• 27.61 KB
  • 2021-05-14 发布

精编国家开放大学电大本科《常微分方程》《管理案例分析》网络课形考网考试题及答案(合集)

  • 30页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
国家开放大学电大本科《常微分方程》《管理案例分析》网络课形考网考试题及答案(合集)‎ ‎ ‎ ‎ 国家开放大学电大本科《常微分方程》《管理案例分析》网络课形考网考试题及答案(合集) 《常微分方程》网络课形考答案 形考任务1 题目1 本课程的教学内容共有五章,其中第三章的名称是( ). 选择一项:A. 一阶线性微分方程组 B. 定性和稳定性理论简介 C. 初等积分法 D. 基本定理 题目2 本课程安排了6次形成性考核任务,第2次形成性考核作业的名称是( ). 选择一项:A. 第一章至第四章的单项选择题 B. 第二章基本定理的形成性考核书面作业 C. 初等积分法中的方程可积类型的判断 D. 第一章初等积分法的形成性考核书面作业 题目3 网络课程主页的左侧第3个栏目名称是:( ). 选择一项:A. 课程公告 B. 自主学习 C. 课程信息 D. 系统学习 题目4 网络课程的“系统学习”栏目中第一章初等积分法的第4个知识点的名称是( ). 选择一项:A. 一阶隐式微分方程 B. 分离变量法 C. 全微分方程与积分因子 D. 常数变易法 题目5 网络课程的“视频课堂”栏目中老师讲课的电视课共有( )讲. 选择一项:A. 18 B. 20 C. 19 D. 17 题目6 网络课程主页的左侧“考试复习”版块中第二个栏目名称是:( ). 选择一项:A. 考核说明 B. 复习指导 C. 模拟测试 D. 各章练习汇总 题目7 请您按照课程的学习目标、学习要求和学习方法设计自己的学习计划,并在下列文本框中提交,字数要求在100—1000字. 答:常微分方程是研究自然现象,物理工程和工程技术的强有力工具,熟练掌握常微分方程的一些基本解法是学习常微分方程的主要任务,凡包含自变量,未知函数和未知函数的导数的方程叫做微分方程。满足微分方程的函数叫做微分方程的解,含有独立的任意常数的解称为微分方程的通解。确定通解中任意常数后所得的解称为该方程的特解。 一阶微分方程的初等解法中把微分方程的求解问题化为了积分问题,这类初等解法是,与我们生活中的实际问题密切相关的值得我们好好探讨。 在高阶微分方程中我们学习的线性微分方程,作为研究线性微分方程的基础,它在物理力学和工程技术, 自然科学中时存在广泛运用的,对于一般的线性微分方程,我们又学习了常系数线性微分 变量的方程,其中涉及到复值与复值函数问题,相对来说是比较复杂难懂的。 ‎ ‎ 至于后面的非线性微分方程,其中包含的稳定性,定性基本理论和分支,混沌问题及哈密顿方程,非线性方程绝大部分的不可解不可积现象导致了我们只能通过从方程的结构来判断其解的性态问题,在这一章节中,出现的许多概念和方法是我们从未涉及的,章节与章节中环环相扣,步步深入,由简单到复杂,其难易程度可见一斑。 由此,常微分方程整体就是由求通解引出以后的知识点,以求解为基础不断拓展,我们所要学习的就是基础题解技巧,培养自己机制与灵活性,多反面思考问题的能力,敏锐的判断力也是不可缺少的。 ‎ ‎ 形考任务2 初等积分法中的方程可积类型的判断(1)题目1 答:(一阶线性非齐次微分)方程. 题目2 答:(可降阶的高阶)方程 题目3 答:(克莱洛)方程 题目4 答:(伯努利)方程 题目5 答:(一阶线性非齐次微分)方程 题目6 答:(恰当导数)方程 题目7 答:(变量可分离)方程 题目8 答:(一阶隐式微分)方程 题目9 答:(全微分)方程 题目10 答:(齐次微分)方程 形考任务3 常微分方程学习活动3 第一章 初等积分法的综合练习 本课程形成性考核综合练习共3次,内容主要分别是第一章初等积分法的综合练习、第二章基本定理的综合练习、第三章和第四章的综合练习,目的是通过综合性练习作业,同学们可以检验自己的学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握. 