- 1.26 MB
- 2022-09-27 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
湘潭大学兴湘学院毕业论文第一章绪论1.1行星减速器发展状况由于国家采取了积极稳健的财政货币政策,固定资产投资力度加大,特别是基础建设的投资,使冶金、电力、水泥、建筑、建材、能源等加快了发展,因此,对减速机的需求也逐步扩大。随着国家对机械制造业的重视,重大装备国产化进程的加快以及城市化改造进程的加快,减速机行业仍将保持快速发展态势,尤其是齿轮减速机的增长将会大幅度提高,这与进口设备大多配套采用齿轮减速机有关。因此,业内专家希望企业抓紧开发制造齿轮减速机,尤其是大、中、小功率硬齿面减速机,以满足市场的需求。全套图纸,加国内外动力齿轮传动正沿着小型化、高速化、标准化、小振动、低噪声的方向发展。行星齿轮传动的发展和少齿差零齿差内齿轮副的应用,是当代齿轮的一大特征,是齿轮传动小型化的一个典型的标志。行星传动把传统的定轴传动改为动轴传动,采用了功率分流并合理应用内啮合及均载装置,具有重量轻,体积小,承载高等优点,因此,行星传动技术的应用日渐广泛。20世纪末的20多年,世界齿轮技术有了很大的发展,铲平发展的总趋势是小型化,高速化,低噪声,高可靠度。技术发展中最引人注目的是应吃面技术,功率分支技术和模块化设计技术。硬面齿轮技术到20世纪80年代在国外日趋成熟。采用优质合金钢锻件神探淬火磨齿的硬齿面齿轮,精度不低于IS01328-1975的6级,综合承载能力为中硬齿面调质齿轮的4倍,为软齿面齿轮的5-6倍。一个中等规格的硬齿面齿轮减速器的重量仅为软吃面齿轮减速器的1/3左右。26\n湘潭大学兴湘学院毕业论文功率分支技术主要指行星及大功率齿轮箱的功率双份及多分支装置,如中心传动的水泥磨主减速器,其核心技术是均载。模块化设计技术队通用和标准减速器旨在追求高性能和满足用户多样化大覆盖面需求的同时,尽量减少零部件及毛坯的品种规格,以便于组织生产,使零部件产生形成批量,降低成本,取得规模效益。其他技术的发展还表现在理论研究(如强度计算,修形技术,现代设计方法的应用,新齿形,新结构的应用等)更完善,更接近实际;普通采用各种优质合金钢锻件;材料和热处理质量控制水平的提高;结构设计更合理;加工精度普遍提高到ISO的4-6级;轴承质量和寿命的提高;润滑油质量的提高;加工装备和检测手段的提高等方面。这些技术的应用和日趋成熟,使齿轮产品的性能价格比大大提高,产品越来越完美。如非常粗略地估计一下,输出100Nm转矩的齿轮装置,如果在1950年时重10kg,到80年代就可做到仅为1kg。20世纪70年代至90年代初,我国的高速齿轮技术经历了测绘仿制,技术引进到独立设计制造3个阶段。现在我国的设计制造能力基本可满足国内生产需要,设计制造的最高参数:最大功率44MW,最高线速度168m/s,最高转速67000r/min。我国的低速重载齿轮技术,特别是硬齿面齿轮技术也经历了测绘仿制等阶段,从无到有逐步发展起来。除了摸索掌握制造技术外,在20世纪80年代末至90年代初步推广硬齿面技术过程中,我们还做了解决“断轴”,“选用”等一系列有意义的工作。在20世纪70-80年代一直认为是国内重齿轮两大难题的“水泥磨减速器”和“轧钢机械减速器”可以说已完全解决。