.04690.04910.0283351715897.905.0000.10401.99460.04830.06160.0720361585597.9210.0000.24054.61480.04930.08150.1435311381297.6015.0000.38257.34880.05010.09660.1966268276797.4520.0000.49909.59750.05070.10750.2355245228197.50T=298.15K0.0160.000600.01170.04990.03770.00015130345296.630.0800.00230.04430.05040.03950.00081184464697.110.4000.01030.19810.05140.04660.0046230493597.412.0000.04920.94280.05350.05680.0277293516297.545.0000.12432.38340.05520.07120.0708297417197.5110.0000.28435.45930.05610.09170.1414259282297.1615.0000.44598.57250.05630.10630.1931225211897.0320.0000.580911.17950.05700.11690.2321208177497.10T=313.15K0.0160.000630.01210.05380.03810.00012106277696.040.0800.00250.04870.05450.04050.00076156385896.820.4000.01110.21250.05580.05210.0041192368197.232.0000.05781.10780.05810.06300.0273246390797.115.0000.14402.76080.06000.07970.0693251314997.1210.0000.33306.39610.06080.09850.1406220223096.6715.0000.51839.97090.06210.11190.1880189168396.5420.0000.687813.24890.06300.12290.2245169137796.56a:w0为苯酚-水溶液在与乙酸己酯混合之前的初始质量分数;b:w2为(水+苯酚+乙酸己酯)体系达到平衡状态时水相中苯酚的质量分数。18n第二章实验部分表2-7{水(1)+邻甲酚(2)+乙酸己酯(3)}三元液液相平衡数据Table2-7TernaryLLEtie-linedataof{water(1)+o-cresol(2)+hexylacetate(3)}aFeedAqueousphaseOrganicphaseExtractionability24Ib4I3IIIII10w0(10w2)10x210x3x1x2DSET=283.15K0.03120.02240.00370.04680.04680.0004512122587699.280.06250.03860.00640.04780.04810.0008112572615099.380.12500.06280.01050.04870.05130.001514292786999.490.25000.12560.02090.05000.05260.003115012852699.490.50000.25570.04260.05130.05430.006815922933099.481.00000.55170.09190.05320.05540.015216492975999.442.00001.15300.19210.05500.05810.032416872903899.424.00002.41430.40230.05650.06490.067116692570499.397.00004.40880.73460.05810.07590.112015252008799.3710.00006.61201.10160.05900.08570.154814051639299.3315.000010.04721.67380.06070.09840.215812891309699.33T=298.15K0.03120.02290.00380.05260.05060.000348841746799.260.06250.05020.00840.05350.05160.000779251791299.190.12500.08520.01420.05460.05230.001410211952799.310.25000.15700.02620.05620.05370.003111872212399.370.50000.29600.04930.05730.05550.006513092356599.401.00000.63700.10610.05890.05830.014813982400499.362.00001.33250.2220.05970.06220.032114462322999.334.00002.77370.46210.06050.07030.065614192020099.307.00005.01140.8350.06180.08050.108012931607699.2810.00007.59791.26580.06300.08950.149911851323299.2415.000011.76081.95930.06460.10390.208310631023199.21T=313.15K0.03120.02330.00390.05950.05240.000266741288099.250.06250.05070.00840.06000.05460.000647531380399.180.12500.09420.01570.06050.05630.00138011424299.240.25000.19290.03210.06150.05770.00309321615799.220.50000.36780.06130.06250.05900.006210121714199.261.00000.77160.12860.06320.06180.014311151803599.222.00001.60640.26770.06370.06570.031811891809499.194.00003.29260.54860.06410.07470.063311541544699.177.00006.03001.00460.06520.08490.106010551242699.1310.00009.09961.5160.06630.09520.14949861034899.0915.00014.13422.35460.06840.11070.2072880794499.05a:w0为邻甲酚-水溶液在与乙酸己酯混合之前的初始质量分数;b:w2为(水+邻甲酚+乙酸己酯)体系达到平衡状态时水相中邻甲酚的质量分数。19n广东工业大学硕士学位论文表2-8{水(1)+间甲酚(2)+乙酸己酯(3)}三元液液相平衡数据Table2-8TernaryLLEtie-linedataof{water(1)+m-cresol(2)+hexylacetate(3)}aFeedAqueousphaseOrganicphaseExtractionability24Ib4I3IIIII10w0(10w2)10x210x3x1x2DSET=283.15K0.03120.02370.00390.04180.04650.000348641856699.240.06250.05600.00930.04280.04740.000869211945599.100.12500.09050.01510.04350.04830.001510112091999.280.25000.16800.02800.04410.04910.003211482336599.330.50000.33610.05600.04520.05000.006812082413799.331.00000.66800.11130.04640.05270.014212792425699.332.00001.36200.22690.04780.05680.030313372355499.324.00002.80700.46770.04940.06290.065013912209499.307.00005.11230.85180.05060.07260.112913251825299.2710.00006.98341.16350.05150.07970.145812531573399.3015.000011.54921.92400.05210.08930.210110921222799.23T=298.15K0.03120.02590.00430.04760.04910.000276311284199.170.06250.05600.00930.04880.05100.000667121395599.100.12500.10340.01720.04970.05230.00148171562199.170.25000.21550.03590.05090.05340.00339091703399.140.50000.38790.06460.05170.05500.006610191850499.221.00000.78440.13070.05310.05700.014611201965099.222.00001.55620.25930.05450.06080.030911931961699.224.00003.07480.51230.05570.06700.063212341843399.237.00005.58800.93100.05720.07560.108711671544599.2010.00007.96581.32710.05810.08270.143310801305199.2015.000013.19332.19790.05900.09450.2041928982099.12T=313.15K0.03120.03020.00500.05350.05300.00022440830799.030.06250.05600.00930.05430.05530.00048511922999.100.12500.11200.01870.05480.05590.00115721023899.100.25000.22840.04160.05600.05680.00307261278699.000.50000.47410.07900.05740.05870.00627821331799.051.00000.95690.15940.05860.06040.01438991488199.042.00001.88410.29240.05950.06390.029610121583599.124.00003.76560.58430.06040.07210.061110451448999.127.00007.12711.11540.06150.08140.10809681188799.0410.00009.95691.58670.06230.08890.14268991010599.0515.00015.75382.62430.06390.10000.2016768767698.95a:w0为间甲酚-水溶液在与乙酸己酯混合之前的初始质量分数;b:w2为(水+间甲酚+乙酸己酯)体系达到平衡状态时水相中间甲酚的质量分数。