要求:首先请同学们下载作业附件文档并进行填写,文档填写完成后请在本次作业页面中点击“去完成”按钮进入相应网页界面完成任务,然后请将所做完的作业文档以附件的形式上传到课程上,随后老师会在课程中进行评分。 一、填空题 1.微分方程是 二 阶微分方程. 2.初值问题的解所满足的积分方程是. 3.微分方程是 一阶线性非齐次微分方程 .(就方程可积类型而言)4.微分方程是 全微分方程 .(就方程可积类型而言)5.微分方程是 恰当倒数方程 .(就方程可积类型而言)6.微分方程的所有常数解是. 7.微分方程的常数解是 . 8.微分方程的通解为. 9.微分方程的通解是. 10.一阶微分方程的一个特解的图像是 二 维空间上的一条曲线. 二、计算题 1.指出下列方程的阶数,是否是线性方程:(1) 答:一阶,非线性 (2) 答:四阶,线性 (3) 答:三阶,非线性 2.用分离变量法求解下列方程:(1) (2) ‎ ‎ (3) 2.(1)解 通积分为 (2)解 当时,分离变量,两端取积分得 即 通积分为 另外,是常数解, 注: 在方程求解时,求出显式通解或隐式通解(通积分)即可,常数解可以不求。 (3)解 当时, 方程可变为 , 通积分为 或 , 上式代入初值条件. 得. 于是初值问题解为 . 3.解下列齐次线性微分方程 (1) (2) (1)解 显然是方程的解. 当时, 原方程可化为 . 令, 则原方程可化为 , 即 易于看出, 是上面方程的解, 从而 是原方程的解. 当时, 分离变量得, . 两端积分得(C) 将换成, 便得到原方程的解 , (C). 故原方程的通解为(为任意常数)及 . (2)解 显然是方程的解. 当时, 原方程可化为 . 令, 则原方程可化为 , 即 易于看出, 是上式的解, 从而是原方程的解. 当时, 分离变量得, . 两端积分得 (C). 将换成, 便得到原方程的解 (C). 故原方程的通解为 . 4.解下列一阶线性微分方程:(1) ‎ ‎ (2) (1)解 先解齐次方程 . 其通解为 . 用常数变易法, 令非齐次方程通解为 . 代入原方程, 化简后可得. 积分得到 . 代回后即得原方程通解为 . (2)解 先解齐次方程 . 其通解为 . 用常数变易法, 令非齐次方程通解为 . 代入原方程, 化简后可得 . 积分得到 . 代回后即得原方程通解为 . 5.解下列伯努利方程 (1) (2) (1)解 显然是方程解. 当时, 两端同除, 得 . 令, 代入有 它的解为 于是原方程的解为,及 (2)解 显然是方程解. 当时, 两端同除, 得 . 令, 代入有 它的解为 , 于是原方程的解, 及 6.解下列全微分方程:(1) (2)(1)解 因为 , 所以这方程是全微分方程, 及 在整个平面都连续可微, 不妨选取. 故方程的通积分为 , 即 . (2)解 因为 , 所以这方程是全微分方程, 及 在整个平面都连续可微, 不妨选取. 故方程的通积分为 , 即 . 7.求下列方程的积分因子和积分:(1) (2) ‎ ‎ (1)解 因为 , 与y无关, 故原方程存在只含x的积分因子. 由公式(1. 58)得积分因子,即 于是方程 为全微分方程.取 . 于是方程的通积分为. 即 . (2)解 因为 , 与y无关, 故原方程存在只含x的积分因子. 解方程 由公式(1. 58)得积分因子,即 于是方程 为全微分方程. 取 . 于是通积分为. 即. 8.求解下列一阶隐式微分方程 (1) (2) (1)解 将方程改写为 即或 解得通积分为:, 又是常数解. (2)解 显然是方程的解. 当时, 方程可变为 , 令, 则上面的式子可变为 . 解出u得, . 即 . 对上式两端积分得到方程的通解为 9.求解下列方程 (1) (2) (1)解 令 , 则. 代入原式得. 