- 1.78 MB
- 2022-09-27 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
本科生毕业设计完整版全套CAD图纸等,联系第1章绪论1.1选题背景及意义混合单元操作广泛应用于化工、医药、食品、粉末冶金、涂料、电子、军工、材料等领域及新材料技术领域,为保证固体粉末特别是对于有一定潮湿度和团聚粘结倾向的半干粉料之间的均匀混合,混合机械设备的选择至关重要。随着纳米技术的发展,粉体混合更显示出它的重要性。本次设计的行星运动螺旋式混合机,它的容器呈圆锥形,有利于粉料下滑。容器内螺旋搅拌器轴平行于容器壁母线,上端通过转臂与螺旋驱动轴连接。当驱动轴转动时,搅拌除自转外,还被转臂带着公转,这样就使被混合物料既能产生垂直方向的流动,又能产生水平方向的位移,而且搅拌器还能消除靠近容器内壁附近的滞留层。因此这种混合机的混合速度快、混合效果好。很有研究的意义。1.2国内外研究状况国产优质混合机基本上以采用上世纪80年代由合肥轻机(合肥中辰前身)引进的日本三菱技术为主,但这一技术在大产量和自动化控制上已经显出不足[1]。随着饮料工业的持续、健康发展,国内企业对高端设备的需求也在不断增加,且一直依赖进口。为了改变这一局面,我国凭借多年研究、制作混合机的经验,组织技术力量在广泛学习国外最新技术的基础上,从1990年至今,混合机从无到有,并逐渐形成规模生产,已广泛应用于生产实践中并且已有少量出口[2]45\n本科生毕业设计。螺旋锥形混合机是我国设计制造的固体粉粒混合的新机种,经过数十年发展,已形成系列产品[3]。随着应用范围的扩大,1995年兰化公司化工机械厂借兰化合成橡胶厂ABS装置改扩建之际,自行开发、研制出具有目前先进技术水平的LHSY-11.5N双螺旋锥形混合机。1997年初,该机正式投入使用。截止目前,该混合机运转正常、性能稳定,整机各项指标均达到设计要求。我国混合机正向着更好更接近世界在发展[3]。间歇、连续进料混合机械以及单螺杆和双螺杆挤出器是十九世纪末发展起来的混合器,主要用于食品工业和润滑油的抽提,随着橡胶工业和汽车轮胎工业的发展,二十世纪初逐渐发展起密封系统的挤出机,错流双螺杆混合器也随之产生,直到1980年对于间歇和连续混合器的机理研究才逐渐发展起来。工程师们面对许多问题,如具有分离功能回旋轴混合器、含有绞合回旋杆分离器等的设计。众多的连续式混合器的设计越来越复杂,这些系统可以实现单螺旋挤出、错流双螺旋杆挤出的效能,并且可以混合非常多的物种,这些混合器各有特点和优缺点,适用于不同的场合[4]。德国Respecta公司推出的VacuCast多组件混合机可进行低压排空且混合均匀,可将准确测量的混合物从一混合喷嘴喷射到模腔里,还可以直接将混合物注射到模腔内,该机与其他混合机相比其优点是,混合固体和液体物质以及排空工序均在单一组件内进行。VacuCast混合机生产的混合物、填充剂和粘合剂的表面湿润度极佳特别是对粉状颗粒不但能提高成品的拉伸力而且能提高抗腐蚀性[4]。在美国静止型混合机已经成为现在的主流。该机结果简单、无死角很适合食品加工,它再现性良好、可准确的实现均匀混合,而且省维修费用、省能源、省空间机体具有丰富的多样性[4]。混合机的专业厂家关东混合机工业公司,开始出售一种升降型立式混合机,该机大大改善了作业条件,符合卫生、安全标准。KTM-200处于上升位置时的全高是2,1SOmm,运行时1.500mm,宽为1.230mm,全长1.700mmo搅拌用电机容量是7.SKW,升降用1.SkW、采用4级调速,各种转速均在30~300rpm内设定,机体为不锈钢,易于冲洗,为防灰尘,制成密封型,改善了安全、卫生、作业环境。当然,成本有所提高,该公司正在努力降低成本,抑制价格上升[5]。另外,该公司还开始经营使用冷却介质、在搅拌物料过程进行冷却的世界第一台“强制冷却螺旋混合机”。至今冷却是通过喷射冷风式CO:进行的,该机通过冷却介质的流动,达到所希望的溢度,它还带有表示物料温度的温度显示装置。包括全部规格的混合机、与搅拌容器、升降装置等结合可实现自动化[3]。45\n本科生毕业设计粉研公司正在经营一种连续式喷射混合机。该机与供料器结合,在数秒内可进行粉状物料的连续加沮、混炼、溶解、乳化,称其为连续喷射混合装置。该连续喷射混合装置,采用了独特的专利结构,使气液粉三相物料通过喷射混合,比率、混合精度高,品质均匀一致,依靠物料的通过使其自洁,因在密闭环境中作业,无粉尘,无噪音。与卜机连动容易实现无人化,可大幅度地提高品质,降低成本[5]。连续式喷射混合装置,采用独特的连续加沮方式,实现了超过手排面的味道,在食品制造过程中,加湿、混炼、溶解是必要的过程,面团等的制作左右着产品的质量、成本。