20n第二章实验部分表2-9{水(1)+对甲酚(2)+乙酸己酯(3)}三元液液相平衡数据Table2-9TernaryLLEtie-linedataof{water(1)+p-cresol(2)+hexylacetate(3)}aFeedAqueousphaseOrganicphaseExtractionability24Ib4I3IIIII10w0(10w2)10x210x3x1x2DSET=283.15K0.03120.02680.00370.04680.05000.000347671535199.140.06250.05240.00640.04780.05040.000608531693399.160.12500.10260.01050.04870.05100.00179651893399.180.25000.17390.02090.05000.05110.003010362028699.300.50000.36570.04260.05130.05180.006610882102099.271.00000.70480.09190.05320.05310.013511522166899.302.00001.42300.19210.05500.05370.027911762189999.294.00003.19470.40230.05650.06140.061111461867599.207.00005.46740.73460.05810.07050.099710931550899.2210.00008.02291.10160.05900.08000.137510271284699.2015.000012.58841.67380.06070.09390.19739391000299.16T=298.15K0.03120.03120.00380.05260.05100.00026490961599.000.06250.05800.00840.05350.05140.000555711109799.070.12500.10260.01420.05460.05240.00116331208399.180.25000.17400.02620.05620.05330.00227501408599.300.50000.40590.04930.05730.05520.00598731581299.191.00000.82520.10610.05890.05710.01319501664299.172.00001.65510.22200.05970.06040.02759971650899.174.00003.77960.46210.06050.06880.06219851430399.067.00006.21800.83500.06180.07820.09719361197499.1110.00009.21661.26580.06300.08770.1341872994699.0815.000014.92061.95930.06460.10560.1900763722399.01T=313.15K0.03120.04010.00390.05950.05200.00024358687198.710.06250.07130.00840.06000.05330.00042408764998.860.12500.13830.01570.06050.05470.0010439802398.890.25000.26760.03210.06150.05640.0023520921698.930.50000.54420.06130.06250.05840.00566191060898.911.00001.05720.12860.06320.06140.01297331192998.942.00002.05230.26770.06370.06990.02727941136798.974.00004.47620.54860.06410.07720.05907911024198.887.00007.48031.00460.06520.08630.0960769890998.9310.000011.36331.51600.06630.09840.1331702712998.8615.00017.83202.35460.06840.11530.1857624540798.81a:w0为对甲酚-水溶液在与乙酸己酯混合之前的初始质量分数;b:w2为(水+对甲酚+乙酸己酯)体系达到平衡状态时水相中间甲酚的质量分数。21n广东工业大学硕士学位论文表2-10{水(1)+间苯二酚(2)+乙酸己酯(3)}三元液液相平衡数据Table2-10TernaryLLEtie-linedataof{water(1)+resorcinol(2)+hexylacetate(3)}aFeedAqueousphaseOrganicphaseExtractionability22Ib3I3IIIII10w0(10w2)10x210x3x1x2DSET=283.15K0.40.04290.07020.06350.04010.004259148089.280.50.07170.11750.06520.04380.006051117585.650.80.12010.19690.06700.04700.00894596584.981.00.18910.31010.06930.05540.01264073081.091.60.25550.41920.07100.05700.01593866384.032.00.34100.56000.07340.06150.02053759482.953.20.52810.86850.07820.06790.03033551483.504.00.74411.22610.08250.07710.04113343481.40T=298.15K0.40.04960.08130.05600.04060.003746113387.600.50.07440.12180.05730.04340.00504194385.130.80.12900.21140.05970.04730.00773677083.871.00.18300.30010.06130.05340.01013463281.701.60.28630.46990.06440.05800.01453153082.112.00.38020.62450.06700.06210.01843047580.993.20.61801.01720.07140.07090.02832839380.694.00.89831.48210.07560.07940.03922633377.54T=313.15K0.40.05540.09070.05160.03890.00333693486.160.50.08510.13950.05250.04330.00453274382.970.80.14460.23700.05410.04810.00672858881.931.00.23180.38020.05670.05670.00962544376.821.60.33470.54950.05880.06100.01272337879.082.00.48510.79740.06220.06490.01722233275.753.20.76971.26840.06620.07320.02612128175.954.01.09631.81160.06980.08130.03592024372.59a:w0为间苯二酚-水溶液在与乙酸己酯混合之前的初始质量分数;b:w2为(水+间苯二酚+乙酸己酯)体系达到平衡状态时水相中间苯二酚的质量分数。22n第二章实验部分表2-11{水(1)+对苯二酚(2)+乙酸己酯(3)}三元液液相平衡数据Table2-11TernaryLLEtie-linedataof{water(1)+hydroquinone(2)+hexylacetate(3)}aFeedAqueousphaseOrganicphaseExtractionability22Ib3I3IIIII10w0(10w2)10x210x3x1x2DSET=283.15K0.40.00730.01400.07770.03690.000752139798.170.50.01790.03440.08250.03760.001543115496.410.80.03220.06170.08560.03780.00233798195.971.00.04910.09410.08990.03870.00303281995.091.60.09870.18930.09450.04000.00492664393.832.00.23380.44890.10170.04390.00992250288.313.20.56981.09700.11160.05140.02111937382.194.01.17802.27930.12240.06440.04131828070.55T=298.15K0.40.00940.01800.06240.05710.00063255897.650.50.01970.03780.06690.05820.00102847696.050.80.04590.08800.07080.05880.00212440594.261.00.06320.12110.07450.05940.00262236593.681.60.14130.27100.08050.06130.00501829991.172.00.33140.63670.08830.06430.00951523283.433.20.67451.29950.09660.06990.01751319278.924.01.38942.69260.10620.08050.03461315965.26T=313.15K0.40.01020.01950.04320.07670.00042228597.460.50.01920.03680.04770.07710.00071925096.160.80.04330.08300.05210.07810.00141621094.591.00.09020.17290.05690.07920.00271519590.981.60.20730.39770.06310.08150.00541416887.052.00.40190.77250.06900.08380.00911214179.903.20.82251.58620.07580.08840.01601011474.304.01.67563.25430.08560.09620.030599758.11a:w0为对苯二酚-水溶液在与乙酸己酯混合之前的初始质量分数;b:w2为(水+对苯二酚+乙酸己酯)体系达到平衡状态时水相中对苯二酚的质量分数。2.3.3四元体系相平衡数据在本研究中,采用Tie-Line法测定{水+苯酚+正十二烷+磷酸三丁酯(M1,M2,M2)}四元体系及其子体系在T=(293.15,303.15,313.15)K三个温度下的液液相平衡数据,通过色相色谱分析了相平衡中各组分的组成(摩尔分数)。其中磷酸三丁酯和正十二烷复合萃取剂中两种有机溶剂混合时的质量配比有所差异,其中M1:磷酸三丁酯:正十二烷=1:9;M2:磷酸三丁酯:正十二烷=2:8;M3:磷酸三丁酯:正十二烷=3:7。上述各体系的实验数据信息见表2-12至表2-15。23n广东工业大学硕士学位论文a表2-12{水(1)+苯酚(2)+正十二烷(3)}三元液液相平衡数据Table2-12TernaryLLEtie-linedataof{water(1)+phenol(2)+dodecane(3)}bFeedAqueousphaseOrganicphaseExtractionability22I3I3IIIII-310w010w210x210x3x1x2D10ST=293.15K0.1000.09750.01870.01700.001250.0005730.82.460.1250.12260.02350.01560.001220.0006929.22.390.2000.18570.03560.01450.001170.0009827.42.340.2500.23130.04440.01350.001080.0011425.82.390.4000.37450.07190.01270.001050.0018325.42.420.5000.47080.09050.01190.001010.0023125.52.520.8000.75510.14550.01090.000970.0038026.12.691.0000.95390.18410.01010.000930.0048626.42.831.6001.49200.28920.00900.000850.0079827.63.242.0001.85980.36160.00820.000780.0101328.03.573.2002.98990.58670.00640.000710.0170529.14.054.0003.75920.74240.00490.000660.0223230.14.53T=303.15K0.1000.09230.01770.01490.001310.0006738.12.90.1250.11210.02150.01350.001300.0007836.52.810.2000.17800.03410.01180.001290.0011634.02.640.2500.22290.04280.01080.001230.0013531.52.550.4000.36410.06990.01000.001180.0021831.22.640.5000.44940.08640.00920.001120.0027331.62.830.8000.72520.13970.00780.001070.0045832.83.041.0000.90960.17550.00740.001020.0059133.73.291.6001.41960.27500.00600.000930.0096835.23.792.0001.83250.35620.00520.000880.0129336.34.093.2002.90410.56950.00400.000830.0214437.64.534.0003.67410.72510.00310.000770.0275238.04.89T=313.15K0.1000.00090.01690.01310.001470.0007544.63.030.1250.00110.02140.01200.001430.0009041.82.920.2000.00180.03360.01040.001390.0013038.82.780.2500.00220.04140.00960.001350.0015136.32.690.4000.00360.06970.00830.001310.0024034.42.620.5000.00440.08430.00730.001270.0029334.72.730.8000.00720.13880.00650.001230.0050736.52.961.0000.00910.17500.00550.001160.0064937.13.181.6000.01400.27050.00450.001090.0105138.93.552.0000.01830.35620.00370.001010.0143240.23.953.2000.02890.56730.00260.000940.0235641.54.44.0000.03630.71520.00200.000910.0301042.14.58a:(水+苯酚+正十二烷)是本文四元体系中的子体系,故置于此处,以方便讨论;b:w2为(水+苯酚+正十二烷)体系达到平衡状态时水相中苯酚的质量分数。