解出得 . 这是克莱洛方程,通解为 . 即 . 解之得 (为任意常数). (2)解 化简得 , 即 求积分得 . . 三、证明题 1.设函数,在上连续,且, (a, b为常数).求证:方程 的一切解在上有界. 2.设在上连续,且,求证:方程 的一切解,均有. 1.证明 设y=y(x)是方程任一解,且满足y(x0)=y0, 则 由于,所以对任意ε>0,存在>x0,使得x>时 有 令,则 于是得到 又在[x0,x1]上y(x)有界设为M2,现取 , 则 2.证明 设是方程任一解,满足,该解的表达式为 ‎ ‎ 取极限 = 四、应用题 1.按牛顿冷却定律:物体在空气中冷却的速度与物体温度和空气温度之差成正比, 已知空气温度为, 而物体在15分钟内由 冷却到 , 求物体冷却到所需的时间. 2.重为100kg的物体,在与水平面成30°的斜面上由静止状态下滑,如果不计磨擦,试求:(1)物体运动的微分方程;(2)求5 s后物体下滑的距离,以及此时的速度和加速度. 1. 解 设物体在时刻t的温度为,由题意满足初值问题 其中为常数. 解得 设物体冷却到40℃所需时间为,于是由得 ‎ ‎ 解得 52分钟. 2.解 取初始下滑点为原点,轴正向垂直向下,设 时刻速度为 , 距离为, 由题意满足初值问题 解得 再由解得 于是得到5秒后, , , . 形考任务4 常微分方程学习活动4 第二章 基本定理的综合练习 本课程形成性考核综合练习共3次,内容主要分别是第一章初等积分法的综合练习、第二章基本定理的综合练习、第三章和第四章的综合练习,目的是通过综合性练习作业,同学们可以检验自己的学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握. 要求:首先请同学们下载作业附件文档并进行填写,文档填写完成后请在本次作业页面中点击“去完成”按钮进入相应网页界面完成任务,然后请将所做完的作业文档以附件的形式上传到课程上,随后老师会在课程中进行评分。 一、填空题 1. 方程的任一非零解 不能 与x轴相交. 2.李普希兹条件是保证一阶微分方程初值问题解惟一的充分 条件. 3. 方程+ ysinx = ex的任一解的存在区间必是(-∞,+∞) . 4.一阶显式方程解的最大存在区间一定是 开区间 ‎ ‎ . 5.方程满足解的存在唯一性定理条件的区域是XOY平面 . 6.方程满足解的存在唯一性定理条件的区域是 XOY平面. 7.方程满足解的存在唯一性定理条件的区域是XOY平面. 8.方程满足解的存在唯一性定理条件的区域是---,(或不含x 轴的上半平面). 9.方程满足解的存在惟一性定理条件的区域是全平面. 10.一个不可延展解的存在在区间一定 开 区间. 二、计算题 1.判断下列方程在怎样的区域上保证初值解存在且惟一? (1) (2)1.解 (1) 因为及在整个平面上连续, 且满足存在唯一性定理条件, 所以在整个平面上, 初值解存在且唯一. (2) 因为及在整个平面上连续, 且满足存在唯一性定理条件, 所以在整个平面上, 初值解存在且唯一. 2. 讨论方程在怎样的区域中满足定理2.2的条件.并求通过的一切解. 2.解 因为方程在整个平面上连续, 除轴外, 在整个平面上有界, 所以除轴外在整个平面上都满足定理2.1的条件. 而后分离变量并积分可求出方程的通解为 其中 另外容易验证是方程的特解. 因此通过的解有无穷多个, 分别是: 3.判断下列方程是否有奇解?如果有奇解,求出奇解. (1) ‎ ‎ (2)3.解 (1) 因为在半平面上连续, 当时无界, 所以如果存在奇解只能是, 但不是方程的解, 故方程无奇解. (2) 因为在的区域上连续, 当时无界, 所以如果方程有奇解, 则奇解只能是 显然是方程的解, 是否为奇解还需要进一步讨论. 为此先求出方程的通解 由此可见对于轴上点 存在通过该点的两个解: 及 故是奇解. 三、证明题 1.试证明:对于任意的及满足条件的,方程的解在上存在. 2.