- 13.90 KB
- 2021-04-17 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
小学数学易错知识点总结
第一部分:小学数学易错知识点总结
小数相关:
纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。例如:3.25 、5.26 都是带小数。
计数单位:个位,十位,百位……,十分位,百分位……。
计数单位:给定一个具体的数字,问他的计数单位,则取其最低数位的计数单位作为这个小数的计数单位。例如1.023的计数单位是0.001;如果问某个小数中的某个数字的计数单位,那么他的数位的计数单位即为所求。如“1.023中,数字2的计数单位”是0.01。
整数相关:
整数:正整数,零与负整数构成整数;像-2,-1,0,1,2这样的数都是整数
自然数:用以计量事物的件数或表示事物次序的数;自然数由0开始,一个接一个,组成一个无穷集体(即用数码0,1,2,3,4,……所表示的数)。
数的分类:按一个数约数的个数分,非0自然数可分为1、质数、合数三类。(数学上规定,只要涉及约数和倍数问题时,0这个自然数一般不考虑在内)
质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数都有2个约数。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。合数至少有3个约数。 最小的质数是2,最小的合数是4
质因数:每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因....
互质数:公约数只有1的两个数,叫做互质数。1和任何自然数互质;相邻的两个自然数互质; 两个不同的质数互质;当合数不是质数的倍数时;这个合数和这个质数互质;两个合数公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。)
约数与倍数:一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。一个数的倍数的个数是无限的,其中最小的倍数是它本身。
分数相关:
分数单位: 把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。 3/4的分数单位是1/ 4 ,有3个这样的分数单位。最大的分数单位是二分之一,没有最小的分数单位。分数大小相等,分数单位不一定相同。如八分之二与四分之一相等,四分之一的分数单位大。
分数的意义: 2/3表示把单位“1”分成3份,取其中2份,用分数表示是2/3。
换算关系:
1平方千米=100公顷 1平方千米=106平方米 1公顷=104平方米=100公亩
平年闰年:
四年一闰,百年不闰,四百年再闰。(年份是100的倍数,如果能被400整除的,那一年是闰年;年份数不是100的倍数,如果能被4整除的,那一年是闰年)
平年365日,闰年366日(多出来的一天加在2月里,1、3、5、7、8、10、12月是大月,每月有31天; 4、6、9、11月是小月,每月有30天。平年的2月是28天,闰年的2月是29天。)
税后利息=本金×利率×时间×(1-20%)
小学数学易失分题型归纳整理:
1,置换问题:
题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。
典型案例如鸡兔同笼问题即是。一般是已知两个总量(即,总头数和总脚数),求两个分量各是多少?
如鸡兔同笼问题常用的解题方法是:
①先假设全部是其中一种动物(如:鸡)
兔的只数=(实际总脚数—每只鸡脚数X鸡兔总头数)÷(每只兔脚数—每只鸡脚数)
鸡的只数=总头数—兔的头数
②先假设全部是其中一种动物(如:兔)
鸡的只数=(每只兔脚数X鸡兔总头数—实际总脚数)÷(每只兔脚数—每只鸡脚数)
兔的只数=总头数—鸡的头数
2,盈亏问题(盈不足问题):
题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。
其计算方法是:
当一次有余数,另一次不足时:每份数=(余数+不足数)÷两次每份数的差
当两次都有余数时:总份数=(较大余数-较小数)÷两次每份数的差
当两次都不足时:总份数=(较大不足数-较小不足数)÷两次每份数的差
3,年龄问题:
年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。
常用的计算公式是:成倍时小的年龄=大小年龄之差÷(倍数-1)
4,牛吃草问题(船漏水问题):
若干头牛在一片有限范围内的草地上吃草。牛一边吃草,草地上一边长草。当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?(按单位时间单位对象的用量划为一份)
视问题情况可套用如下公式:
(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);
(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;
(3)吃的天数=原有草量÷(牛头数-草的生长速度);
(4)牛头数=原有草量÷吃的天数+草的生长速度.