24n第二章实验部分表2-13{水(1)+苯酚(2)+正十二烷(3)+磷酸三丁酯(4)M1}三元液液相平衡数据Table2-13TernaryLLEtie-linedataof{water(1)+phenol(2)+dodecane(3)+TBP(4)M1}AqueousphaseOrganicphaseExtractionability3I3I3IIIIIII10x210x310x4x1x2x3DSET=293.15K0.00320.04780.02320.02410.00240.22417613159898.340.00420.04500.02260.02320.00370.22378763777798.230.00860.04380.02030.02170.00830.22279684469797.760.01040.03750.01970.02080.01060.222210174889997.820.01680.03240.01760.01940.01740.220910385336697.810.02240.02860.01640.01870.02300.219710305522197.670.03810.02370.01530.01720.03860.216910135879997.510.04740.02260.01280.01650.04750.215110016080497.530.08100.01940.01060.01460.07640.20979426464697.360.10270.01920.00730.01360.09350.20159106691297.320.17300.01760.00460.01200.14510.19188386979497.180.22220.01730.00390.01100.17960.18498087341197.10T=303.15K0.00400.03130.01660.02290.00230.22115682479897.910.00570.02860.01550.02120.00360.21856322986897.620.01040.02650.01470.01990.00780.21707433731197.270.01220.02580.01370.01890.01000.21628264370997.460.01880.02390.01260.01780.01690.21448995058697.540.02550.02220.01180.01690.02280.21288915263397.330.04330.01950.00870.01550.03790.20988765639497.170.05360.01770.00790.01470.04670.20768705937497.200.09170.01580.00640.01240.07600.20738286682697.010.11630.01430.00540.01140.09320.20368017053996.960.19990.01250.00410.00970.14510.19207267473196.740.26200.01130.00350.00890.17960.18456857675796.76T=313.15K0.00420.01910.01430.02160.00210.21764902267397.790.00670.01740.01280.01960.00350.21705272685797.210.01150.01630.01140.01810.00730.21586323484497.000.01340.01570.01060.01680.00920.21516864085997.210.02170.01490.00950.01550.01610.21367424786397.170.02930.01390.00850.01480.02170.21197404994796.940.05080.01240.00750.01300.03760.20887395663096.680.06340.01150.00660.01210.04650.20697336058096.690.10540.00940.00600.01000.07490.20177117134896.560.13620.00870.00480.00910.09380.19806897580896.450.23500.00690.00370.00760.14580.18656208207696.170.31060.00630.00260.00660.18090.17515828873796.16M1:磷酸三丁酯:正十二烷=1:9。25n广东工业大学硕士学位论文表2-14{水(1)+苯酚(2)+正十二烷(3)+磷酸三丁酯(4)M2}三元液液相平衡数据Table2-14TernaryLLEtie-linedataof{water(1)+phenol(2)+dodecane(3)+TBP(4)M2}AqueousphaseOrganicphaseExtractionability3I3I3IIIIIII10x210x310x4x1x2x3DSET=293.15K0.00170.02880.02920.06720.00310.403917942668199.110.00230.02860.02590.06480.00430.402218872912199.050.00360.02710.02130.06400.00700.400819463041399.060.00480.02680.02010.06360.00940.395219483063699.000.00730.02400.01820.06290.01430.390519463095599.040.01110.02280.01680.06170.02130.384619243118598.840.01760.01990.01590.06060.03350.379619013138298.850.02350.01870.01350.05940.04400.375318733151498.770.04090.01750.01080.05710.07220.364517673091498.670.05190.01730.00930.05570.08880.357417123070398.650.08200.01570.00640.05140.13120.342816003112798.660.10600.01310.00600.04770.16200.332215283201498.62T=303.15K0.00260.02150.02570.06590.00430.394816392487498.640.00330.01960.02220.06440.00560.389617022641698.640.00460.01920.01820.06280.00830.383017792833098.790.00630.01870.01570.06140.01110.379117732886698.690.00920.01800.01430.06020.01610.375917512909198.800.01290.01730.01350.05910.02240.372617382941498.650.02130.01660.01220.05700.03600.368316922965898.610.02750.01570.01140.05580.04530.363616482951198.570.04720.01430.00970.05280.07190.354015252886598.460.06030.01330.00890.05090.08820.345914632873898.430.09910.01130.00640.04630.13210.329113332876998.380.13540.00840.00630.04280.16530.316212212852498.33T=313.15K0.00320.01830.02030.06400.00410.395413002030598.340.00420.01630.01780.06270.00600.382614182260998.230.00590.01580.01620.06110.00880.378714922442398.470.00760.01520.01490.06020.01140.375815092506298.420.01110.01470.01430.05860.01660.371414932548698.550.01510.01360.01300.05640.02210.368414672599098.420.02480.01210.01200.05340.03470.361913992621198.380.03280.01110.01120.05110.04410.357813462634298.290.05510.00940.00930.04750.06850.350112432619398.200.07520.00850.00810.04430.08870.338211792661798.040.12690.00610.00640.03850.13260.322810442715397.930.17020.00530.00460.03510.16490.31239692761797.90M2:磷酸三丁酯:正十二烷=2:8。26n第二章实验部分表2-15{水(1)+苯酚(2)+正十二烷(3)+磷酸三丁酯(4)M3}三元液液相平衡数据Table2-15TernaryLLEtie-linedataof{water(1)+phenol(2)+dodecane(3)+TBP(4)M3}AqueousphaseOrganicphaseExtractionability3I3I3IIIIIII10x210x310x4x1x2x3DSET=293.15K0.00100.02660.03440.11330.00260.491126472335399.490.00130.02620.02780.11150.00360.483627562471499.450.00200.02470.02360.10970.00560.479528402587699.490.00290.02360.02200.10800.00840.473429532733099.400.00480.02280.01970.10590.01450.469930192852099.370.00630.02210.01820.10380.01900.467230012891099.340.01000.02100.01640.10010.02950.462529692964899.350.01320.02010.01430.09820.03870.455229262978699.310.01810.01920.01200.09580.05220.449228843009299.410.02720.01820.00870.09240.07610.436327933021699.290.04670.01720.00730.08670.11990.417025702963399.240.05810.01660.00620.08570.14310.397724642873299.24T=303.15K0.00160.01910.02820.10290.00350.505022122149699.170.00200.01780.02300.10280.00460.494322482185499.150.00310.01650.01950.10250.00720.484723222265799.190.00420.01580.01760.10120.01000.474924042374199.130.00650.01550.01620.09990.01610.467224672468399.150.00830.01470.01390.09770.02040.461724572516299.130.01400.01350.01300.09450.03380.453424092549599.080.01760.01290.01220.09150.04180.448223732591599.080.02900.01220.01080.08760.06630.438222842607399.050.03720.01190.00990.08480.08200.425922052599299.030.06330.01160.00770.08020.12860.405120312532098.970.07910.01140.00660.07780.15660.391219792543399.02T=313.15K0.00210.01720.02090.10060.00370.492917491737598.890.00270.01560.01970.09890.00490.485618051825498.880.00440.01460.01840.09750.00830.480618951944498.850.00550.01360.01680.09590.01050.474519302011798.860.00830.01190.01550.09460.01640.468719752087598.910.01040.01170.01410.09330.02040.457019572097198.910.01680.01030.01280.09040.03220.452719172121398.900.02260.00920.01220.08500.04250.448718812212898.820.03680.00770.01120.07940.06630.439018012269198.800.04630.00750.00990.07410.08130.433817552369198.790.07710.00580.00830.06810.12820.413316632440798.740.09960.00510.00630.06420.16040.398716112506998.77M3:磷酸三丁酯:正十二烷=3:7。