• 27.50 KB
  • 2021-04-25 发布

数学(心得)之运用比较教学,提高学生解题能力

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
数学论文之运用比较教学,提高学生解题能力 ‎ ‎  比较是在头脑中确定事物异同的思维过程。日常生活中人们对客观事物的认识,可以说一刻也离不开比较,只有通过比较,才能更清晰地了解事物的本质。同样,课堂上教会学生运用比较的方法去掌握知识,不仅可以帮助学生消除知识的混淆和断层现象,帮助他们了解知识间的层次性、联系性,而且对训练学生思维的发展、智力的发展有着重要的作用。‎ ‎  比较是把一些事物的个性属性加以分析整理,而后确定它们之间的同异的逻辑思维过程。运用比较,一方面以对于事物属性的感知分析综合为前提,另一方面,它又为抽象概括过程的展开提供基础,因此,比较是促使思维向客观接近的重要环节。‎ ‎  在数学教学中,如果我们能运用比较的方法进行教学,可以使学生的思维能力和创新能力得到提高。‎ ‎  在教学实践中,我从以下几方面运用了进行比较的探索。‎ ‎  一、进行求同性的比较、探索异中寻找同性。‎ ‎  在小学数学的知识中,有些知识具有有内在联系的同一性,因此,可探索进行异中寻找同性。‎ ‎  例如在教学了长方体、正方体和圆柱体的体积后,我用投影出示了这几种形体的立体图形,让学生进行比较,学生通过观察比较,理解了长方体、正方体和圆柱体均属柱体,都有两个底面而且相等,截面积处处相等,因此都可以用底面积乘以高计算,从而导出长方体、正方体和圆柱体都可以用:V=sh这一公式求出体积。‎ ‎  又如在教学了“比的意义”后,在教学“比的基本性质”前,我先请学生思考“比”同“除法算式”和“分数”有何联系?分数的分母、分子和分数线各相当于比的什么?除法算式中的被除数、除数和商又各相当于比的什么?当学生回答出比的前项相当于分数中的分子、相当于除法算式中的被除数;比号相当于分数中的分数线、相当于除法算式中的除号;比的后项相当于分数中的分母、相当于除法算式中的除数后,我再请学生回忆“商不变的性质”和“分数的基本性质”各是什么?在此基础上,我再请学生归纳“比的基本性质”学生很快就回答出“比的基本性质”是:“比的前项和后项都乘以或除以相同的数(0除外),比值不变”。‎ ‎  二、进行辩异性比较、把握知识间的内在联系 ‎  小学数学教材中,一些数学知识的差异性常常为它们的相似性、相近性和相关性所掩盖,运用辩异性比较,不仅可以显示知识间的差异,有利于学生区别知识间的各自内涵,而且可以把握知识间的内在联系。‎ ‎  例如教学了“比的意义和认识”后,通过学生归纳出了“比的基本性质”、“分数的基本性质”‎ 和商不变的基本性质具有共性后,我要求学生思考:比、分数和除法有何不同?我让学生进行讨论,并进行启发,使学生认识到,比、分数和除法既有共性,即比的前项相当于分数中的分子、相当于除法算式中的被除数;比号相当于分数中的分数线、相当于除法算式中的除号;比的后项相当于分数中的分母、相当于除法算式中的除数,比的基本性质、分数的基本性质、商不变的性质都有相似的地方,这是它们有联系的地方,但它们之间有区别,除法是一种运算,分数是一个数,比表示两数之间的关系。‎ ‎  又如在教学了简单的分数应用题后,我出示了下面两题让学生进行辨析:‎ ‎  (1)、学校有男生80人,是女生人数的3/5 多20人,女生有多少人?‎ ‎  (2)、学校有男生80人,女生人数是男生人数的的 3/5 多20人,女生有多少人?‎ ‎  我首先启发学生找出这两题相同的地方,都是告诉男生人数,要求女生人数,且均为是××的 3/5 多20人,然后我再启发学生找出这两题的不同地方,并让学生进行辨析:(1)题是以女生人数为单位“1”,男生80人,相当于女生人数的3/5 多20人,因此可得,女生人数为:(80-20)÷ 3/5 =100(人);(2)题是以男生人数为单位“1”,女生人数是男生人数的3/5 多20人,因此可得,女生人数为:80×3/5 +20=68(人)。‎ ‎  三、采取多种方式比较、让学生鲜明感知 ‎  采取多种方式进行比较,能唤起学生注意,让学生鲜明感知,加速“求同”与“辨异”的比较,促进思考。‎ ‎  例如在教学了“长方体和正方体的初步认识”后,我让学生将长方体和正方体进行比较,在学生找出了长方体和正方体的相同之处和不同之处后,我再出示下表让更进一步认识到长方体和正方体的异同:‎ ‎  形    体 ‎  顶点 ‎  面 ‎  棱 ‎  长方体 ‎  8个 ‎  六个面,相对的面相等,最多2个面是正方形。‎ ‎  相对的棱相等 ‎  正方体 ‎  8个 ‎  六个面,六个面都相等,六个面都是正方形。‎ ‎  12条棱都相等 ‎  又如在学习了较复杂的分数应用题后,我出示了这样两题让学生进行辨析:‎ ‎  (1)、修路队修一段公路,第一天修了全长的 ‎ 2/5,第二天修了全长的3/10  ,还剩下1.2千米,这段公路长几千米?‎ ‎  (2)、修路队修一段公路,第一天修了全长的2/5 ,第二天修了3/10 千米,还剩下1.2千米,这段公路长几千米?‎ ‎  我先组织学生进行讨论,要求学生将这两题进行辨析,让他们找出这两题的异同,然后请他们进行解答。‎ ‎  通过引导比较,使学生认识到,第(1)题中的2/5 和3/10 都是分率,还剩下1.2千米的对应分率为:1-2/5 -3/10 ,所以可得:‎ ‎  这段公路的长为:1.2÷(1- 2/5 -3/10 )=4(千米)。‎ ‎  第(2)题中的 3/10 千米是个具体数量,第二天修的米数及还剩下未修的千米数正好是这段公路的:1- 2/5 ,所以可得:‎ ‎  因此这段公路长为:(1.2+ 3/10 )÷(1- 2/5  )=2.5(千米)‎ ‎  又如在学习了比的应用后,我出示了下列两题让学生进行比较并解答:‎ ‎  (1)、某专业户养兔200只,白兔与黑兔的比为3∶2,白兔有几只?‎ ‎  (2)、某专业户养黑兔200只,白兔与黑兔的比为3∶2,白兔有几只?‎ ‎  上述两题学生通过讨论比较,可分辨得出:(1)题是按比例分配的应用题,3+2=5,白兔的只数为:200× 3/5 ‎ ‎ =120(只);(2)题是一道比例应用题,白兔的只数为:200÷2×3=300(只)。‎ ‎  综上所述,我认为,在教学中如果能经常运用比较的方法让学生进行辨析,能使学生加深对知识的理解和掌握,促进学生智能的发展。‎

相关文档