面团制作的秘诀,首要的是优质的水,在不需施加力的数秒内,使一粒粒均匀湿润,使其释放出天然的芳香,这样即可作出超过手辫面的面。正确计量,均匀混是对所有坯料的要求,该机最先实现了这一理想[4]。45\n本科生毕业设计第2章机械传动装置的总体设计2.1总体方案传动方案要满足工作可靠、结构简单、尺寸紧凑、传动效率、使用维护便利、工艺和经济性好等要求。经过分析与比较,决定采用如图2.1的运动方式:(a)(b)1-主轴2、3-圆柱齿轮4-蜗杆5-蜗轮6-转臂7-转臂体8、9、11、12、13、14-圆锥齿轮10-转臂轴15-搅拌器图2.1行星运动螺旋式混合机电动机通过V带带动轮将动力输入水平传递轴,使轴转动,再由此分成两路传动,一路经1对圆柱齿轮2、3,一对蜗轮蜗杆4、5减速,带动与蜗轮连成一体的转臂6旋转,装在转臂上的螺旋搅拌器15随着沿容器内壁公转。另一路是经过三对圆锥齿轮8、9、11、12、13、14变换两次方向及减速,使螺旋搅拌器绕本身的轴自转。这样就实现了螺旋搅拌的行星运动。整个机构的运动路线如下:齿轮2/齿轮3→蜗杆4/蜗轮5→转臂6→螺旋搅拌器公转轴1→圆锥齿轮8/圆锥齿轮9→圆锥齿轮11/圆锥齿轮12→圆锥齿轮13/圆锥齿轮14→螺旋搅拌器自转45\n本科生毕业设计2.2电动机的选择电动机的容量(功率)选得是否合适,对电动机的工作和经济性都有影响。当容量小于工作要求时,电动机不能保证工作装置的正常工作,或电动机因长期过载而过早损坏;容量过大则电动机的价格高,能量不能充分利用,且因经常不在满载下运动,其效率和功率因数都较低,造成浪费。取工作机的有效功率为Pw=5.5kW从电动机到工作机之间的总效率==0.808为V带的效率;为轴承的效率;为齿轮的效率==6.8kW由此选择Y132-2型Y系列鼠笼三相异步电动机。=7.5kW。其主要技术数据、外形和安装尺寸见表2.1表2.1电动机主要技术数据、外形和安装尺寸表型号额定功率/kW满载转速r/min最大转矩(额定转矩)Y132-27.529202.2外形尺寸/mm×mm×mmL×(AB/2+AD)+HD中心高/mmH安装尺寸/mmA×B轴伸尺寸/mm×mm×mmD×E475×350×315132216×14038×802.3分配各级传动比2.3.1自转部分电动机选定后,根据电动机的满载转速nm及工作轴的转速nw即可确定传动装置的总传动比i=nm/nw=2930/70=41.8具体分配传动比时,应注意以下几点:45\n本科生毕业设计(1)各级传动的传动比最好在推荐范围内选取,对减速传动尽可能不超过允许的最大值。(2)应注意使传动级数少﹑传动机构数少﹑传动系统简单,以提高和减少精度的降低。(3)应使各级传动的结构尺寸协调﹑匀称利于安装,绝不能造成互相干涉。(4)应使传动装置的外轮廓尺寸尽可能紧凑。为了使主轴箱结构紧凑,齿轮传动的外轮廓尺寸不宜过大,因而取传动比i带=3则i减=i/i带=41.8/3=13.95按展开式布置,取i1齿=1.4i2齿计算得齿=4.42齿=3.162.3.2计算自转部分传动装置的运动和动力参数I轴=/minP1=Po·η带=7.50.96=7.2kWT1=N·mII轴由公式(2.4)n2=/min由公式(2.5)P2=·η轴承·η齿轮=7.2×0.97×0.98=6.84kW45\n本科生毕业设计由公式(2.6)T2=N·mⅢ轴n3=n2=221r/min由公式(2.5)P3=P2·η轴承·η齿轮=16.84×0.97×0.98=6.5kW由公式(2.6)T3==280.97N·mⅣ轴由公式(2.4)n4=/min由公式(2.5)P4=P3·η轴承·η轴承·η齿轮=18.46×0.97×0.98=6.2kW由公式(2.6)T4=N·m2.3.3公转部分根据I轴转速n1及公转轴的转速n6即可确定传动装置的总传动比i=n1/n6=976.7/3=325.57=325.57单级圆柱齿轮传动比8取i=5.3单级蜗杆传动比=10-80所以==325.575.3=61.4计算得=5.3=61.445\n本科生毕业设计2.3.4计算公转部分传动装置的运动和动力参数I轴n1=/minP1=7.2kWT1=70.4N·m蜗杆轴由公式(2.4)n蜗=/min由公式(2.5)P蜗=·η轴承·η齿轮=7.2×0.97×0.98=6.84Kw由公式(2.6)=N·m公转轴由公式(2.4)==3r/min由公式(2.5)=·η轴承·η蜗杆=6.84×0.72×0.98=4.83kW由公式(2.6)==15375.5N·m2.4本章小结分析并拟定了混合机传动装置的运动过程,根据设计要求计算并选择了电动机的类型与型号,合理的分配了各级传动比,通过计算得出了公转部分和自转部分各传动轴的传递扭矩、功率和转速。