27n广东工业大学硕士学位论文图2-5(水+苯酚+正十二烷+磷酸三丁酯)四元液液相平衡体系在T=293.15K时的示意图Figure2-5Typeofquaternaryliquid-liquidequilibriumdiagramatT=293.15K图2-5是(水+苯酚+正十二烷+磷酸三丁酯)四元液液相平衡体系在T=293.15K时的示意图,图中M表示磷酸三丁酯(TBP)的质量分数。该体系中水与苯酚、正十二烷及磷酸三丁酯为部分互溶体系,故在四元液液相平衡相图表现为Ⅱ型体系。2.4实验数据的信赖性在本研究中,采用著名的Hand、Bachman和Othmer-Tobias信赖性方程(见式2-[44-46]5、2-6和2-7)对三元液液相平衡实验数据进行可靠性验证:IIIxxlnln22kb(2-5)11xx31IIx3x3k2Ib2(2-6)x1III1x1xlnln3kb1(2-7)22xx31在以上三式中,I表示水相,II表示有机相;k1和k2为方程的斜率;b1和b2为方程的截距。IIIxx22其中,Hand方程(式2-5)以ln、ln分别为横轴、纵轴,代入各实验xx13体系中的摩尔分数xi即可得出一系列的数据点,对其进行线性回归,可得各体系在不2同温度下的回归线斜率ki和截距bi,以及对应的线性相关系数R;Bachman方程(式28n第二章实验部分IIx3II2-6)以I、x3分别为横轴、纵轴,代入各实验体系中的摩尔分数xi即可得出一系x1列的数据点,对其进行线性回归,可得各体系在不同温度下的回归线斜率ki和截距I21x1bi,以及对应的线性相关系数R;Othmer-Tobias方程(式2-7)以ln、x1II1x3ln分别为横轴、纵轴,代入各实验体系中的摩尔分数xi即可得出一系列的数x3据点,对其进行线性回归,可得各体系在不同温度下的回归线斜率ki和截距bi,以及22对应的线性相关系数R。上述R的值处于0~1范围内,当该值接近于1时,表明实验数据和信赖性方程的吻合度高。x2x2ln()klnb(2-8)11xx341xxk34b(2-9)342x21式2-8和式2-9分别是验证(水+苯酚+正十二烷+磷酸三丁酯)四元液液相平衡实验数据的Hand和Bachman信赖性方程,其中I和II分别表示水相和有机相,k1和k2为两个方程的斜率;b1和b2为两个方程的截距。x2x2Hand方程中,分别以ln和ln()为横轴和纵轴;xx134xBachman方程中,分别以34和x为横轴和纵轴。x341在本研究中的9个液液相平衡体系的实验数据均使用以上方程进行验证,得出的2R值均接近于1,证明了实验数据的可靠性。各体系Hand、Bachman和Othmer-2Tobias方程的k、b、R值分别见表2-16和表2-17:29n广东工业大学硕士学位论文表2-16Hand和Othmer-Tobias方程参数Table2-16HandandOthmer-TobiasequationsparametersHandOthmer-TobiasT/K22k1b1Rk2b2R(water+phenol+hexylacetate)283.151.10466.77960.99870.84375.14940.9992298.151.12326.74590.99820.82704.94000.9996313.151.12276.54910.99780.78934.56540.9986(water+o-cresol+hexylacetate)283.151.06278.15070.99941.476611.6770.9970298.151.08938.23050.99851.385410.7240.9958313.151.09858.10570.99891.23589.2860.9986(water+m-cresol+hexylacetate)283.151.09868.42880.99941.330110.3880.9967298.151.1048.31980.99901.28019.79110.9965313.151.08887.95390.99921.14638.47920.9990(water+p-cresol+hexylacetate)283.151.07487.89440.99931.29769.82050.9988298.151.12338.17640.99801.21949.02140.9986313.151.15498.22480.99831.10027.88140.9994从表2-16可知,Hand和Othmer-Tobias方程的验证结果显示,(水+单元酚+乙酸己酯)体系实验数据的相关系数均大于0.99,与方程高度吻合。0-0.5-2-1.5-4-6-2.5-8(a)(b)-10-3.5-15-12-9-6-10.2-8.3-6.4IIln(x/x)ln{(1-x)/x}2111注:1.(a)为Hand方程;(b)为Othmer-Tobias方程。2.,283.15K;,298.15K;,313.15K。图2-6(水+苯酚+乙酸己酯)体系数据的信赖性验证Figure2-6Reliabilitytestof(water+phenol+hexylacetate)system30n第二章实验部分-0.5-0.3-2.5-1.3-4.5-2.3-6.5(a)(b)-8.5-3.3-15.5-13.5-11.5-9.5-10.1-9-7.9IIln(x/x)ln{(1-x)/x}2111注:1.(a)为Hand方程;(b)为Othmer-Tobias方程。2.,283.15K;,298.15K;,313.15K。图2-7(水+邻甲酚+乙酸己酯)体系数据的信赖性验证Figure2-7Reliabilitytestof(water+o-cresol+hexylacetate)system-0.5-0.2-2.5-1.2-4.5-2.2-6.5(a)(b)-8.5-3.2-15.2-11.5-7.8-10.2-9-7.8IIln(x/x)ln{(1-x)/x}2111注:1.(a)为Hand方程;(b)为Othmer-Tobias方程。2.,283.15K;,298.15K;,313.15K。图2-8(水+间甲酚+乙酸己酯)体系数据的信赖性验证Figure2-8Reliabilitytestof(water+m-cresol+hexylacetate)system31n广东工业大学硕士学位论文-0.6-0.5-2.7-1.4-4.8-2.3-6.9(a)(b)-9-3.2-15.3-13.8-12.3-10.8-9.3-7.8-10-8.9-7.8IIln(x/x)ln{(1-x)/x}2111注:1.(a)为Hand方程;(b)为Othmer-Tobias方程。2.,283.15K;,298.15K;,313.15K。图2-9(水+对甲酚+乙酸己酯)体系数据的信赖性验证Figure2-9Reliabilitytestof(water+p-cresol+hexylacetate)system图2-6到图2-9分别是(水+苯酚+乙酸己酯)、(水+邻甲酚+乙酸己酯)、(水+间甲酚+乙酸己酯)和(水+对甲酚+乙酸己酯)三元液液相平衡体系经Hand和Othmer-Tobias方程的验证结果,从图可知,实验数据和拟合直线高度吻合。32n第二章实验部分表2-17Hand和Bachman方程参数Table2-17HandandBachmanequationsparametersHandBachmanT/K22k1b1Rk2b2R(water+resorcinol+hexylacetate)283.150.82472.39840.99711.01430.01381.0000298.150.83752.29570.99841.01710.01641.0000313.150.81931.90520.99771.02100.02021.0000(water+hydroquinone+hexylacetate)283.150.79421.63730.99711.03160.03041.0000298.150.81701.50270.99891.04460.04211.0000313.150.84431.45690.99971.06160.05681.0000{water+phenol+dodecane+TBP(M1)}293.151.03387.26440.99701.00080.00081.0000303.151.07357.47920.99391.00110.00111.0000313.151.07617.32500.99511.00130.00131.0000{water+phenol+Dodecane+TBP(M2)}293.150.99257.53610.99941.00030.00031.0000303.150.96107.06150.99871.00050.00051.0000313.150.94566.70140.99721.00080.00071.0000{water+phenol+Dodecane+TBP(M3)}293.151.02098.35110.99921.00010.00011.0000303.151.01158.02040.99901.00030.00031.0000313.151.00877.75520.99901.00040.00041.0000从表2-17可知,Hand和Bachman方程的验证结果显示,在乙酸己酯对含二元酚水溶液的萃取结果以及利用正十二烷和TBP复合萃取剂对含苯酚水溶液的萃取结果中,实验数据与方程高度吻合。-3-1.8-4.5-2.5(a)(b)-6-3.2-10-8-6-9-8-7-6IxII/xIln(x/x)3121注:1.(a)为Hand方程;(b)为Bachman方程。2.,283.15K;,298.15K;,313.15K。图2-10(水+间苯二酚+乙酸己酯)体系数据的信赖性验证Figure2-10Reliabilitytestof(water+resorcinol+hexylacetate)system33n广东工业大学硕士学位论文0.97-2.80.95-4.60.930.91-6.40.89(a)(b)0.87-8.20.870.890.910.930.950.97-11.5-8.4-5.3IxII/xIln(x/x)3121注:1.(a)为Hand方程;(b)为Bachman方程。2.,283.15K;,298.15K;,313.15K。图2-11(水+对苯二酚+乙酸己酯)体系数据的信赖性验证Figure2-11Reliabilitytestof(water+hydroquinone+hexylacetate)system1-1-2.1-3.20.9-4.3-5.4(a)(b)-6.50.8-13-12-11-10-9-80.80.91IxII/xIln(x/x)3121注:1.(a)为Hand方程;(b)为Bachman方程。2.,293.15K;,303.15K;,313.15K。图2-12{水+苯酚+正十二烷+磷酸三丁酯(M1)}体系数据的信赖性验证Figure2-12Reliabilitytestof{water+phenol+dodecane+TBP(M1)}system34n第二章实验部分-10.95-2.1-3.20.85-4.3-5.4(a)(b)-6.50.75-14-13-12-11-10-9-80.750.850.95IxII/xIln(x/x)3121注:1.(a)为Hand方程;(b)为Bachman方程。2.,293.15K;,303.15K;,313.15K。图2-13{水+苯酚+正十二烷+磷酸三丁酯(M2)}体系数据的信赖性验证Figure2-13Reliabilitytestof{water+phenol+dodecane+TBP(M2)}system0.9-10.88-2.10.86-3.20.84-4.30.82-5.40.8(a)(b)0.78-6.50.780.80.820.840.860.880.9-14-13-12-11-10-9IxII/xIln(x/x)3121注:1.(a)为Hand方程;(b)为Bachman方程。2.,293.15K;,303.15K;,313.15K。图2-14{水+苯酚+正十二烷+磷酸三丁酯(M3)}体系数据的信赖性验证Figure2-14Reliabilitytestof{water+phenol+dodecane+TBP(M3)}system图2-10到图2-14分别是(水+间苯二酚+乙酸己酯)、(水+对苯二酚+乙酸己酯)三元液液相平衡体系以及(水+苯酚+正十二烷+磷酸三丁酯)四元液液相平衡体系经Hand和Bachman方程的验证结果,从图可知,实验数据和拟合直线相当吻合。