设在整个平面上连续有界,对有连续偏导数,试证明方程的任一解在区间上有定义. 3.设在区间上连续.试证明方程 的所有解的存在区间必为. 4.在方程中,已知,在上连续,且.求证:对任意和,满足初值条件的解的存在区间必为. 5.假设方程在全平面上满足解的存在惟一性定理条件,且,是定义在区间I上的两个解.求证:若<,,则在区间I上必有 <成立. 6.设是方程 的非零解,其中在上连续.求证:当时,必有. 7.设在上连续可微,求证:对任意的,,方程 ‎ ‎ 满足初值条件的解必在上存在. 8.证明:一阶微分方程 的任一解的存在区间必是. 1.证明 首先和是方程在的解. 易知方程的右端函数满足解的延展定理以及存在唯一性定理的条件. 现在考虑过初值 ()的解, 根据唯一性, 该解不能穿过直线和. 因此只有可能向左右两侧延展, 从而该初值解应在上存在. 2.证明 不妨设过点分别作直线 和 . 设过点的初值解为. 因为, 故在的某一右邻域内,积分曲线位于之下, 之上. 下证曲线不能与直线相交. 若不然, 使得且, 但由拉格郎日中值定理, , 使得. 矛盾. 此矛盾证明曲线不能与直线相交. 同理可证, 当时, 它也不能与相交. 故当 时解曲线位于直线, 之间. 同理可证, 当时, 解曲线也位于直线, 之间. 由延展定理, 的存在区间为。 3.证明 由已知条件,该方程在整个 平面上满足解的存在唯一及解的延展定理条件. 显然 是方程的两个常数解. ‎ ‎ 任取初值,其中,.记过该点的解为,由上面分析可知,一方面可以向平面无穷远处无限延展;另一方面又上方不能穿过,下方不能穿过,否则与惟一性矛盾.故该解的存在区间必为. 4.证明 由已知条件可知,该方程在整个 平面上满足解的存在惟一及延展定理条件,又存在常数解 . 对平面内任一点,若,则过该点的解是,显然是在上有定义. 若,则,记过该点的解为,那么一方面解可以向平面的无穷远无限延展;另一方面在条形区域 内不能上、下穿过解和,否则与解的惟一性矛盾.因此解的存在区间必为. 5.证明 仅证方向,(反之亦然). 假设存在,使得>(=不可能出现,否则与解惟一矛盾). 令=-,那么 =-< 0, =-> 0 由连续函数介值定理,存在,使得 =-= 0 即 = 这与解惟一矛盾 6.证明 由已知条件知方程存在零解.该方程满足解的存在惟一性定理条件. 设是方程的一个非零解,假如它满足 ‎ ‎ ,, 由于零解也满足上述条件,以及方程有零解存在,那么由解的惟一性有,这与是非零解矛盾. 7.证明 该方程在全平面上满足解的存在惟一性定理及解的延展定理. 又 是该方程的两个常数解. 现取,,记过点的解为.一方面该解可向平面的无穷远无限延展,另一方面又不能上下穿越,否则将破坏解的惟一性.因此,该解只能在区域内沿x轴两侧无限延展,显然其定义区间必是. 8.证明 方程在全平面上满足解的存在唯一性定理的条件,又是方程的常数解. 对平面上任取的 ‎ ‎ 若则对应的是常数解其存在区间显然是 若)则过该点的解可以向平面无穷远无限延展,但是上下又不能穿越和,于是解的存在区间必是. 四、应用题 1.求一曲线,具有如下性质:曲线上任一点的切线,在轴上的截距之和为1. 2.求一曲线,此曲线的任一切线在两个坐标轴间的线段长等于常数. 1.解 首先, 由解析几何知识可知, 满足 的直线 都是所求曲线. 设 (x, y) 为所求曲线上的点,(X, Y)为其切线上的点, 则过 (x, y) 的切线方程为 . 显然有 此处 a 与 b 分别为切线在Ox 轴与Oy 轴上的截距. 故 . 解出y, 得到克莱洛方程 , 通解为 所以 , 即 为所求曲线方程. 2.解 设 (x, y) 为所求曲线上的点, (X, Y)为其切线上的点, 则过 (x, y) 的切线方程为 . 显然有 此处 a 与 b 分别为切线在Ox 轴与Oy 轴上的截距. 故 , 即. 解出得 故曲线的方程为 消去即的曲线方程为 . 形考任务5 题目1 方程过点(0, 0)的积分曲线( ). 