45\n本科生毕业设计第3章机械传动件的设计3.1带轮的设计和校核1、选择V带的型号取工作系数Ka=1.3Pca=KaP=1.3×7.2=9.36kW查参考文献[6]得按Pca=9.36kW,=2920r/min选B型V带2、确定带轮的直径选取小带轮的直径=132mm验算带速V===20.25m/s为小带轮直径为电动机转速V在5~25m/s内,合适。dd2=i(1-)dd1=3×(1-0.001)=392.4mm为带的滑动率,通常取(1%-2%)dd2=375mm3、确定中心距a和带长Ld0初选中心距a00.7(dd1+dd2)≤a0≤2(dd1+dd2)a0=700mm求D带轮的计算长度L0L0=2a+45\n本科生毕业设计=2217.5mm取L0=2240mm4、计算中心距aa===689mm5、确定中心距的调整范围=a+0.03ld=689+0.03×2217.5=755mm=a-0.015ld=700-0.015×2217.5=667mm6、验算小带轮的包角α1α1=180°-(dd2-dd1)×57.3°/a=160.4°﹥120°符合要求7、确定V带的根数Zdd1=132mm带速V=20.25m/s传动比i=3查表得P0=3.83kW功率增量=1.04kW=4.63符合取Z=58、计算V带的初拉力Q=0.10㎏/m=45\n本科生毕业设计=2232.71N=2×5×232.71×=2293.1NFmax=1.5Fq=3439.65N9、带轮采用孔板式结构3.2齿轮的设计和强度校核3.2.1自转部分高速级齿轮传动的设计计算1、选择齿轮的材料、热处理、精度(1)齿轮材料及热处理大小齿轮材料均为20CrMnTi。齿面渗碳淬火,齿面硬度为58~62HRC,有效硬化深度0.5~0.9mm。经参考文献[9]查得MPa=900MPa(2)齿轮精度按GB/T10095-1998,选择8级精度,齿跟喷丸强化。2、初步设计齿轮传动的主要尺寸因为硬齿面齿轮传动,具有较强的齿面抗点蚀能力,故先按齿跟弯曲疲劳强度设计,再校核齿面接触疲劳强度。(1)计算小齿轮传递的扭矩==0.704Nmm(2)确定齿数因为是硬齿面,故取=20,==204.41=88传动比误差i==4.4=0.3%5%允许。(3)初选齿宽系数45\n本科生毕业设计=b/R设计时通常取=又取b为锥齿轮工作宽度R为锥距(4)确定分锥角小齿轮分锥角==12.93大齿轮分锥角=90=77.07(5)载荷系数试选载荷系数=1.44(6)齿形系数和应力修正系数当量齿数=17.5=335查参考文献[9]得=2.97=1.52=2.06=1.97(7)许用弯曲应力安全系数=1.6一般=1.4~1.8工作寿命为1班制,三年,每年工作300天。则小齿轮应力循环次数===8.439则大齿轮应力循环次数45\n本科生毕业设计==1.194查参考文献[9]得寿命系数许用弯曲应力MPa所以==505.625MPa==517.5MPa(8)计算模数式中:载荷系数K=1.44齿数比u=4.41扭矩=1.998N齿形系数=2.97齿宽系数=1/3应力修正系数=1.52查参考文献[9]得,圆整标准模数取m=4.5。(9)初算主要尺寸初算中心距a===205mm分度圆直径=4.520=90mm=4.588=391mm齿宽45\n本科生毕业设计(取整)=203=65mm==0.32(10)验算载荷系数K圆周速度=3.48m/s查参考文献[9]得动载系数=1.25=0.3265mm查参考文献[9]得=1.074又b/h==6.57查参考文献[9]得齿向载荷分布系数1.095使用系数工作机轻微冲击,原动机均匀平稳,所以查参考文献[9]得=1.25。齿间载荷分布系数1.0载荷系数则引用公式(3.17)m=4.0所以满足齿跟弯曲疲劳强度。3.2.2齿轮的校核设计的齿轮传动在具体工作情况下,必须有足够的工作能力,以保证在整个寿命期间不致失效,所以要对齿轮进行校核。校核大齿轮45\n本科生毕业设计=由参考文献[9]确定式中各系数:节点区域系数=2.5弹性系数=189.8载荷系数K=1.44转矩=0.704Nmm齿宽系数=0.33分度圆直径=391mm齿数比=4.41计算得=538.5MPa==15001.151.24=1391.1MPa<所以齿轮完全达到要求。3.2.3自转部分低速级齿轮传动的设计计算1、选择齿轮的材料、热处理、精度(1)齿轮材料及热处理大小齿轮材料均为20CrMnTi。