35n广东工业大学硕士学位论文第三章实验数据的计算对于多组分的液态溶液,大部分科研工作者都希望利其分子间作用力和液体基本结构来表示该多组分液态溶液的性质,同时为了表达溶液性质时,尽量减少所需用到的实验数据信息;又希望能完全利用多组分液态溶液对应的纯组分性质,对溶液性质的量进行计算和表达。目前溶液理论的前沿工作是利用统计学方法将微观(分子)现象和宏观(整体)性质联系起来。利用Tie-Line法测定的液液相平衡数据是萃取、精馏、吸收等单元操作的基础物性数据。有大量实验表明,通过选用合适的活度系数模型,混合物的相平衡能由较少的特征参数计算出来。在本研究中,借助热力学模型对实验测定的有限组的相平衡数据进行计算,得到较为完整的相平衡数据。在几种具有代表性的活度系数模型中,Wilson方程可对含醇(alcohols)、醚(ethers)、酮(ketones)、酯(ester)以及含水、卤素、硫等的互溶体系进行较为准确地计算;NRTL方程可对于部分互溶的体系进行预测,可统一关联气液与液液平衡数据;UNIQUAC方程可对含非极性和各类极性组分的多元混合物的气液与液液平衡数据进行计算;UNIFAC方程依据混合溶液中结构基团的性质,运用迭加的方法来确定各组分的性质,该方程可应用于关联非理想较高系统的气液平衡。在本研究中,水与乙酸己酯、水与磷酸三丁酯、水与正十二烷、水与苯酚等几种酚类化合物为部分互溶二元体系,其中酚类化合物和乙酸己酯、磷酸三丁酯混溶,故三元、四元体系的液液相平衡相图都表现为II型体系。因此,使用NRTL模型和UNIQUAC模型对本文中各体系的液液相平衡数据进行计算,所采用模型的简要介绍见下文。3.1活度系数模型当一定组分的溶液各相处于平衡时,常用逸度来描述。当在某一条件下,一个两相以上的系统处于相平衡状态时,且其各相的性质和数量都不再发生变化,则该体系各组分的逸度也相等(见式3-1):ff(3-1)ii式中Ⅰ——上层液相;Ⅱ——下层液相;fi——组分i的逸度。36n第三章实验数据的计算利用活度系数与组分i的摩尔分数x表示,式3-1可转换为:ii(x)(x)(3-2)iiiiE超额Gibbs自由能g的方程式为:E(3-3)gRTxilnii由(3-2)和(3-3)有:EGRTln(3-4)iniTpn,,jji,E式中G——超额Gibbs自由能;ni——摩尔数(ninj;xinjni);jR、T——标准气体常数及热力学温度;EGln——的偏摩尔量。iRT3.1.1NRTL模型[47]Renon等提出NRTL(Non-RandomTwoLiquid)方程(见式3-5),和Wilson方程相类似,该方程立足于局部组成的定义,利用双液体理论得到一个半经验方程,该方程可预测二元溶液相平衡数据,尤适用于对液液分层物系进行预测。NRTL方程式如下:EjiGxjijGjxi;,,ijk1,2,...,(Ncomponents)RTGx(3-5)ikikKE式中G——超额Gibbs自由能;、G——NRTL方程的二元调节参数。jiji、G由式(3-6)与式(3-7)表示:jijiggAggjiiiijjiii,(A,单位为K)(3-6)jijiRTTRGexp()(3-7)jijiji式中gij——能量参数,代表分子i―j之间的相互作用能,其中ggjiij;37n广东工业大学硕士学位论文Aij——二元交互作用参数,可由二组分系统的气液平衡数据或液液平衡数据确定;——组分i,j的混合非随机特性参数,专业理论对其详细解释,但在实际ij使用中只作为一个参数进行回归,一般认为,ij与溶液的类型有关,与溶液的组成及其温度无关,其中jiij。[47]Renon等基于相似性原理将溶液分为7个类别,其中推荐值ij处于0.2~0.47E范围内。在本研究中,将ij值设置为0.2。根据超额Gibbs自由能g定义式,组分i对应的活度系数为:jiGxjiixGlljljxGjjijllniij(3-8)GxkikjGxkjkGxkjkkkk3.1.2UNIQUAC模型[48]Abrams等提出UNIQUAC模型(UniversalQuai-ChemicalModel),该方程立足似化学溶液理论,融合局部组成概念和统计力学方法。该模型可用于预测气液平衡和液液平衡数据。EUNIQUAC方程中的超额Gibbs自由能G由两部分构成:mEEEGGGmmL,,mR(3-9)E式中GmL,——组合超额Gibbs自由能,反映分子大小和形状的贡献;EG——剩余超额Gibbs自由能,反映分子间交互作用的贡献:mR,EGmL,iizxiqxiilnln(3-10)RTiixii2EGmR,qxiilnjjiijk,,1,2,...,(Ncomponents)(3-11)RTij式中xi——溶液中组分i的摩尔分数;qi——组分i的表面积参数;——组分i的平均表面积分数(见式3-12):i38n第三章实验数据的计算xqii(3-12)ixqjjj其中为组分i的平均体积分数:ixrii(3-13)ixrjjj为组分j的体积参数:jiuuAuujiiijiiijiexp()exp(),(A,单位为K)(3-14)jijiRTTR式中uu,z=10。Aij和Aji是二元交互作用参数,可依据二元体系的相平衡数jiij据来确定;ri,qi分别为体积和表面积参数。在本研究的各体系计算过程中,需要用[49]到的纯组分分子结构参数见表3-1,具体是通过Bondigroupvalue方法计算得到。表3-1纯组分的结构参数Table3-1Structuralparametersforpurecomponents物质rq水0.92001.400苯酚3.55172.680邻甲酚4.28673.248间甲酚4.28673.248对甲酚4.28673.248间苯二酚3.91563.008对苯二酚3.91563.008乙酸己酯6.17605.2763.2相平衡计算过程3.2.1二元液液相平衡的计算通过测定二元液液相平衡数据,根据相互溶解度的实验数据,可联立式(3-15)至式(3-17),得到所需的二元相互作用参数:xxy(3-15)iiiixi1(3-16)i39n广东工业大学硕士学位论文xi1(3-17)i22Fxxxx1,exp1,cal1,exp1,cal(3-18)kk二元部分互溶体系相平衡二元相互作用参数,在计算过程中使目标函数(见式3-18)趋向于最小值即可求得。3.2.2三元和四元液液相平衡的计算在本研究中,对三元和四元液液相平衡实验数据进行计算过程中,使用NRTL、UNIQUAC两种活度系数模型。其中,根据热力学条件和二元组分间的相互溶解度数据,计算得到(水+酚类化合物)、(水+乙酸己酯)等部分互溶子体系的二元相互作用参数;根据三元液液相平衡实验数据,计算得到(酚类化合物+乙酸己酯)等互溶子体系的二元相互作用参数。关联通过Tie-Line法测定的实验数据,且使实验数据与计算值间的均方根偏差(RMSD,见式3-19)趋向最小值,可得到未知的二元相互作用参数Aij:0.5n322expcalRMSDx100x/6nijkijk(3-19)kij式中i为组分数(i=1~3),j为相(相Ⅰ或相Ⅱ),n为联结线数k(k=1~n)。对于(水+苯酚+正十二烷+磷酸三丁酯)四元液液相平衡实验数据,利用二元、三元体系获得的二元交互作用参数,可以对其进行预测计算,其均方差见(3-20)为:0.5n422expcalRMSD100xijkxijk/8n(3-20)kij3.3结果与讨论3.3.1计算结果在本研究中,使用NRTL、UNIQUAC两种活度系数模型,对(水+苯酚)、(水+邻/间/对甲酚)、(水+乙酸己酯)、(水+苯酚+乙酸己酯)、(水+邻/间/对甲酚+乙酸己酯)、(水+间/对苯二酚+乙酸己酯)等液液相平衡实验数据进行计算,计算结果见表3-2和表3-3。40n第三章实验数据的计算表3-2{水(1)+苯酚/邻甲酚/间甲酚(2)+乙酸己酯(3)}三元液液相平衡体系计算结果Table3-2Calculatedresultsof{water(1)+phenol/o-cresol/m-cresol(2)+hexylacetate(3)}abNRTLparametersUNIQUACparametersT/KComp(ij)rmsd/%rmsd/%Aij/KAji/KAij/KAji/K{water(1)+phenol(2)+hexylacetate(3)}1-2435.1504.300.11-60.833360.440.06c283.151-32475.4567.72211.72568.182-3-1030.91134.00-357.38671.521-2547.1442.830.15-16.247220.960.14c298.151-32585.3550.94219.63566.92-3-1022.31298.10-664.13990.931-2796.04291.070.29-1.8341249.280.41c313.151-32610.2526.35220.32554.512-3-946.251473.8-356.33661.19Average0.180.20{water(1)+o-cresol(2)+hexylacetate(3)}1-2738.85387.740.36311.67-52.6070.23c283.151-32475.4567.72211.72568.182-3-854.261831.7-723.31972.21-21313.1-19.850.2684.658177.950.19c298.151-32585.3550.94219.63566.92-3-1015.91890.2-725.171045.41-21188.840.2190.22271.6184.3250.21c313.151-32610.2526.35220.32554.512-3-747.011774.4-349.161146.3Average0.280.21{water(1)+m-cresol(2)+hexylacetate(3)}1-2489.06851.250.32305.2864.8970.22c283.151-32475.4567.72211.72568.182-3-941.111516.2-447.711272.51-2510.64739.550.26298.1772.960.18c298.151-32585.3550.94219.63566.92-3-1011.21272.8-524.181182.51-2533634.80.20-95.359602.740.11c313.151-32610.2526.35220.32554.512-3-971.031167.2-493.41555.18Average0.260.17a:NRT方程中αij=0.2;b:A23和A32用活度系数模型计算得到;c:A13和A31由二元相互溶解度计算得到。41n广东工业大学硕士学位论文表3-3{水(1)+对甲酚/间苯二酚/对苯二酚(2)+乙酸己酯(3)}三元液液相平衡体系计算结果Table3-3Calculatedresultsof{water(1)+p-cresol/resorcinol/hydroquinone(2)+hexylacetate(3)}aaNRTLparametersUNIQUACparametersT/KComp(ij)rmsd/%rmsd/%Aij/KAji/KAij/KAji/K{water(1)+p-cresol(2)+hexylacetate(3)}1-2637.02523.850.30-239.89542.850.26c283.151-32475.4567.72211.72568.182-3-974.771513.2-607.91353.731-2710.92351.790.2627.008289.170.22c298.151-32585.3550.94219.63566.92-3-862.651502.4-573.98898.021-2333.731009.90.20-78.973447.080.13c313.151-32610.2526.35220.32554.512-3-1067.21322.3-532.65680.83Average0.250.20{water(1)+resorcinol(2)+hexylacetate(3)}1-2-482.13-99.2940.1299.281-402.860.09c283.151-32475.4567.72211.72568.182-3-1036.5908.47-370.72-82.9951-2-415.98-389.280.10191.55-399.280.09c298.151-32585.3550.94219.63566.92-3-1089.8470.13-373.1643.3091-2195.12-890.630.23969.55-296.110.36c313.151-32610.2526.35220.32554.512-3-902.73-575.04714.18200.8Average0.150.18{water(1)+hydroquinone(2)+hexylacetate(3)}1-2-312.04-577.540.03-47.215-290.680.02c283.151-32475.4567.72211.72568.182-3-946.79-198.15-276.87-81.5351-2648.35-327.730.24-584.17213.830.25c298.151-32585.3550.94219.63566.92-3-852.031966.5-406.59610.161-2-638.651135.20.34-745.4546.8510.32c313.151-32610.2526.35220.32554.512-3-1015.22334.5-455.67788.14Average0.200.19a:NRT方程中αij=0.2;b:A23和A32用活度系数模型计算得到;c:A13和A31由二元相互溶解度计算得到。