20世界80年代至90年代初,我国相继制定了一批减速器标准,如ZBJ19004—88《圆柱齿轮减速器》,ZBJ19026—90《运输机械用减速器》和YB/T050—93《冶金设备用YNK齿轮减速器》等几个硬齿面减速器标准,我国有自己只是产权的标准,如YB/T079—95《三环减速器》。按这些标准生产的许多产品的主要技术指标均可达到或接近国外同类产品的水平,其中YNK减速器较完整地吸取了德国FLENDER公司同类产品的特点,并结合国情做了血多改进与创新。26\n湘潭大学兴湘学院毕业论文世界上一些工业发达国家,如日本,德国,英国,美国和俄罗斯等,对行星齿轮传动的应用,生产和研究都十分重视,在结构优化,传动性能,传动效率,转矩和速度等方面均处于领先地位,并出现一些新型的行星齿轮传动技术,如封闭行星齿轮传动,行星齿轮变速传动和微型行星齿轮传动等早已在现代化的机械传动设备中获得了成功的应用。行星齿轮颤动在我已有了许多年的发展史,很早就有了应用。然而,自20世纪60年代以来,我国才开始对行星齿轮传动进行了较深入,系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均有了较大的成就,并获得了血多的研究成果。近十几年来,计算机技术,信息技术,自动化技术在机械制造中的广泛应用,改变了执照也得传统观念和生产组织方式。一些先进的齿轮生产企业已经采用精益生产,敏捷执照,智能执照等先进技术。形成了高精度,高效率的智能化圣餐先和计算机网络化管理。在21世纪成套件机械装备中,齿轮仍然是机械传动的基本部件。由于计算机技术与数控技术的发展,使得机械加工精度,加工效率大为提高,从而推动了机械传动产品多样化,整机配套的模块化,标准化,以及造型设计艺术化,使产品更加精致,美观。CNC机床和工艺技术的发展,推动了机械传动结构的飞速发展。在传动系统设计中的电子控制,液压传动,齿轮,带链的混合传动,将成为变速箱设计中优化传动组合的方向。在传动设计中的学科交叉,将成为新型传动产品发展的重要趋势。工业通用变速箱是指为各行业成套装备及生产线配套的大功率和中小功率变速箱。国内的变速箱将继续淘汰软齿面,向硬齿面,高精度,高可靠度软启动,运行监控,运行状态记录,低噪声,高的功率与体积比和高的功率与重量比的方向发展。中小功率变速箱为适应机电一体化成套装备自动控制,自动调速,多种控制与通讯功能的接口需要,产品的结构与外型在相应改变。矢量变频代替直流伺服器驱动,已成为经年中小功率变速箱产品追求的目标。随着我国航天,航空,机械,电子,能源及核工业等方面的快速发展和工业机器人等在各工业部门的应用,我国在谐波传动技术应用方面已取得显著成绩。同时,随着国家高新技术及信息产业的发展,对谐波传动技术产品的需求将更会更加突出。总之,当今世纪各国减速器及齿轮技术发展总趋势是向六高,二低,二化方面发展。六高即高承载能力,高齿面硬度,高精度,高速度,高可靠性和高传动效率;二低即低噪声,低成本;二化即标准化,多样化。减速器和齿轮的设计与制造技术的发展,在一定程度上标志着一个国家的工业水平,因此,开拓和发展减速器和齿轮技术在我国有广阔的前景。1.2选题分析与设计内容26\n湘潭大学兴湘学院毕业论文行星齿轮传动与普通定州齿轮传动相比较,具有质量小,体积小,传动比大,承载能力大以及传动平稳和传动效率高等优点,这些已经被我过越来越多的机械工程技术人员所了解和重视。由于在各种类型的行星齿轮传动种均有效地利用了功率分流性和输入,输出地同轴性以及合理的采用了内啮合,才使得其具有了上述的许多独特的优点。行星齿轮传动不仅适用于高速,大功率而且可用于低速,大转矩的机械传动装置上。