齿面渗碳淬火,齿面硬度为58~62HRC,有效硬化深度0.5~0.9mm。经参考文献[9]查得MPa=900MPa(2)齿轮精度按GB/T10095-1998,选择8级精度,齿跟喷丸强化。2、初步设计齿轮传动的主要尺寸因为硬齿面齿轮传动,具有较强的齿面抗点蚀能力,故先按齿跟弯曲疲劳强度设计,再校核齿面接触疲劳强度。(1)计算小齿轮传递的扭矩=8.43Nmm(2)确定齿数因为是硬齿面,故取=17,==173.16=5445\n本科生毕业设计传动比误差i==3.176由公式(3.11)=0.5%5%允许。(3)初选齿宽系数=b/R设计时通常取=又取b为锥齿轮工作宽度R为锥距(4)确定分锥角小齿轮分锥角由公式(3.12)==17.47大齿轮分锥角=70=52.53(5)载荷系数试选载荷系数=1.4(6)齿形系数和应力修正系数当量齿数由公式(3.13)=17.82=179.876查参考文献[9]得=2.97=1.52=2.12=1.97(7)许用弯曲应力45\n本科生毕业设计安全系数=1.6一般=1.4~1.8工作寿命为1班制,三年,每年工作300天。则小齿轮应力循环次数由公式(3.14)===4.032则大齿轮应力循环次数由公式(3.15)==1.28查参考文献[9]得寿命系数许用弯曲应力MPa所以由公式(3.16)==562.5MPa==562.5MPa(8)计算模数由公式(3.17)式中:载荷系数K=1.4齿数比u=3.16扭矩=2.393齿形系数=2.97齿宽系数=1/3应力修正系数=1.52查参考文献[9]得圆整标准模数取m=6(9)初算主要尺寸初算中心距由公式(3.18)a===213mm分度圆直径45\n本科生毕业设计由公式(3.19)=617=102mm=654=324mm齿宽(取整)由公式(3.20)=169.83=55mm==0.333(10)验算载荷系数K圆周速度由公式(3.21)=0.376m/s查参考文献[9]得动载系数=1.02=0.33355mm查参考文献[9]得=1.074又b/h==9.5查参考文献[9]得齿向载荷分布系数1.081使用系数工作机轻微冲击,原动机均匀平稳,所以查参考文献[9]得=1.25。齿间载荷分布系数1.0载荷系数由公式(3.22)则由公式(3.17)m=5.4145\n本科生毕业设计所以满足齿跟弯曲疲劳强度。3.2.4齿轮的校核设计的齿轮传动在具体工作情况下,必须有足够的工作能力,以保证在整个寿命期间不致失效,所以要对齿轮进行校核。大齿轮的数值大,取大齿轮校核。大齿轮的弯曲强度由公式(3.23)=由参考文献[9]确定式中各系数节点区域系数=2.5弹性系数=189.8载荷系数K=1.4转矩=8.43N齿宽系数=0.333分度圆直径=324mm齿数比=3.16计算得=435.5Mpa==15001.131.24=1366.9MPa<所以齿轮完全达到要求。3.2.5公转部分直齿轮设计与计算1、选择齿轮的材料、热处理、精度(1)齿轮材料及热处理大小齿轮材料均为20CrMnTi。齿面渗碳淬火,齿面硬度为58~62HRC,有效硬化深度0.5~0.9mm。经参考文献[10]图MPa=900MPa(2)齿轮精度按GB/T10095-1998,选择8级精度,齿跟喷丸强化。2、初步设计齿轮传动的主要尺寸45\n本科生毕业设计因为硬齿面齿轮传动,具有较强的齿面抗点蚀能力,故先按齿跟弯曲疲劳强度设计,再校核齿面接触疲劳强度。(1)计算小齿轮传递的扭矩==0.704Nmm(2)确定齿数因为是硬齿面,故取=20,==205.3=106。传动比误差i==5.29由公式(3.11)=0.2%5%允许。(3)初选齿宽系数=0.9(4)载荷系数试选载荷系数=1.3(5)齿形系数和应力修正系数查参考文献[10]得=2.97=1.52=2.20=1.78(6)许用弯曲应力安全系数=1.6一般=1.4~1.8工作寿命为1班制,三年,每年工作300天。则小齿轮应力循环次数由公式(3.14)===8.439则大齿轮应力循环次数==1.592查参考文献[10]得寿命系数SH=1.045\n本科生毕业设计许用弯曲应力MPa所以由公式(3.16)==500.625MPa==517.5MPa(7)计算模数式中:载荷系数K=1.3扭矩=2.393齿形系数=2.97齿宽系数=0.9应力修正系数=1.52=20查参考文献[10]得圆整标准模数取m=3(8)初算主要尺寸初算中心距由公式(3.18)a===160.5mm分度圆直径由公式(3.19)=320=60mm=3106=318mm齿宽=0.960=54mm(9)验算载荷系数K圆周速度由公式(3.21)=2.60m/s45\n本科生毕业设计查参考文献[10]得动载系数=1.17=0.954mm查参考文献[10]得=1.074又b/h==8.5查参考文献[10]得齿向载荷分布系数1.09使用系数工作机轻微冲击,原动机均匀平稳,所以查参考文献[10]得=1.25。