42n第三章实验数据的计算表3-4(水+酚类化合物+乙酸己酯)三元液液相平衡体系RMSD均值Table3-4AverageoftheRMSDsfor(water+phenols+hexylacetate)systemsRMSD/%SystemsNRTLmodelUNIQUACmodel(water+phenol+hexylacetate)Average0.180.20(water+o-cresol+hexylacetate)Average0.280.21(water+m-cresol+hexylacetate)Average0.260.17(water+p-cresol+hexylacetate)Average0.250.20(water+resorcinol+hexylacetate)Average0.150.18(water+hydroquinone+hexylacetate)Average0.200.19Average0.220.19由表3-2到表3-4可知,使用NRTL和UNIQUAC两种活度系数模型对(水+酚类化合物+乙酸己酯)各体系进行预测,推算得出的平均RMSD均低于0.3%,且相差极小,表明两个热力学模型的计算结果和实验数据相当吻合。其中,使用NRTL模型进行推算得出的平均RMSD为0.22%;使用UNIQUAC模型进行推算得出的平均RMSD为0.19%。43n广东工业大学硕士学位论文表3-5(水+苯酚+正十二烷+磷酸三丁酯)四元液液相平衡体系计算结果Table3-5Calculatedresultsof(water+phenol+dodecane+TBP)systemsRMSD/%T/KNRTLmodelUNIQUACmodel{Water+Phenol+Dodecane+TBP(M1)}293.150.820.87303.151.000.84313.150.880.81{Water+Phenol+Dodecane+TBP(M2)}293.150.800.89303.150.980.78313.150.920.85{Water+Phenol+Dodecane+TBP(M3)}293.150.830.83303.151.040.79313.150.930.81Average0.910.83由表3-5可知,利用已知的二元交互作用参数,使用NRTL模型和UNIQUAC模型对四元液液相平衡数据进行计算,平均RMSD值分别是0.91%和0.83%,表明NRTL模型和UNIQUAC模型均适合对(水+苯酚+正十二烷+磷酸三丁酯)四元液液相平衡体系的计算。44n第三章实验数据的计算3.3.2计算结果图分析注:(a)不同温度下的实验数据,●:283.15K;■:298.15K;▲:313.15K;(b)T=298.15K时的实验数据,◆-◆:实验数据;●-●:NRTL模型计算结果;■-■:UNIQUAC模型计算结果。图3-1(水+苯酚+乙酸己酯)三元液液相平衡体系相图Figure3-1TernarydiagramforLLEdataof(water+phenol+hexylacetate)system注:(a)不同温度下的实验数据,●:283.15K;■:298.15K;▲:313.15K;(b)T=298.15K时的实验数据,◆-◆:实验数据;●-●:NRTL模型计算结果;■-■:UNIQUAC模型计算结果。图3-2(水+邻甲酚+乙酸己酯)三元液液相平衡体系相图Figure3-2TernarydiagramforLLEdataof(water+o-cresol+hexylacetate)system45n广东工业大学硕士学位论文注:(a)不同温度下的实验数据,●:283.15K;■:298.15K;▲:313.15K;(b)T=298.15K时的实验数据,◆-◆:实验数据;●-●:NRTL模型计算结果;■-■:UNIQUAC模型计算结果。图3-3(水+间甲酚+乙酸己酯)三元液液相平衡体系相图Figure3-3TernarydiagramforLLEdataof(water+m-cresol+hexylacetate)system注:(a)不同温度下的实验数据,●:283.15K;■:298.15K;▲:313.15K;(b)T=298.15K时的实验数据,◆-◆:实验数据;●-●:NRTL模型计算结果;■-■:UNIQUAC模型计算结果。图3-4(水+对甲酚+乙酸己酯)三元液液相平衡体系相图Figure3-4TernarydiagramforLLEdataof(water+p-cresol+hexylacetate)system46n第三章实验数据的计算图3-5(水+单元酚+乙酸己酯)三元液液相平衡体系在T=298.15K时的相图Figure3-5TernarydiagramforLLEdata(water+phenols+hexylacetate)at298.15K10.1ⅠⅠx20.010.0010.00010.0000010.000010.00010.0010.01xⅠ2注:T=303.15K,●:(water+hydroquinone+hexylacetate)system;■:(water+resorcinol+hexylacetate)system;▲:(water+phenol+dodecane)system;◆:{water+phenol+dodecane+TBP(M2)}system.图3-6(水+酚类化合物+萃取剂)体系在T=303.15K时酚类物质的分布曲线Figure3-6Distributioncurvesofphenolsfor(water+phenols+extractant)systemsat303.15K图3-1至图3-4分别是(水+苯酚/邻甲酚/间甲酚/对甲酚+乙酸己酯)三元体系在T=283.15K、298.15K和313.15K三个不同温度下的液液相平衡三相图。从图可知,该4个体系的两相区域变化趋势在283.15K、298.15K和313.15K三个温度下时十47n广东工业大学硕士学位论文分相似,在T=313.15K时的两相区域面积要略大于T=283.15K时的两相区域面积;此外从图可知NRTL模型和UNIQUAC模型的计算结果与实验数据都高度吻合,且NRTL模型和UNIQUAC模型计算结果十分相近。图3-5是(水+苯酚/邻甲酚/间甲酚/对甲酚+乙酸己酯)三元体系在T=298.15K下的液液相平衡三相图。从图可知,该4个体系两相区域的面积在T=298.15K下差别非常小(下文中酚类物质的分配系数以该温度为代表进行相互间对比讨论)。图3-6是(水+间苯二酚/对苯二酚+乙酸己酯)三元体系、(水+苯酚+正十二烷)三元体系和{水+苯酚+正十二烷+磷酸三丁酯(M2)}四元体系在T=313.15K下苯酚、间苯二酚和对苯二酚在水相和有机相中的分布曲线图。从图可知,该4个体系中的酚类物质分布曲线的线性关系较好,且随着酚类化合物的浓度增大,酚类化合物在水相和有机相中的浓度也随之增大,其中酚类化物在水相中的分布浓度远小于其在有机相中的分布浓度。48n第四章萃取性能第四章萃取性能在本研究中,选取了几种萃取剂,为检验所选萃取剂对含酚废水的萃取效果,使用分配系数、选择性系数以及萃取率来评价所选萃取剂的萃取性能。4.1分配系数在液液萃取的过程当中,溶质的分配系数常被用作评价萃取剂的萃取性能的重要标准。当使用有机溶剂萃取水中的溶质,达到平衡状态时,常将有机相中的溶质浓度与水相中的溶质浓度之比称为分配系数(见式4-1),用D表示:IIx2D(4-1)Ix2式中x——有机相中酚类化合物的摩尔分数;2——水相中酚类化合物的摩尔分数。x2注:(a){water+phenol+dodecane+TBP(M1)}system;(b){water+phenol+dodecane+TBP(M2)}system;(c){water+phenol+dodecane+TBP(M3)}system.■:283.15K;●:298.15K;▲:313.15K.图4-1(水+苯酚+正十二烷+磷酸三丁酯)液液相平衡体系在不同温度下苯酚的分配系数Figure4-1Distributioncoefficientofphenolversusthemolefractionofphenolintheorganicphaseatdifferenttemperature图4-1是(水+苯酚+正十二烷+磷酸三丁酯)四元液液相平衡体系在T=293.15K、303.15K和313.15K三个不同温度下苯酚的分配系数图。从图可知,在磷酸三丁酯和正十二烷复合萃取剂中两种有机溶剂以不同的质量配比混合时,苯酚的分配Ⅱ系数都很高。上述任一体系中,在相同的浓度(x2)下,随着温度的降低,分配系数随之增大。随着苯酚浓度的增加,其分配系数开始逐渐增大,当水溶液中苯酚的质量浓度达到了一定量以后,其分配系数呈现逐渐减小的趋势。49n广东工业大学硕士学位论文4001800350160030014001200250DD100020080015060010040050(a)200(b)000.00010.0010.010.110.00010.0010.010.11xIIxII221600140014001200120010001000800DD800600600400400200200(c)(d)000.00010.0010.010.110.00010.0010.010.11IIIIxx22706060505040D40D303020201010(e)(f)000.0010.010.10.00010.0010.010.1IIIIxx22注:(a)苯酚;(b)邻甲酚;(c)间甲酚;(d)对甲酚;(e)间苯二酚;(f)对苯二酚.■:283.15K;●:298.15K;▲:313.15K.图4-2(水+酚类化合物+乙酸己酯)液液相平衡体系在不同温度下酚类化合物的分配系数Figure4-2Distributioncoefficientofphenolsversusthemolefractionofphenolsintheorganicphaseatdifferenttemperature.50n第四章萃取性能图4-2是(水+酚类化合物+乙酸己酯)三元液液相平衡体系在T=283.15K、298.15K和313.15K三个不同温度下酚类物质的分配系数图。从图可知,使用乙酸己Ⅱ酯萃取含苯酚、邻/间/对甲酚水溶液时,在相同的浓度(x2)下,在T=283.15K温度下酚类物质的分配系数要大于T=298.15K时,T=298.15K温度下酚类物质的分配Ⅱ系数要大于T=313.15K时;随着x2增大,酚类物质的分配系数也随着增大达到最高Ⅱ点后开始减小;使用乙酸己酯萃取含间苯二酚和对苯二酚水溶液时,在相同的x2下,随着温度的降低,分配系数升高。1600phenol1400o-cresol1200m-cresol1000p-cresolD800resorcinol600hydroquinone40020000.00010.0010.010.11IIx2图4-3(水+酚类化合物+乙酸己酯)液液相平衡体系在T=298.15K下酚类物质的分配系数Figure4-3DistributioncoefficientofphenolsversusthemolefractionofphenolsintheorganicphaseatT=298.15K.图4-3是(水+酚类化合物+乙酸己酯)液液相平衡体系在T=298.15K温度下酚类物质的分配系数图。从图可知,使用乙酸己酯萃取含酚废水时,在相同的浓度Ⅱ(x2)下,各酚类物质的分配系数从大到小依次为:邻甲酚>间甲酚>对甲酚>苯酚>间苯二酚>对苯二酚。51n广东工业大学硕士学位论文图4-4(水+苯酚+萃取剂)液液相平衡体系在T=313.15K下苯酚的分配系数Figure4-4DistributioncoefficientofphenolversusthemolefractionofphenolintheorganicphaseatT=313.15K.图4-4是(水+苯酚+萃取剂)液液相平衡体系在T=313.15K温度下苯酚的分配系数图。在313.15K温度下,使用不同种类或组合的萃取剂对含苯酚废水进行处理后,苯酚的分配系数呈现的结果是:30%TBP>20%TBP>10%TBP>乙酸己酯,因此,从总体上看,使用正十二烷和磷酸三丁酯复合萃取剂来处理含苯酚废水,相对于乙酸己酯有优势。[50]在文献报道中,有关于(水+间/对苯二酚+甲基异丙基酮)三元液液相平衡的研究,在该研究中证明了随着有机相酚类物质的浓度增加,分配系数随之减小,且温度相对较低时,分配系数相对较高,该研究结果与本文所述一致;有关于(水+苯[51]酚+2-戊酮)三元液液相平衡的研究,在该研究中随着有机相中酚类化合物浓度的增加,分配系数也相应增加,符合本文中(水+单元酚+乙酸己酯)三元液液相平衡中水溶液中酚类物质的质量浓度达到一定量之前分配系数的变化趋势,且当温度相对较低时,分配系数相对较高,与本文所述一致。