它可以用作减速,增速和变速传动,运动的合成和分解,以及其特殊的应用中:这些功用对于现代机械传动发展有着重要意义。因此,行星齿轮传动在起重运输,工程机械,冶金矿山,石油化工,建筑机械,轻工纺织,医疗器械,仪器仪表,汽车,船舶,兵和航空航天等工业部门获得了广泛的应用。本设计以本设计基于SolidWorks便于交互及强大的二维、三维绘图功能。先确定总体思路、设计总体布局,然后设置零部件,最后完成一个完整的设计。利用SolidWorks模块实现装配中零部件的装配、运动学仿真等功能。行星齿轮减速器的体积、重量及其承载能力主要取决于传动参数的选择,设计问题一般是在给定传动比和输入转矩的情况下,确定各轮的齿数,模数和齿宽等参数。其中优化设计采用SolidWorks自带的模块,模拟真实环境中的工作状况进行运动仿真,对元件进行运动分析。减速器作为独立的驱动元部件,由于应用范围极广,其产品必须按系列化进行设计,以便于制造和满足不同行业的选用要求。针对其输人功率和传动比的不同组合,可获得相应的减速器系列。在以往的人工设计过程中,在图纸上尽管能实现同一机座不同规格的部分系列表示,但其图形受到极大限制。采用SolidWorks工具来实现这一过程,不仅能完善上述工作,,方便设计操作,而且使系列产品的技术数据库,图形库的建立、查询成为可能,使设计速度加快。在设计过程中,我利用互联网对本课题的各设计步骤与任务进行了详细了解。采用计算机辅助设计的技术,利用SolidWorks参数化建模。在设计计算方面:分析行星齿轮机构传动方案;并通过计算分析,确定行星轮系齿轮的齿数、模数和轴、行星架的各项参数,校核齿轮的接触和弯曲强度;完成内外啮合齿轮、轴、行星架的设计计算;在整机设计开发背景下,结合运动参数完成建模。在工程仿真分析方面:本论文利用三维软件SolidWorks对行星轮减速器进行三维建模,并完成与整机的装配。26\n湘潭大学兴湘学院毕业论文第二章行星齿轮减速器方案设计2.1基本参数要求与选择行星齿轮传动的类型很多,其分类方法也不少。在库氏的分类方法中,行星齿轮传动的基本代号为:Z——中心轮,X——转臂,V——输出轴(现说明:在库氏原著作中,K—中心轮,H—转臂)。根据其基本构件的配置情况,可将行星齿轮传动分为2Z-X、3Z和Z-X-V三种基本传动类型;其他的结构型式的行星齿轮传动大都是它们的演化型式或组合型式。设计行星齿轮减速器,已知该行星传动的输入功率P1=22KW,输入转速n1=1500r/min,传动比ip=134,允许的传动比偏差△ip=0.01,短期间断的工作方式,每天工作16h,要求使用寿命8年;且要求该行星齿轮传动结构紧凑、外廓尺寸较小和传动功率较高。26\n湘潭大学兴湘学院毕业论文第三章设计计算3.1选取行星齿轮传动的传动类型和传动简图根据上述要求:短期间断,传动比大,结构紧凑和外轮廓尺寸较小。据书【7】和书【5】传动类型的工作特点可知,3Z型适用于短期间断的工作方式,结构紧凑,传动比大。为了装配方便,结构更加紧凑,适用具有单齿圈行星齿轮的3Z型行星齿轮传动较合理,其传动简图如图3-1所示。26\n湘潭大学兴湘学院毕业论文图3-13Z型行星齿轮减速传动3.2配齿计算根据3Z型行星传动的传动比ip值和按其齿轮计算公式可求得内齿轮b,e和行星齿轮c的齿数zb,ze和zc。考虑到该行星齿轮传动的外轮廓尺寸较小,故选择中心轮的齿数za=15和行星齿轮数目np=3。