齿间载荷分布系数1.0载荷系数由公式(3.22)则m=2.68所以满足齿跟弯曲疲劳强度。3.2.6齿轮的校核设计的齿轮传动在具体工作情况下,必须有足够的工作能力,以保证在整个寿命期间不致失效,所以要对齿轮进行校核。大齿轮的数值大,取大齿轮校核。大齿轮的弯曲强度=由参考文献[10]确定式中各系数节点区域系数=2.5弹性系数=189.8载荷系数K=1.3圆周力=3330N分度圆直径=318mm齿数比=5.345\n本科生毕业设计齿宽b=54计算得=260.5MPa==15001.21.24=1451.7MPa<所以齿轮完全达到要求。3.3公转部分蜗杆传动设计与计算1、选择齿轮的材料、热处理、精度(1)齿轮材料及热处理考虑到传递的功率不大转速较抵,选用ZA蜗杆。蜗杆选用45钢,芯部调质,表面渗碳淬火,硬度大于45HRC。蜗轮选用ZCuZn10P1,金属模铸造。(2)齿轮精度按GB/T10095-1998,选择8级精度。2、初步设计齿轮传动的主要尺寸因为硬齿面齿轮传动,具有较强的齿面抗点蚀能力,故先按齿跟弯曲疲劳强度设计,再校核齿面接触疲劳强度。(1)计算小齿轮传递的扭矩=1.53Nmm(2)确定齿数因为是硬齿面,故取=1,==161.5=62(3)载荷系数查参考文献[10]得=1,由于载荷平稳取=1,取=1.05。K==10.5(4)确定弹性系数45\n本科生毕业设计=155(5)许用弯曲应力安全系数=1.6一般=1.4~1.8工作寿命为1班制,三年,每年工作300天。===2.59==1.58220=347.3MPa(6)计算确定m和、q9k()=561.5查参考文献[10]得取m=4=71(=1136)(7)确定中心距初算中心距a==159.5mm3.3.1蜗杆的校核设计的齿轮传动在具体工作情况下,必须有足够的工作能力,以保证在整个寿命期间不致失效,所以要对齿轮进行校核。(1)计算蜗杆的倒程角==3.22(2)计算蜗杆当量齿数==62.60(3)确定齿形系数由已知条件查参考文献[10]得=2.26(4)确定螺旋角系数45\n本科生毕业设计==0.9619(5)计算许用应力查参考文献[10]得=56MPa=0.8878=49.72MPa(6)校核强度==36.37MPa小于齿跟弯曲强度合格。3.4轴的设计和校核3.4.1轴的结构设计轴的结构设计就是要确定轴的合理外形和结构,以及包括各轴段长度、直径及其他细小尺寸在内的全部结构尺寸。轴的结构主要取决以下因素:轴在机器中的安装位置及形式;轴的毛坯种类;轴上作用力的大小和分布情况;轴上零件的布置及固定方式;轴承类型及位置;轴的加工工艺以及其他一些要求。由于影响因素很多,且其结构形式又因具体情况的不同而异,所以轴没有标准的结构形式,设计具有较大的灵活性和多样性。但是,不论具体情况人如何,轴的结构一般应满足以下几个方面的要求:(1)轴和轴上零件要有准确的工作位置。(2)轴上零件应便于装拆和调整。(3)轴应具有良好的制造工艺性。(4)轴的受力合理,有利于提高强度和刚度。(5)节省材料,减轻重量。(6)形状及尺寸有利于减小应力集中。3.4.2轴的最小直径估算轴的结构设计时,一般已知装配简图、轴的转速、传递的功率及传动零件的类型和尺寸等。45\n本科生毕业设计转轴受弯扭组合作用,在轴的结构设计前,其长度、跨距、支反力及其作用点的位置等都未知,尚无法确定轴上弯矩的大小和分布情况,因此也无法按弯扭组合来确定转轴上各段的直径。为此应先按扭转强度条件估算转轴上仅受转矩作径。d=A式中:A——计算常数,取决于轴的材料和受载情况。当轴段上开有键槽时,应适当增大直径以考虑键槽对轴的削弱:d>100mm时,单键槽增大3%,双键槽增大7%;d100mm时,单键槽增大5%~7%,双键槽增大10%~15%。最后对d进行圆整。(1)高速轴材料选用45钢,经调质处理硬度为217-255HBS。按扭矩强度计算,初步计算直径查表A=110。dA=30.3mm由于轴开键槽会削弱轴的强度,故需增大轴径5%-7%所以最小轴径mm。取=35mm。(2)轴Ⅱ材料选用45钢,经调质处理硬度为217-255HBS。按扭矩强度计算,初步计算直径查表A=110。dA=48.9mm由于轴开键槽会削弱轴的强度,故需增大轴径5%-7%所以最小轴径mm。取=55mm。(3)轴Ⅲ材料选用45钢,经调质处理硬度为217-255HBS。按扭矩强度计算,初步计算直径查表A=110。