4.2选择性系数在本研究中,使用不同种类或组合的萃取剂对含酚废水进行处理工作中,还使用酚类化合物的选择性系数(见式4-2)来评价所用萃取剂的萃取性能:Ix1SD(4-2)IIx1式中x1和x1分别表示水相和有机相中水的摩尔分数,D为分配系数。52n第四章萃取性能350003000025000S200001500010000500000.00010.0010.010.11w0注:(水+苯酚+乙酸己酯)体系中苯酚在不同温度下的选择性系数,■:283.15K;●:298.15K;▲:313.15K;{水+苯酚+正十二烷+磷酸三丁酯(M2)}体系中苯酚在不同温度下的选择性系数,,293.15K;,303.15K;,313.15K。图4-5(水+苯酚+萃取剂)液液相平衡体系在不同温度下苯酚的选择性系数Figure4-5Selectivecoefficientofphenolfor(water+phenol+extractant)systemsatdifferenttemperature.300002500020000S1500010000500000.00010.0010.010.1110w0注:■:(water+phenol+hexylacetate)system;●:(water+o-cresol+hexylacetate)system;▲:(water+resorcinol+hexylacetate)system;◆:{water+phenol+dodecane+TBP(M2)}system图4-6(水+酚类化合物+萃取剂)液液相平衡体系在T=313.15K下酚类化合物的选择性系数Figure4-6Selectivecoefficientofphenolsfor(water+phenols+extractant)systemsatT=313.15K.图4-5是(水+苯酚+萃取剂)液液相平衡体系在不同温度下萃取剂的选择性系数图。从图可知,两体系中随着w0(苯酚的浓度)的增大,苯酚的选择性系数也逐渐53n广东工业大学硕士学位论文增大,达到一个最高点后开始减少,与分配系数的变化趋势相似;在相同的w0下,随着温度的降低,选择性系数增大;使用20%TBP萃取含苯酚废水时,其选择性系数远大于乙酸己酯,说明其回收溶剂的功耗相对较低。图4-6是(水+酚类化合物+萃取剂)液液相平衡体系在T=313.15K下萃取剂的选择性系数图。从图可知,在选用乙酸己酯为萃取剂时,酚类物质的选择性系数从大到小依次为:邻甲酚>苯酚>间苯二酚。相对乙酸己酯作为萃取剂,选用正十二烷和磷酸三丁酯复合萃取剂的选择性系数要大很多。4.3萃取率在含酚废水脱酚研究中,萃取率(见式4-3)是评价一种萃取剂萃取能力的重要参数。在工业上一般认为,分配比大,萃取率高,则该萃取就进行的完全。Iww02E(4-3)w0式中w0——萃取前的浓度;w2——萃取后萃余相中(被萃取物质)的浓度。10010095999098E/%E/%8597809675(a)(b)70950.00010.0010.010.110.00010.0010.010.11ww00注:(a)LLEfor(water+phenols+hexylacetate)system,●:o-cresol;■:phenol;▲:resorcinol;(b)LLEfor(water+phenol+hexylacetate/30%TBP)system,★:30%TBP;✘:hexylacetate.图4-7(水+酚类化合物+萃取剂)液液相平衡体系在313.15K下的萃取率Figure4-7ExtractionrateofLLEdata(water+phenols+extractant)atT=313.15K.54n第四章萃取性能结合第二章中表2-6到表2-15中数据,可知在本研究中选取的萃取剂对含酚废水的萃取率都很高。从图4-7可知,在313.15K温度下,对比(水+邻甲酚+乙酸己酯)、(水+苯酚+乙酸己酯)和(水+间苯二酚+乙酸己酯)三元液液相平衡体系乙酸己酯对酚类化合物的萃取率与(水+苯酚+乙酸己酯)和(水+苯酚+正十二烷+磷酸三丁酯)液液相平衡体系两种萃取剂对苯酚的萃取率得到:乙酸己酯对邻甲酚的萃取率最高达99.3%,对苯酚的萃取率最高达97.2%,对间苯二酚的萃取率最高达86.1%;30%TBP对苯酚的萃取率最高达98.89%。结合3.4.1中关于酚类化合物分配系数的分析和讨论,可知乙酸己酯对邻/间/对甲酚的萃取相对苯酚、间/对苯二酚较为完全;正十二烷和磷酸三丁酯复合萃取剂对苯酚的萃取要优于乙酸己酯。55n广东工业大学硕士学位论文总结与展望本论文选取了6种酚类物质:苯酚、邻甲酚、间甲酚、对甲酚、间苯二酚和对苯二酚,以乙酸己酯和(正十二烷+磷酸三丁酯)为萃取剂,研究了(水+酚+萃取剂)多元液液相平衡的萃取特性。(1)使用Tie-Line法,实验测定了在常压和10℃、20℃、25℃、30℃和40℃不同温度下三元(水+酚+乙酸己酯)和四元(水+苯酚+正十二烷+磷酸三丁酯)液液相平衡体系,通过Hand、Bachman和Othmer-Tobias方程对液液相平衡实验数据进2行了信赖性验证,回归直线方程的相关系数R值均大于0.99,实验数据的可靠性得到确认。(2)使用NRTL和UNIQUAC两种活度系数模型对上述液液相平衡实验数据进行了计算。计算结果表明,使用NRTL模型和UNIQUAC模型对全部三元液液相平衡体系的关联计算,平均RMSD值分别为0.22%、0.19%;利用已知的二元相互作用参数,对四元液液体系进行了预测,两种模型的平均RMSD值分别为0.91%、0.83%。计算结果与实验结果高度吻合,NRTL模型和UNIQUAC模型都能准确计算液液相平衡(数据)。(3)温度的影响:三元(水+酚+乙酸己酯)和四元(水+苯酚+正十二烷+Ⅱ磷酸三丁酯)液液相平衡体系中,在相同的浓度(x2)下,随着温度的降低,不同酚类物质的分配系数和选择性系数均增大,主要是受酚类物质在水中的溶解度随着温度的降低而减小的影响。(4)使用乙酸己酯作为萃取剂时,(水+苯酚/邻甲酚/间甲酚/对甲酚/间苯二酚/对苯二酚+乙酸己酯)三元液液相平衡体系中,酚类化合物获得很高的分配系数和选择性系数。在同一温度下,各酚类物质的分配系数和选择性系数由大到小依次是:邻甲酚>间甲酚>对甲酚>苯酚>间苯二酚>对苯二酚,。此外,酚类物质的萃取率,与分配系数的变化趋势一致。在同一体系同一温度下,一元酚的分配系数和选择性系数均高于二元酚,是因为二元酚的亲水性(2个羟基)大于一元酚,在水相中有更大的溶解度以及与有机相显示更弱的亲和力所致。56n总结与展望(5)使用正十二烷和磷酸三丁酯混合溶液作为萃取剂时,{水+苯酚+磷酸三丁酯(M1,M2,M3)+正十二烷}四元液液相平衡体系中,苯酚获得非常高的分配系数和选择性系数。在同一温度下,含30%TBP与正十二烷的复合萃取剂,苯酚的分配系数和选择性系数最高(优于20%,10%最低)。萃取率的变化有同样趋势。(6)对于(水+苯酚+萃取剂)三元液液平衡,两种萃取剂的萃取特性,(正十二烷+磷酸三丁酯)优于乙酸己酯。实验结果表明,乙酸己酯和(正十二烷+磷酸三丁酯)作为萃取剂,水中溶解度小,分配系数高,为高效绿色的萃取剂。但本研究,其他更多的萃取剂,以及萃取后废水的COD问题,未做进一步的探究,为使数据更符合工业化的要求,还需要做大量深入的工作。57n广东工业大学硕士学位论文参考文献[1]D.C.Greminge,G.P.Burns,S.Lynn,etal.Solventextractionofphenolsfromwater[J].Ind.Eng.Chem.ProcessDes.Dev.1982,(21):51-54.[2]C.F.Yang,S.Y.Yang,Y.Qian,etal.SimulationandOperationCostEstimateforphenolextractionandsolventrecoveryprocessofcoal-gasificationwastewater[J].Ind.Eng.Chem.Res.2013,(52):12108-12115.[3]C.F.Yang,Y.B.Jiang,L.J.Zhang,etal.Liquid-liquidequilibriafortheternarysystemmethylisobutylketonepluswaterplushydroquinone[J].J.Chem.Eng.Data.2006,(51):2107-2109.[4]马克,陈寅生,李茜.含酚废水治理技术的现状及进展[J].化学工业与工程技术,2009,30(6):21-25.[5]林齐平.含酚废水治理技术的进展[J].水处理技术,1993(3):174-180.[6]H.Jiang,Y.Fang,Y.Fu,etal.Studiesontheextractionofphenolinwastewater[J].J.Hazard.Mater.2003,(101):179-190.[7]M.Teresa,A.Reis,O.M.F.deFreitas,etal.RecoveryofphenolfromaqueoussolutionsusingliquidmembraneswithCyanex923[J].J.Membr.Sci.2007,(305):313-324.[8]P.C.Singer,F.K.Pfaender,J.Chinchilli,etal.AssessmentofCoalConversionWastewaters:CharacterizationandPreliminaryBiotreatability[J].U.S.EnvironmentalprotectionAgencyOfficeofResearchandDevelopment,Washington,DC(1978).[9]H.Roche,G.Boge.Invivoeffectsofphenoliccompoundsonbloodparametersofamarinefish(Dicentrarchuslabrax).Comp.Biochem.Phys.C.2000,(125):345-353.[10]SongWeihua,ZhengZheng,Abual-SuudRami.Degradationanddetoxificationofaqueousnitrophenolsolutionsbyelectronbeamirradiation[J].RadiationPhysicsandChemistry,2002,(65):559-563[11]G.Busca,S.Berardinelli,C.Resini,etal.Technologiesfortheremovalofphenolfromfluidstreams:ashortreviewofrecentdevelopments[J].J.Hazard.Mater.2008,(160):265-288.[12]V.S.Kislik.SolventExtraction:ClassicalandNovelApproaches[J].Elsevier,Oxford,UK(2012).58n参考文献[13]晋晓璐.含酚废水处理技术浅析[J].广东化工,2017,345(44):141.[14]杨芳,付江海,曲凤华等.从源头治理苯酚丙酮生产废水的技术措施[J].化工科技,2009,17(6):52-54.[15]渠佳慧,曹允洁,朱良康等.FeNi/D301磁性吸附树脂处理含酚废水研究[J].山东化工,2016,45(23):160-161,163.[16]QiuX,LiN,MaX,etal.Facilepreparationofacrylicester-basedcrosslinkedresinanditsadsorptionofphenolathighconcentration[J].JournalofEnvironmentalChemicalEngineering,2014,2(1):745-751.[17]ElnaasMH,AlzuhairS,AlhaijaMA.Removalofphenolfrompetroleumrefinerywastewaterthroughadsorptionondate-pitactivatedcarbon[J].ChemicalEngineeringJournal,2010,162(3):997-1005.[18]李德君.简述SBR工艺在含酚废水处理中的应用[J].工艺设备,2016,(21):93-94.[19]刘在进.生化-物化组合工艺处理高浓度含酚废水[J].化工管理,2016,(4):234-235.[20]徐建华,杨海锋.高级氧化技术降解含酚废水反应条件优化[J].安徽农业科学,2016,44(36):110-111,128.[21]孟志国,王金生,付磊.湿式过氧化物氧化法处理苯酚丙酮废水研究[J].西安建筑科技大学学报:自然科学版,2009,41(4):571-574.[22]CháferA,LladosaE,MontónJB,etal.Measurementsandcorrelationofliquid–liquidequilibriaof4-methyl-2-pentanone+ethanol+waterand4-methyl-2-pentanone+n-butanol+waterternarysystemsbetween283.2and323.2K[J].FluidPhaseEquilibria,2012,(317):89-95.