为了使内齿轮b与e的齿数差尽可能小,即应取ze-zb=np。再将za,np和ip值代入公式查书【1】,则的内齿轮b的齿数Zb为zb=按以下公式可得内齿轮e的齿数Ze为ze=zb+np=69+3=72因ze-za=72-15=57为奇数,应按如下公式求得行星轮c的齿数Zc为zc=(ze-za)-0.5=(72-15)-0.5=28再按传动比验算公式验算其实际的传动比为ibae===134.4其传动比误差书【1】为===0.003<故满足传动比误差的要求,即得该行星齿轮传动实际的传动比为=134.4.最后确定该行星传动各齿的齿数为za=15,zb=69,ze=72和zc=28.另外,也可根据传动比i=134.4查书【1】表直接可得上述各轮的齿数。3.3初步计算齿轮的主要参数齿轮材料和热处理的选择:中心轮a和行星轮c均采用20CrMnTi,渗碳淬火,齿面硬度58-62HRC,取=1400N/mm和=340N/mm,中心轮a和行星齿轮c的加工精度6级;内齿轮b和e均采用42CrMo,调质硬度217-259HB,取=780N/mm和=260N/mm,内齿轮b和e的加工精度7级。按弯曲强度的初计算公式计算齿轮的模数m为书【2】26\n湘潭大学兴湘学院毕业论文m=Km现已知Z1=15,=340N/mm。小齿轮名义转矩T1=9549=9549×=46.68N·M;取算式系数Km=12.1;查表取使用系数KA=1.5;取综合系数KFΣ=1.8,;去接触强度计算的行星轮见在和分布不据黁系数KHp=1.2,由书【1】公式可得KFp=1+1.5(KHp-1)=1+1.5(1.2-1)=1.3;可查得齿形系数YFa1=2.67;查得齿宽系数Фd=0.6。则的齿轮模数为m==2.57(mm)取齿轮模数m=3mm3.4啮合参数计算在三个啮合齿轮副a-c、b-c和e-c中,其标准中心距a为(mm)(mm)(mm)由此可见,三个齿轮副的标准中心距不相等,且有。因此,此行星齿轮传动不能满足非变位的同心条件。为了使该行星齿轮既能满足给定的传动比=134.4的要求,又能满足啮合传动的同心条件,即应使各齿轮副的啮合中心距相等,则必须对该3Z(II)型行星传动进行角度变位。根据各标准中心距之间的关系,取选取其啮合中心距为==66mm作为各齿轮副的中心距值。已知+=43,-=41和-=44,m=3mm,=66mm及压力角20。,按公式计算该3Z型行星传动角度变位的啮合参数。对各齿轮副的啮合参数计算结果书【3】见表1-1。表1-13Z型行星传动啮合参数计算项目计算公式a-c齿轮副b-c齿轮副e-c齿轮副26\n湘潭大学兴湘学院毕业论文中心距变动系数==1.5啮合角==变位系数和=齿顶高变动系数=重合度注:1.表内公式的“”号,外啮合取“+”,内啮合取“-”。2.表内公式的为齿顶压力角,且有=arcos。确定各齿轮的变位系数。(1)a-c齿轮副在a-c齿轮副中,由于中心轮a的齿数z=152=34和中心距=64.5mm<=66mm。由此可知,该齿轮副的变位目的是避免小齿轮26\n湘潭大学兴湘学院毕业论文a产生根切、凑合中心距和改善啮合性能。其变位方式应采用角度变位的正传,书【3】即当齿顶高系数=1,压力角时,避免根切的最小变位系数为===0.1176按如下公式可求得中心论a的变位系数书为=0.5=0.5=0.2732>=0.1176按书【3】公式可得到行星齿轮c的变位系数==0.5377-0.2732=0.2645(2)b-c齿轮副在b-c齿轮副中,=28>=17,=41>2=34和=61.5mm<=66mm。