dA=48.1mm由于轴开键槽会削弱轴的强度,故需增大轴径5%-7%所以最小轴径mm。取=52mm。(4)轴Ⅳ材料选用45钢,经调质处理硬度为217-255HBS。按扭矩强度计算,初步计算直径查表A=110。45\n本科生毕业设计dA=68mm由于轴开键槽会削弱轴的强度,故需增大轴径5%-7%所以最小轴径mm取=75mm。3.4.3各轴段直径和长度的确定1、各轴段的直径阶梯轴各轴段直径的变化应遵循下列原则:(1)配合性质不同的表面(包括配合表面与非配合表面),直径应有所不同。(2)加工精度、粗糙度不同的表面,一般直径亦应有所不同。(3)应便于轴上零件的装拆。通常从初步估算的轴段最小直径d开始,考虑轴上配合零部件的标准尺寸、结构特点和定位、固定、装拆、受力情况等对轴结构的要求,一次确定轴段的直径。具体操作时还应注意以下几个方面问题:(1)与轴承配合的轴颈,其直径必须符合滚动轴承内径的标准系列。(2)轴上螺纹部分必须符合螺纹标准。(3)轴肩定位是轴上零件最方便可靠的定位方法。轴肩分定位轴肩和非定位轴肩,定位轴肩通常用于轴向力较大的场合。(4)定位轴肩是为加工和装配方便而设置的,其高度没有严格的规定。与轴上传动零件配合的轴头直径,应尽可能圆整成标准直径尺寸系列。(5)非配合的轴身直径,可不取标准值,但一般应取成整数。2、各轴段的长度各轴段的长度决定于轴上零件的宽度和零件固定的可靠性,设计时应注意以下几点:(1)轴颈的长度通常于轴承的宽度相同。(2)轴头的长度取决于与其相配合的传动轮毂的宽度。(3)轴身长度的确定应考虑轴上各零件之间的相互位置关系和拆装工艺要求,各零件间的间距查参考文献[10]。轴Ⅰ轴Ⅱ轴Ⅲ轴Ⅳ及蜗杆轴的布置方案与具体尺寸分别如图所示45\n本科生毕业设计图3.1Ⅰ轴图3.2Ⅱ轴图3.3Ⅲ轴图3.4Ⅳ轴45\n本科生毕业设计图3.5蜗杆轴3.4.4轴承的选择选择滚动轴承的类型,一般从载荷的大小、方向和性质入手。在外廓尺寸相同的条件下,滚子轴承比球轴承承载能力大,时用于载荷较大或有冲击的场合。当承受纯径向载荷时,通常选用径向接触轴承或深沟球轴承;当承受纯轴向载荷时,通常选用推力轴承;当承受较大径向载荷和一定轴向载荷时,可选用角接触球轴承。根据轴的应用场合可知,轴主要既受到的径向力又受到轴向力。查询常用滚动轴承的性能和特点,选择角接触球轴承。角接触球轴承的性能特点:当量摩擦系数较小,高转速时可用来承受较大的轴向负荷。Ⅰ轴选择7010ACⅡ轴选择7011ACⅢ轴选择7012ACⅣ轴选择7015AC蜗杆轴选择7010AC3.4.5键的选择Ⅰ轴选择A型键,公称尺寸为分别为10x90、12x40。Ⅱ轴选择键的公称尺寸为分别为A18x60、C16x28。Ⅲ轴选择键的公称尺寸为分别为C16x25、16x32。Ⅳ轴选择A型键,公称尺寸为22x70。蜗杆轴选择A型键,公称尺寸为16x36。3.4.6轴的受力分析和刚度校核对Ⅳ轴来说所受转矩最大所以对它进行校合。45\n本科生毕业设计1、做出轴的空间受力简图(图3.6a)2、做出垂直面受力、弯矩图(图3.6b)。RV1=7107.7N,RV2=3551.8N。3、做出水平面受力、弯矩图(图3.6c)。RH1=17511N,RH2=17511N。4、求出合成弯矩,并画出合成弯矩图(图3.6d)。m5、做出扭矩图(图3.6e)T=2256.6N.m6、求出当量弯矩Memax取m7、校核轴的强度查参考文献[10]得45\n本科生毕业设计图3.6轴的载荷和弯矩分布图所以轴合格。3.4.7.轴承寿命核算1、初选轴承型号由工作条件初选轴承7015AC,由参考文献[8]查得该轴承的Cor=46500N,Cr=49500N。2、求Fr1,Fr2由得Fr1==11156NFr2==7885N3、计算Fa由参考文献[10]得,轴承内部轴向力S=0.68Fr=0.68xFr=7586N=0.68xF=5361.8N==7586N=-3516=4070N4、计算轴承当量动载荷P(1)查参考文献[10]得e=0.68(2),由参考文献[10]查表,则=1,=0。(3)求P1,P2由参考文献[10],fp=1.2~1.8,取fp=1.2,所以13387.2N9462N5、计算轴承的基本额定寿命45\n本科生毕业设计(取=10000小时,P取大值)=11905h>所以,初选轴承7015AC符合要求,可以确定。3.4.8.键校核齿轮传递的扭矩为2256Nm,对应的转矩为2256Nm。直径、键高及键长分别为:d1=75mm,h=14mm,b=22,l1=70mm根据键连接的挤压强度公式,它的挤压应力为61.4MPa=60~90MPa,故所选键均满足强度条件。