[23]CummingAPC,MortonF.Solventextractionofphenolfromcoal-tarhydrocarbons:Theuseofglycerol,triethyleneglycolandtheiraqueoussolutionsassolvents[J].JournalofAppliedChemistry,2010,2(2):314-323.[24]JUHongfang,XUYe,ZHUHui,etal.Researchonliquid-liquidequilibriumofwater-isopropylether-phenolandwater-isobutanol-phenolsystems[J].JChemEngofChineseUniversity,2009,23(1):12-17.[25]MarasimhanKS,ReddyCC,ChariKS.Solubilityandequilibriumdataofphenol-water-59n广东工业大学硕士学位论文isobutylacetateandphenol-water-isobutylketonesystemsat30℃[J].JournalofChemical&EngineeringData,1962,7(4):457-460.[26]HosseinGhanadzadeh,MiladSangashekan,ShahinAsan.(Liquid-liquid)equilibriumforternarysystemof(water-phenol-cyclohexane)atT=298.2K[J].InternationalJournalofChemoinformaticsandChemicalEngineering,2013,3(2):75-84.[27]ZHANGJing-tao,PIAOXiang-lan,ZHUShen-lin.Experimentaldeterminationandcorrelationofliquid-liquidequilibriumforwater-phenol-dimethylcarbonate-hexanesystem[J].JChemEngofChineseUniversity,2005,19(5):686-690.[28]YunChen,YongLei,XiuxiLi,etal.MeasurementsofLiquid−LiquidEquilibriafortheQuaternarySystem2‑Methoxy-2-methylpropane+Phenol+Hydroquinone+Waterat313.15K[J].J.Chem.Eng.Data.2006,(51),753−756.[29]YunChen,RanLv,FurongWang,etal.Determinationandmodelingofliquid-liquidequilibriumforternarymixturesofmethylisopropylketone,cresolisomersandwater[J].FluidPh.Equilib.2016,(429):107-112.[30]GremingerD,BurnsGP,LynnS,etal.Solventextractionofphenolsfromwater[J].Industrial&EngineeringChemistryProcessDesign&Development,1982,21(1):51-54.31.[31]任小花,崔兆杰.煤气化高浓度含酚废水萃取/反萃取脱酚技术研究[J].山东大学学报工学版,2010,40(1):93-97.[32]JingF,FanY,PeiY,etal.Solventextractionofselectedendocrine-disruptingphenolsusingionicliquids[J].Separation&PurificationTechnology,2008,61(3):324-331.[33]GilaniHG,GilaniAG,SangashekanM.Tie-linedatafortheaqueoussolutionsofphenolwithorganicsolventsatT=298.2K[J].JournalofChemicalThermodynamics,2013,58(3):142-148.[34]YangC,YangS,QianY,etal.SimulationandOperationCostEstimateforPhenolExtractionandSolventRecoveryProcessofCoal-GasificationWastewater[J].Industrial&EngineeringChemistryResearch,2013,52(34):12108-12115.[35]YangC,QianY,GuoJ,etal.Liquid–LiquidEquilibriafortheTernarySystemMethylIsobutylKetone+1,2-Benzenediol+Water[J].JournalofChemical&EngineeringData,2014,59(11):3324-3328.60n参考文献[36]GaojieXu,DelingYang,PenggeNing.Measurementsandcorrelationofliquid-liquidequilibriumdatafortheternary(3-heptanone+phenol+water)system[J].JournalofChemicalThermodynamics,2017,(106):295-302.[37]DLiu,LLi,RLv,etal.Liquid–LiquidEquilibriafortheTernarySystemMesitylOxide+Phenol+Waterat298.15,313.15,and323.15K[J].JournalofChemical&EngineeringData,2016,61(7):2493-2498.[38]HLi,LWan,GChu,etal.(Liquid+liquid)extractionofphenolsfromaqueoussolutionswithcineole[J].JournalofChemicalThermodynamics,2017,(107):95-103.[39]YunChen,ShaomingZhou,YouchangWang,etal.ScreeningsolventstoextractphenolfromaqueoussolutionsbytheCOSMO-SACmodelandextractionprocesssimulation[J].FluidPhaseEquilibria,2017,(451):12-24.[40]苏广均,王树清.强酸性阳离子交换树脂催化合成乙酸己酯的研究[J].研究与开发,2006(30).[41]杨义燕,杨天雪,戴猷元.磷酸三丁酯(TBP)对酚类的络合萃取[J].环境化学,1995,15(5):410-416.[42]刘德威,李青松,陈振新.用浊点法-平衡釜法-变温法测定四组二元系互溶度数据[J].天然气化工(C1化学与化工),1994,(3).[43]KTamura,YChen,TYamada.TernaryandQuaternaryLiquid−LiquidEquilibriaforFuelAdditivesoftheWater+Methanol+TolueneandWater+Methanol+Toluene+Methyltert-ButylEtherortert-AmylMethylEtherSystemsat298.15K[J].JournalofChemical&EngineeringData,2001,(46):1381-1386.[44]HandDB.DinericDistribution[J].J.phys.chem,1929,34(9):1961-2000.[45]BachmanI.TieLinesinTernaryLiquidSystems[J].Ind.eng.chem.anal.ed,1940,14(1):38-39.[46]D.F.Othmer,P.E.Tobias.Liquid-LiquidExtractionData-TolueneandAcetaldehydeSystems[J].Ind.eng.chem,1942,34(3):690–692.[47]H.Renon,J.M.Prausnitz.AIChEJ.1968,(14):135–144.[48]D.S.Abrams,J.M.Prausnitz,AIChEJ.1975,(21):116–128.61n广东工业大学硕士学位论文[49]A.Bondi.PhysicalProperitiesofMolecularLiquids,Crystals,andGlasses[M].NewYork,1968.[50]RanLv,HuiminWang,LiboLi,etal.Liquid-liquidequilibriumforternarysystems,methylisobutylketone+(catechol,resorcinolandhydroquinone)+waterat333.15K,343.15Kand353.15K[J].FluidPhaseEquilibria,2017,(433):206-211.[51]RanLv,LiboLi,HuiminWang,etal.PhaseEquilibriumforPhenolExtractionfromAqueousSolutionwith2-PentanoneatDifferentTemperatures[J].JSolutionChem,2016,(45):1414-1424.62n论文发表及投稿情况论文发表及投稿情况1.HengdeLi*,LiWan,GuoqiangChu,WeiTan,BaoyuLiu,YanlinQin,YuqingFeng,DaleiSun,YanxiongFang*.(Liquid+liquid)extractionofphenolsfromaqueoussolutionswithcineole,J.Chem.Thermodynamics107(2017)95–103.(SCIII:2.196)2.储国强,李珩德,范银婷,高恒志,蔡晓兰,刘宝玉,方岩雄。一种分离含酚废水中酚类化合物的方法[P].国家发明专利,申请号:CN201710109198.0。3.储国强,李珩德,余雅玲,高恒志,方岩雄。一种含高浓度含酚废水的处理方法[P].国家发明专利,申请号:CN201710294134.2。63n广东工业大学硕士学位论文学位论文独创性声明本人郑重声明:所呈交的学位论文是我个人在导师的指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明,并表示了谢意。本人依法享有和承担由此论文所产生的权利和责任。论文作者签名:日期:学位论文版权使用授权声明本学位论文作者完全了解学校有关保存、使用学位论文的规定,同意授权广东工业大学保留并向国家有关部门或机构送交该论文的印刷本和电子版本,允许该论文被查阅和借阅。同意授权广东工业大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印、扫描或数字化等其他复制手段保存和汇编本学位论文。保密论文在解密后遵守此规定。论文作者签名:日期:指导教师签名:日期:64n致谢致谢三年时光如白驹过隙。三年前我见少识寡,随性而不慎思,自跨进广工伊始,经历风霜刀剑、狭路阔道等的打磨,逐渐有了积极、慨然、向上对待生活的轮廓。往世犹不可追,感谢这三年,感谢这三年里所认识的人、所经历的事,那些历久弥新的回忆终将沉淀到心底深处,成为我生命中弥足珍贵、难以忘却的一部分。感谢指导我研究生生涯的李珩德老师。李老师专业知识过硬、治学严谨,为人谦和、处事周全。在研二时开始课题的研究,由于基础知识、操作意识和专业技能等方面功底十分薄弱,在实验工作开展中问题频出,这时候李老师亲力亲为、言传身教,帮助我制定实验方案、解决实验中出现的问题,并督促我树立阶段性目标,实现快速成长。近两年来,李老师平等待人,很多事情尽量身体力行,避免麻烦学生,且不厌其烦、诲人不倦,这些都给即将踏入社会的我树立了一个看齐、思齐的标杆。感谢领导我研究生生涯的方岩雄老师。方老师博学多闻、高瞻远瞩,为人谦和、逻辑缜密。我本科毕业后,方老师在百忙之中安排我到企业实习,帮助我积累实践经验,为迎接课题研究铺好垫;在读研期间,方老师在百忙之中坚持组织召开例会,为在科研路上砥砺前行的同学们指点迷津、排忧解难。方老师幽默风趣、虑事全面,对整个课题组同学严管厚爱,不仅为我们指明科学合理的学习方向和科研道路,而且抽身指导同学们工作之余的活动,帮助大家身体和精神齐头并进,行稳致远。同时,感谢伴我走过研究生生涯的诸位老师和同学。首先,感谢蔡晓兰老师以及整个方圆团队:感谢冯璋霓和万力师姐,给予我很多科研、生活上指引和鼓励;感谢恭肃严整的谢凯宏师兄,传授我许多推进科研和实验工作的高招;感谢思维敏捷的林文杰师兄,给予我很多关心和爱护……此外,感谢爱岗敬业的张金名主任,培养我的兴趣爱好;感谢认真负责的马巍老师,带领我熟习行政工作;感谢豁达大度的赵相宇老师,教会我很多恰如其分的人生道理;也感谢我的室友,大家一起享受喜乐,一起攻坚克难,给我研究生生涯增添了许多珍贵的片段。感谢我的家人,他们为我读研栉风沐雨,不辞辛劳,不仅帮我夯实物质基础,而且时刻为我的精神面貌保驾护航。储国强2018-465

相关文档