据此可知,该齿轮副的变位目的是为了凑合中心距和改善啮合性能。故其能变位方式也应采用角度变位的正传动,即。现已知其变位系数和和则可得内齿轮b的变位系数为=。(3)e-c齿轮副在e-c齿轮副中,>,-=44>2=34和mm。由此可知,该齿轮副的变位目的是为改善啮合性能和修复啮合齿轮副。故其变位方式应采用高度变位,即。则可得内齿轮e的变位系数为0.2645。3.5几何尺寸计算对于该3Z(II)型行星齿轮传动可按下面计算公式进行其几何尺寸的计算。各齿轮副的几何尺寸的计算结果见表1-2。表1-23Z(II)型行星齿轮传动几何尺寸计算项目计算公式a-c齿轮副b-c齿轮副e-c齿轮副变位系数==0.2732=0.2645=2.1022=0.2645=0.264526\n湘潭大学兴湘学院毕业论文=0.2645分度圆直径===45=207=84=207=84=216基圆直径===42.2862=78.9342=78.9342=194.5164=78.9342=202.9736节圆直径===46.0465=85.9535=90.1463=222.1463=84=216齿顶圆直径外啮合52.41391.3608内啮合-26\n湘潭大学兴湘学院毕业论文齿根圆直径外啮合内啮合用插齿刀加工78.087224.712678.087225.0204注:1.表内公式中,为插齿刀的齿顶圆直径;为插齿刀与被加工齿轮之间的中心距。2.表中的径向间径=,其中=7.6(1-)/。关于用插齿刀加工内齿轮,起齿根圆直径的计算。已知模数=3mm,插齿刀齿数=25,齿顶高系数=1.25,变位系数=0(中等磨损程度)。试求被插制内齿轮的齿根圆直径。齿根圆直径按下式计算,即=+2式中——插齿刀的齿顶圆直径;——插齿刀与被加工内齿轮的中心距。==325=82.5(mm)现对内啮合齿轮副b-c和e-c分别计算如下。(1)b-c内啮合齿轮副(,=69)==0.26\n湘潭大学兴湘学院毕业论文查表得==加工中心距为=(mm)按一下公式计算内齿轮b齿根圆直径为=82.5+271.1063=224.7126mm(填入表2中)(2)e-c内啮合齿轮副(,=72)仿上,===0.查表得====(mm)则得内齿轮e的齿根圆直径为mm(填入表2中)3.6装配条件的计算对于所设计的上述行星轮传动应满足如下的装配条件邻接条件按书【5】如下公式验算其邻接条件,即将已知的、和值代入上式,则得91.3608mm<266=114.3154mm即满足邻接条件。26\n湘潭大学兴湘学院毕业论文同心条件按书【1】如下公式验算该3Z(II)型行星传动的同心条件,即各各齿轮副的啮合角为、、和;且知、、和。代入上式,即得=46.82则满足同心条件。安装条件按书【4】以下公式验算其安装条件,即得所以,满足其安装条件。3.7传动效率的计算由查表得到的几何尺寸计算结果可知,内齿轮b的节圆直径222.1463mm大于内齿轮e的节圆直径mm,即>,故该3Z(II)行星传动的传动功率可采用书【5】如下公式进行计算,即=已知和=69/15=4.6其啮合损失系数和可按书【5】如下公式计算,即有=2.3=2.3取齿轮的啮合摩擦因数,且将、和代入上式,可得26\n湘潭大学兴湘学院毕业论文=2.3=2.3即有=0.00488+0.00502=0.0099所以,其传动效率为=可见,该行星齿轮传动的效率较高,可以满足短期间断工作方式的使用要求。