3.4.9转臂的校核由于转臂承受径向力所以对转臂校核弯曲应力进行校核和弯曲刚度进行校核。弯曲应力的计算公式为=式中:为弯矩为极惯性矩为距中心轴最远的表面确定式中各参数9.5=72.9kg=729NFL=21900MPa=8545\n本科生毕业设计=0.8经计算得157.6MPa有参考文献[6]得=290MPa<所以合格。弯曲刚度用轴的挠度w或偏转角来度量,其计算公式为w≤[w]≤[]查文献[10]得轴的变形许用值,得[y]=0.0002L,[]=0.005rad≤[w]=0.0002L=0.066mm[]=0.005rad所以强度刚度合格。3.5本章小结本章着重说明了混合机传动机构设计的主要内容。对V带、带轮、各级齿轮、蜗轮蜗杆、各传动轴以及轴承的设计过程进行了详细的说明。45\n本科生毕业设计第4章尺寸公差与配合的选用公差与配合的选择是机械设计与制造中至关重要的一环。公差与配合的选用是否恰当,对机械的使用性能和制造成本都有很大的影响,有时甚至起决定性的作用。因此,公差和配合的选择,实际上是尺寸的精度设计。在设计工作中,公差和配合的选用主要包括配合制、公差等级和配合种类。4.1配合制的选择选用配合制时,应从零件的结构、工艺、经济几方面来综合考虑,权衡利弊。一般情况下,设计时应优先采用基孔制配合。因为孔通常用定值刀具(如钻头、绞刀、拉刀等)加工,用极限量规检查,所以采用基孔制配合可以减少孔公差带的数量,大大减少用定值刀具和极限量规的规格和数量,显然是经济和合理的。有些情况下应采用基轴制配合比较合理。例如:(1)在农业机械、建筑机械等制造中,有时采用具有一定公差等级的冷拉钢材,外径不需要加工,可直接做轴。在此情况下,应选用基轴制配合。(2)在同一基本尺寸的轴上需要装配几个具有不同配合性质的零件时,应选用基轴制配合。(3)与标准件相配合的孔和轴,应以标准件为基准件来确定配合制。切断轴的轴径由于与滚动轴承(标准件)的内圈相配合,应选用基孔制的配合,而和滚动轴承外圆配合的孔则应选用基轴制配合。4.2公差等级的选择选用公差等级时,要正确处理使用要求、制造工艺和成本之间的关系。因此,选用公差等级的基本原则:在满足使用要求的前提下,尽量选用低等级的公差等级。选用公差等级时,还因考虑以下问题:(1)相关件和配合件的精度。(2)加工成本。4.3配合的选择选择配合主要是为了解决结合零件孔与轴在工作时相互关系,以保证机器正常工作。45\n本科生毕业设计间隙配合主要用于结合件有相对运动的配合(包括旋转运动和轴向滑动),也可用于一般的定位配合。过盈配合主要用于结合件没有相对运动的配合,过盈配合不能拆卸。过渡配合主要用于定位精确并要求拆卸的相对静止的联结。在设计中应尽可能选用优先配合和常用配合。确定配合制之后选择配合的大小确定轴和孔的基本偏差代号,同时确定基准件及配合件的公差等级。基孔制、和为常用间隙配合,零件可自由装拆,而工作时一般静止不动,在最大实体条件下的间隙为零,在最小实体零件下的间隙由公差等级确定。为常用过度配合,为常用的过盈配合,因此选择这种配合。4.4本章小结本章对传单机构所采用的配合制、公差等级及配合的选择进行了阐述,从而保证了传动的精度。45\n本科生毕业设计第5章箱体的设计5.1零件的位置尺寸5.2轴承端盖第一对轴承盖45\n本科生毕业设计第二对轴承盖5.3铸铁减速箱的结构尺寸45\n本科生毕业设计表5.1螺栓凸台结构尺寸5305表5.2底座螺栓凸台结构尺寸4036601084085.4本章小结本章详细说明了混合机传动装置箱体的设计过程,在设计箱体的同时考虑了各零件的装配工艺。从而保证了各零件的协调性。45\n本科生毕业设计第6章设计结果6.1各零件参数表表6.1最终实际传动比(i)V带高速锥级齿轮低速级锥齿轮单级圆柱齿轮单级蜗杆34.423.165.361.5表6.2各轴转速(n)976.722122170195.343表6.3各轴输入功率(P)20.4319.4218.4617.5419.4213.7表6.4各轴输入转矩(T)0.1990.1390.7982.2560.94943.1表6.5带轮主要参数小轮直径(mm)大轮直径(mm)中心距a(mm)基准长度(mm)带的根数z1323757122240545\n本科生毕业设计表6.6高、低速级锥齿轮及圆柱齿轮参数名称高速级低速级圆柱级中心距a(mm)205213160.5摸数(mm)4.563齿数2017208854106分度圆直径(mm)9010260(mm)396324318齿顶圆直径(mm)98.83110.666(mm)404.76331.6324齿根圆直径(mm)79.4314.952