• 30.50 KB
  • 2021-04-28 发布

数学(心得)之小学数学教学中渗透数学思想方法的思考

  • 8页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
数学论文之小学数学教学中渗透数学思想方法的思考 ‎ 一、小学数学教学中渗透数学思想方法的必要性 ‎ ‎    所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。所谓数学方法, 是指某一数学活动过程的途径、程序、手段,它具有过程性、层次性和可操作性等特点。数学思想是数学方法 的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们称为数学思想方法。 ‎ ‎    小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到漂亮的结论,许多例 题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的 心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识 的教学。如果教师在教学中,仅仅依照课本的安排,沿袭着从概念、公式到例题、练习这一传统的教学过程, 即使教师讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型” 、“记忆型”的,将完全背离数学教育的目标。 ‎ ‎    在认知心理学里,思想方法属于元认知范畴,它对认知活动起着监控、调节作用,对培养能力起着决定性 的作用。学习数学的目的“就意味着解题”‎ ‎(波利亚语),解题关键在于找到合适的解题思路,数学思想方法 就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是 培养学生分析问题和解决问题能力的重要途径。 ‎ ‎    数学知识本身是非常重要的,但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起作 用,并使其终生受益的是数学思想方法。未来社会将需要大量具有较强数学意识和数学素质的人才。21世纪国 际数学教育的根本目标就是“问题解决”。因此,向学生渗透一些基本的数学思想方法,是未来社会的要求和 国际数学教育发展的必然结果。 ‎ ‎    小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强 学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好 比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横 两个维度上把握数学学科的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基 本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。 ‎ ‎    二、小学数学教学中应渗透哪些数学思想方法 ‎ ‎    古往今来,数学思想方法不计其数,每一种数学思想方法都闪烁着人类智慧的火花。一则由于小学生的年 ‎ 龄特点决定有些数学思想方法他们不易接受,二则要想把那么多的数学思想方法渗透给小学生也是不大现实的 。因此,我们应该有选择地渗透一些数学思想方法。笔者认为,以下几种数学思想方法学生不但容易接受,而 且对学生数学能力的提高有很好的促进作用。 ‎ ‎    1.化归思想 ‎ ‎    化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个 较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。它具有不可逆转的单向性。 ‎ ‎    例1 狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳4 1/2 米,黄鼠狼每次可向前跳2 3/4米。它们每 秒种都只跳一次。比赛途中,从起点开始,每隔12 3/8米设有一个陷阱, 当它们之中有一个掉进陷阱时,另 一个跳了多少米? ‎ ‎    这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每 次所跳距离4 1/2(或2 3/4)米的整倍数,又是陷阱间隔12 3/8米的整倍数,也就是4 1/2和12 3/8的“ 最小公倍数”(或2 3/4和12 3/8的“最小公倍数”)。针对两种情况,再分别算出各跳了几次,确定谁先掉 入陷阱,问题就基本解决了。上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小 公倍数”‎ 的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。 ‎ ‎    2.数形结合思想 ‎ ‎    数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过作一些如线段图、树形图、长 方形面积图或集合图来帮助学生正确理解数量关系,使问题简明直观。 ‎ ‎    例2 一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。甲 五次一共喝了多少牛奶? ‎ ‎    附图{图} ‎ ‎    此题若把五次所喝的牛奶加起来,即1/2+1/4+1/8+1/16+1/32就为所求,但这不是最好的解题策 略。我们先画一个正方形,并假设它的面积为单位“1”,由图可知,1-1/32就为所求, 这里不但向学生渗 透了数形结合思想,还向学生渗透了类比的思想。 ‎ ‎    3.变换思想 ‎ ‎    变换思想是由一种形式转变为另一种形式的思想。如解方程中的同解变换,定律、公式中的命题等价变换 ,几何形体中的等积变换,理解数学问题中的逆向变换等等。 ‎ ‎    例3 求1/2+1/6+1/12+1/20+……+1/380的和。 ‎ ‎    仔细观察这些分母,不难发现:2=1×2,6=2×3,12=3×4, 20=4×5……380=19×20,再用拆分的 方法,考虑和式中的一般项 ‎ ‎    a[,n]=1/n×(n+1)=1/n-1/n+1 ‎ ‎    于是,问题转换为如下求和形式: ‎ ‎    原式=1/1×2+1/2×3+1/3×4+1/4×5+……+1 /19×20 ‎ ‎    =(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1 /4-1/5)+……+(1/19-1/20) ‎ ‎    =1-1/20 ‎ ‎    =19/20‎ ‎    4.组合思想 ‎ ‎    组合思想是把所研究的对象进行合理的分组,并对可能出现的各种情况既不重复又不遗漏地一一求解。 ‎ ‎    例4 在下面的乘法算式中,相同的汉字代表相同的数字, 不同的汉字代表不同的数字,求这个算式。 ‎ ‎    从小爱数学 ‎ ‎    × 4 ‎ ‎    ────── ‎ ‎    学数爱小从 ‎ ‎    分析:由于五位数乘以4的积还是五位数, 所以被乘数的首位数字“从”只能是1或2,但如果“从”=1, “学”×4的积的个位应是1,“学”无解。所以“从”=2。 ‎ ‎        在个位上,“学”×‎ ‎4的积的个位是2,“学”=3或8。但由于“学”又是积的首位数字,必须大于或等于 8,所以“学”=8。 ‎ ‎    在千位上,由于“小”×4不能再向万位进位,所以“小”=1 或0。若“小”=0,则十位上“数”×4+ 3(进位)的个位是0,这不可能,所以“小”=1。 ‎ ‎    在十位上,“数”×4+3(进位)的个位是1,推出“数”=7。 ‎ ‎    在百位上,“爱”×4+3(进位)的个位还是“爱”,且百位必须向千位进3,所以“爱”=9。 ‎ ‎    故欲求乘法算式为 ‎ ‎    2 1 9 7 8 ‎ ‎    × 4 ‎ ‎    ────── ‎ ‎    8 7 9 1 2 ‎ ‎    上面这种分类求解方法既不重复,又不遗漏,体现了组合思想。 ‎ ‎    此外,还有符号思想、对应思想、极限思想、集合思想等,在小学数学教学中都应注意有目的、有选择、 适时地进行渗透。 ‎ ‎    三、小学数学教学应如何加强数学思想方法的渗透 ‎ ‎    1.提高渗透的自觉性 ‎ ‎   ‎ ‎ 数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学 知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常 常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先 要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时 纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数 学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪 些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。 ‎ ‎    2.把握渗透的可行性 ‎ ‎    数学思想方法的教学必须通过具体的教学过程加以实现。因此,必须把握好教学过程中进行数学思想方法 教学的契机——概念形成的过程,结论推导的过程,方法思考的过程,思路探索的过程,规律揭示的过程等。 同时,进行数学思想方法的教学要注意有机结合、自然渗透,要有意识地潜移默化地启发学生领悟蕴含于数学 知识之中的种种数学思想方法,切忌生搬硬套、和盘托出、脱离实际等适得其反的做法。 ‎ ‎    3.注重渗透的反复性 ‎ ‎    数学思想方法是在启发学生思维过程中逐步积累和形成的。为此,在教学中,首先要特别强调解决问题以 后的“反思”‎ ‎,因为在这个过程中提炼出来的数学思想方法,对学生来说才是易于体会、易于接受的。如通过 分数和百分数应用题有规律的对比板演,指导学生小结解答这类应用题的关键,找到具体数量的对应分率,从 而使学生自己体验到对应思想和化归思想。其次要注意渗透的长期性,应该看到,对学生数学思想方法的渗透 不是一朝一夕就能见到学生数学能力提高的,而是有一个过程。数学思想方法必须经过循序渐进和反复训练, 才能使学生真正地有所领悟。    ‎

相关文档