3.8结构设计输入端根据3Z(II)行星传动的工作特点、传递功率的大小和转速的高低等情况,对其进行具体的结构设计。首先应确定中心轮a的结构,因为它的直径d较小,所以,轮a应该采用齿轮轴的结构型式;既将中心轮a与输入轴连成一个整体。且按该行星的输入功率P和转速n的初步估算输入轴的直径,同时进行轴的结构设计。为了便于轴上零件的装拆,通常将轴制成阶梯形。总之,在满足使用要求的情况下,轴的形状和尺寸应力求简单,以便于加工制造。按书【1】公式=112=27mm按照3﹪-5﹪增大,试取为30mm,带有单键槽的输入轴直径确定为30mm,再过台阶为36mm满足密封元件的孔径要求。轴环用于轴承的轴向定位和固定。可知为45mm,宽度为135mm。根据轴承的选择确定轴肩为52mm,为38mm。如附图。输出端根据=112=50mm带有单键槽,与齿轮e同体相连作为输出轴。取为57mm,选择16X10的键槽。如附图所示26\n湘潭大学兴湘学院毕业论文内齿轮的设计(1)内齿轮b采用紧固螺钉与箱体连接起来,从而可以将其固定。其尺寸如上已算出,图形如附图。(2)内齿轮e采用齿轮轴设计,既将轮e与输出轴连成一个整体。且按该轮的输入功率P和转速n的初步估算输出轴的直径,同时进行轴的结构设计。总之,在满足使用要求的情况下,轴的形状和尺寸应力求简单,以便于加工制造。转臂的设计一个结构合理的转臂x应是外廓尺寸小,质量小,具有足够的强度和刚度,动平衡性好,能保证行星齿轮间的载荷分布均匀,而且具有良好的加工和装配工艺。对于3Z(II)型中的转臂x不承受外力矩的作用,也不是行星传动的输入或输出构件(此时它不是基本构件),故采用双侧板整体式转臂(其侧板两端无凸缘)。双侧板整体式转臂,可采用连接板将两块侧板连接在一起。整体式转臂的毛皮是采用锻造或焊接的范式得到的,即在其毛坯上已将两侧板与连接板制成一个整体。转臂x中所需连接板得数目一般应等于行星齿轮数。壁厚为=mm取壁厚为15,其中为实际啮合中心距。沟槽宽度为80mm。外圆直径2=168mm,取外圆直径170mm。如附图所示。转臂X1上各行星齿轮轴孔与转臂轴线的中心极限偏差可按公式计算,先已知高速级的啮合中心距a=66mm,则得0.0323(mm)取=32.3各行星齿轮轴孔的孔距相对偏差按公式计算,即取0.0300=30转臂X1的偏心误差为孔距相对偏差的,即=15先已知低速级的啮合中心距a=66mm,则得26\n湘潭大学兴湘学院毕业论文=0.0323(mm)取=32.3各行星齿轮轴孔的孔距相对偏差按公式计算,即取0.0300=30转臂X1的偏心误差为孔距相对偏差的,即箱体及前后机盖的设计按照行星传动的安装类型的不同,则该行星减速器选用卧式不剖分机体,为整体铸造机体,其特点是结构简单,紧凑,能有效多用于专用的行星齿轮传动中,铸造机体应尽量的避免壁厚突变,应设法减少壁厚差,以免产生疏散等铸造缺陷。材料选为灰铸铁[7]。如附图所示壁厚——机体表面的形状系数取1——与内齿轮直径有关的系数取2.6_____作用在机体上的转矩标准件及附件的选用螺钉的选择:大多紧固螺钉选择六角螺钉。吊环的设计参照标准。通气塞的设计参照设计手册自行设计。以及油标的设计根据GB1161-89的长形油标的参数来设计。行星齿轮c采用带有内孔的结构,它的齿宽b应当加大;以便保证该行星齿轮c与中心轮a的啮合良好,同时还应保证其与内齿轮b和e相啮合。在每个行星轮的内孔中,可以安装两个滚动轴承来支撑着。