.5(mm)393.692.1310.5齿宽(mm)655754(mm)393.692.1310.5齿轮等级精度888材料及热处理20CrMnTi,齿面渗碳淬火,齿面硬度58~62HRC20CrMnTi,齿面渗碳淬火,齿面硬度58~62HRC20CrMnTi,齿面渗碳淬火,齿面硬度58~62HRC45\n本科生毕业设计表6.7蜗轮蜗杆的技术参数名称蜗杆蜗轮中心距160160模数44分度圆直径71257.6齿顶圆直径79245.6齿根圆直径62—直径系数17.75—倒程角3.22—轴向齿距12.57—倒程12.57—轴向齿厚6.28—齿轮等级精度88材料及热处理45钢芯部调质表面淬火硬度≧45HRCZCuSn10Pb1金属模铸造6.2本章小结本章详细的列出了在设计过程中各零件的技术参数。45\n本科生毕业设计结论本次毕业设计从选定题目到收集资料,再进入工艺计算和设计计算过程中,学习了很多关于机械方面的书籍。在这次设计中我对机构的传动及相关零件的设计等都有了进一不的理解。在设计的转臂是为了考虑好装配我把转臂分成了两个部分这样对箱体的结构有简化了。在设计箱体时考虑到很多装配关系的问题对箱体做了很多细节性的工作,也做了很多原来没有尝试过的想法,箱体基本达到了的要求并且满足了零件的装配工艺。但是不足之处是在箱体工作时只能选择用润滑脂润滑,用油润滑润滑不全面并且会有轻微的泄露。总的来说本次设计的行星运动螺旋式混合机基本达到了设计的要求。相信通过本次设计将会对以后的工作有很大的帮助。45\n本科生毕业设计参考文献[1]张文华,赵厚林.纵谈混合机与混和质量[J].机电信息,2005(18):45-47.[2]张文华.二维运动混合机螺旋板出料装置[P].中国专利,2001-03-27.[3]黄钟,范德顺,张文华.三维运动混合机现状与展望[J].制药机械,2000(4):7-11.[4]田耀华.(料斗式混合机+提升加料机+料斗清洗机)组合的特点与意义[J].中国制药装备杂志,2005(8).[5]吕涛,王雷,范德顺,等.摆动式混合机内粉体混合质量评估[J].北京化工大学学报,1996,23(3):44-48.[6]王三民主编.机械原理与课程设计[M].北京:机械工业出版社,2004.[7]成大先主编.机械设计手册(单行本)[减(变)速器.电机与电器][M].北京:化学工业出版社,2004.[8]王世刚主编.机械设计实践[M].哈尔滨:哈尔滨工程大学出版社,2003.[9]成大先主编.机械设计手册(单行本)[机械传单][M].北京:化学工业出版社,2004.[10]王三民、诸文俊主编.机械原理与设计[M].北京:机械工业出版社,2000.[11]刘品主编.机械精度设计与检测基础[M].哈尔滨:哈尔滨工业出版社,2004.[12]工程制图基础/武汉理工大学等五院校《工程制图基础》编写组编[M].北京:高等教育出版社,2003.[13]ShigleyJEUickerJJ.TheoryofMachinesandmechanisms[M].NewYork:McGraw-HillbookCompany,1993.[14]Orlovp.FundamentalofMachineDesign[M].Moscow:MirPub.1987.[15]TheUniversityofQueensland,Brisbane,Australia,PartM-JournalofEngineeringfortheMaritimeEnvironment[J],英国机械工程学会;[16]中国机械工程[J],湖北,中国机械工程学会.[17]AmericanSocietyofMechanicalEngineers,AppliedMechanicsReviews[J],美国机械工程学会,1998.[18]制造技术与机床[J],北京, 中国机械工程学会;北京机床研究所.[19] 制造技术与机床[J],北京, 中国机械工程学会;北京机床研究所45\n本科生毕业设计[20]AmericanSocietyofMechanicalEngineers,JournalofEnergyResourcesTechnology[J],美国机械工程学会.45\n本科生毕业设计致谢在这里首先要感谢我的导师刘亚娟老师。她平日里工作繁多,但在我做毕业设计的每个阶段都给予了我悉心的指导。同时还要感谢和我一起做设计的同学们,在设计中他们给予了我很大的帮助。还要感谢大学四年来所有的老师,为我打下机械专业知识的基础;更要感谢我的父母养育之恩无以回报,祝你们永远健康快乐。最后感谢黑龙江工程学院四年来对我的大力培养。我将会尽自己的微薄之力回报母校的培育之情。45