而行星齿轮轴在安装到转臂x的侧板上之后,还采用了矩形截面的弹性挡圈来进行轴向固定。由于该3Z型行星传动的转臂x不承受外力矩,也不是行星传动的输入或输出构件;而且还具有26\n湘潭大学兴湘学院毕业论文个行星轮。因此,其转臂x采用了双侧板整体式的结构型式。该转臂x可以采用两个向心球轴承支承在中心轮a的轴上。转臂x上各行星轮轴孔与转臂轴线的中心距极限偏差可按如下公式计算。现已知啮合中心距mm,则得(mm)取各行星轮轴孔的孔距先对偏差可按以下公式计算,即取=0.030mm=30m转臂x的偏心误差约为孔距相对偏差的1/2,即=15m在对所设计的行星齿轮传动进行了其啮合参数和几何尺寸计算,验算其装配条件,且进行了结构设计之后,便可以绘制该行星齿轮传动结构图(或装配图)。3.9齿轮强度验算由于3Z(II)型行星齿轮齿轮传动具有短期间间断的工作特点,且具有结构紧凑、外轮廓尺寸较小和传动比大的特点。针对其工作特点,只需按书【5】其齿根弯曲应力的强度条件公式进行校核计算,即首先按书【5】以下公式计算齿轮的齿根应力,即其中,齿根应力的基本值可按书【5】以下公式计算,即=许用齿根应力可按书【5】以下公式计算,即=现将该3Z(II)行星传动按照三个齿轮副a-c、b-c和e-c分别验算如下。a-c齿轮副26\n湘潭大学兴湘学院毕业论文①名义切向力。中心轮a的切向力=可按如下公式计算;已知N•m,和mm。则得(N)②有关系数。a.使用系数。使用系数按书【5】中等冲击查表得=1.5b.动载荷系数。先按下式计算轮a相对于转臂x的速度,即其中(m/s)所以(m/s)已知中心轮a和行星齿轮c的精度为6级,即精度系数C=6;再按下公式计算动载荷系数,即=式中B=0.25=A=50+56则得=中心轮a和行星轮c的动载荷系数=1.06c.齿向载荷分布系数齿向载荷分布系数可按下式计算,即=1+查表得书【1】26\n湘潭大学兴湘学院毕业论文=查表得,代入上式,则得=1+(1.3-1)1=1.3d.齿间载荷分配系数。齿间载荷分配系数查书【1】表得=1.1e.行星轮间载荷分配系数。行星轮间载荷分配系数按书【1】下式计算即=1+1.5已取,则得=1+1.5=1.3f.齿形系数。齿形系数查书【1】得。g.应力修正系数。应力修正系数查书【1】得h.重合度系数。重合度系数可按下式计算,即==0.25+i.螺旋角系数。螺旋角系数查得=1因行星轮c不仅与中心论a啮合,且同时与内齿轮b和e相啮合,故取齿宽b=60mm。③计算齿根弯曲应力。26\n湘潭大学兴湘学院毕业论文按下式计算齿根弯曲应力,即==(N/mm2)(N/mm2)取弯曲应力=110N/mm2④计算许用齿根应力按书【5】以下公式计算许用齿根应力,即=已知齿根弯曲疲劳极限=340N/mm2由查表得最小安全系数。式中各系数、、、和取值如下。应力系数,按所给定的区域图取时,取=2。寿命系数由下式计算,即=式中应力循环次数由表相应公式计算,且可按照每年工作300天,每天工作16小时,即=6060=1.06则得==0.89齿根圆角敏感系数查得=1。先对齿根表面状况系数按表中对应公式计算,即=1.674-0.529取齿根表面微观不平度=12.5m,代入上式得=1.674-0.529=0.98尺寸系数按表中相对应公式计算,即=1.05-0.01=1.05-0.01=1.0226\n湘潭大学兴湘学院毕业论文代入下公式可得许用齿根应力为=378(N/mm2)因齿根应力=110N/mm2小于许用齿根应力=378N/mm2,即<。所以,a-c齿轮副满足齿根弯曲强度条件。b-c齿轮副在内啮合齿轮副b-c中只需要校核内齿轮b的齿根弯曲强度,即仍按公式计算其齿根弯曲应力及按公式计算许用齿根应力。已知,=260N/mm2。a.使用系数。使用系数按中等冲击查表得=1.11b.动载荷系数。先按下式计算轮a相对于转臂x的速度,即其中(m/s)所以(m/s)已知中心轮a和行星齿轮c的精度为6级,即精度系数C=6;再按下公式计算动载荷系数,即=式中B=0.25=A=50+56则得=中心轮a和行星轮c的动载荷系数=1.26c.齿向载荷分布系数齿向载荷分布系数可按下式计算,即26\n湘潭大学兴湘学院毕业论文=1+查表得=查表得,代入上式,则得=1+(1.3-1)1=1.3d.齿间载荷分配系数。齿间载荷分配系数查表得=1.1e.行星轮间载荷分配系数。行星轮间载荷分配系数按下式计算即=1+1.5已取,则得=1+1.5=1f.齿形系数。齿形系数查得。g.应力修正系数。应力修正系数查得h.重合度系数。重合度系数可按下式计算,即==0.25+i.螺旋角系数。螺旋角系数查得=126\n湘潭大学兴湘学院毕业论文通过查表或采用相应公式计算,可得到取值与外啮合不同的系数为,,,,,=2.65,,=1.03和。代入上式则得=(N/mm2)取N/mm2(N/mm2)可见,,故b-c齿轮副满足齿根弯曲强度条件。e-c齿轮副仿上,e-c齿轮副只需要校核内齿轮e的齿根弯曲强度,即仍按以上公式计算和。仿上,与内齿轮b不同的系数为和=0.68。代入上式,则得=98(N/mm2)因N/mm2取N/mm2(N/mm2)可见,,故e-c齿轮副满足弯曲强度条件。26\n湘潭大学兴湘学院毕业论文第五章.总结此片论文得以完成,首先要感谢刘柏希老师的细心指导。刘老师开阔的视野,为我提供了极大的发挥空间,在这段时间里让我明白了做任何事情要严谨细致、一丝不苟,对人要宽容、宽厚,刘老师宽厚待人的学者风范更是令我无比感动。四年的读书生活在这个季节即将划上一个句号,而于我的人生却只是一个逗号,我将面对又一次征程的开始。四年的求学生涯在师长、亲友的大力支持下,走得辛苦却也收获满囊,,思绪万千,心情久久不能平静。感谢各位老师在这几年一直在生活中、组织上给予我的教导和无私的帮助,让我在南昌航空大学科技学院这个大舞台上有锻炼的能力、自我完善的平台。在此文即将完成之际,我衷心的感谢在此过程中帮助过我的每个人,在这里请接收我最诚挚的谢意!由于时间仓促、自身等原因,文章错误疏漏之处在所难免,恳请各位老师斧正。同时也感谢学院为我提供代写论文良好的做毕业设计的环境。参考文献[1]璞良贵,纪名刚主编.机械设计.第八版.北京:高等教育出版社,2005[2]王昆主编.机械设计课程设计.武汉:华中理工大学出版社,192226\n湘潭大学兴湘学院毕业论文[3]卢颂峰、王大康主编.机械设计课程设计.北京:北京工业大学出版社,1993[4]吴宗泽、罗圣国主编.机械设计课程设计手册.北京:高等教育出版社,1992[5]孙桓,陈作模主编.机械原理.第六版.北京:高等教育出版社,2002[6]成大先主编.机械设计手册.北京:化学工业出版社,2004[7]饶振纲编著.行星齿轮传动设计.北京:化学工业出版社,2003[8]饶振纲.行星齿轮变速箱的设计与研究.传动设计,1999,(2)[9]中华人民共和国国家标准.GB/T272-93.滚动轴承的代号.北京:中国标准出版社26