选择一项:A. 有无穷多条 B. 有惟一一条 C. 不存在 D. 只有二条 题目2 方程在xoy平面上任一点的解都( ). 选择一项:A. 与x轴相交 B. 是惟一的 C. 与x轴相切 D. 不是惟一的 题目3 方程的所有常数解是( ). 选择一项: 题目4 方程满足解的存在唯一性定理条件的区域是( ). 选择一项:A. y>0的上半平面 B. 全平面 C. 除去x轴的全平面 D. y<0的下半平面 题目5 方程过点(0, 0)的解为,此解的存在区间是( ‎ ‎ ). 选择一项: 题目6 若A(x), F(x)≠0在(-∞,+∞)上连续,那么线性非齐次方程组,, 的任一非零解 ( ) . 选择一项:A. 不可以与x轴相交 B. 构成一个n维线性空间 C. 构成一个n +1维线性空间 D. 可以与x轴相交 题目7 n维方程组的任一解的图像是n+1维空间中的( ). 选择一项:A. n条曲线 B. 一条曲线 C. n个曲面 D. 一个曲面 题目8 方程的任一非零解在平面上( )零点. 选择一项:A. 只有一个 B. 只有两个 C. 无 D. 有无穷多个 题目9 三阶线性齐次微分方程的所有解构成一个( )线性空间. 选择一项:A. 3维 B. 2维 C. 4维 D. 1维 题目10 用待定系数法求方程的非齐次特解时,应设为( ). 选择一项: 形考任务6 常微分方程学习活动6 第三章一阶线性方程组、第四章n阶线性方程的综合练习 本课程形成性考核综合练习共3次,内容主要分别是第一章初等积分法的综合练习、第二章基本定理的综合练习、第三章和第四章的综合练习,目的是通过综合性练习作业,同学们可以检验自己的学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握. 要求:首先请同学们下载作业附件文档并进行填写,文档填写完成后请在本次作业页面中点击“去完成”按钮进入相应网页界面完成任务,然后请将所做完的作业文档以附件的形式上传到课程上,随后老师会在课程中进行评分。 ‎ ‎ 一、填空题 1.若A(x)在(-∞,+∞)上连续,那么线性齐次方程组,的任一非零解在空间 不能 与x轴相交. 2.方程组的任何一个解的图象是n + 1维空间中的一条积分曲线. 3.向量函数组Y1(x), Y2(x),…,Yn(x)线性相关的 必要 条件是它们的朗斯期行列式W(x)=0. 4.线性齐次微分方程组,的一个基本解组的个数不能多于n + 1 个. 5.若函数组在区间上线性相关,则它们的朗斯基行列式在区间上恒等于零 . 6.函数组的朗斯基行列式是 . 7.二阶方程的等价方程组是. 8.若和是二阶线性齐次方程的基本解组,则它们 没有 共同零点. 9.二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是 线性无关(或:它们的朗斯基行列式不等于零). 10.阶线性齐次微分方程线性无关解的个数最多为N个. 11.在方程y″+ p(x)y′+q(x)y = 0中,p(x), q(x)在(-∞,+∞)上连续,则它的任一非零解在xOy平面上可以与x轴横截相交. 12.二阶线性方程的基本解组是. 13.线性方程的基本解组是 . 14.方程的所有解构成一个 2 维线性空间. ‎ ‎ 15.n阶线性齐次微分方程的所有解构成一个 n 维线性空间. 二、计算题 1.将下列方程式化为一阶方程组 (1) (2)1.(1)解 , (2)解 2.求解下列方程组:(1) (2) (1)解 方程组的系数阵为 特征方程为:det(A-E)= =, 其特征根为 . 当时,, 其中a, b满足 (A-E)= = 0, 则有a + b = 0. 取a = 1, b =1, 则得一特解 同理,当时, 所以方程组的解为 (2)解 方程组的系数阵为 . 特征方程为: det(A-E)= = 特征根为 . 当时, 其中a, b满足 (A-E)= =0, 故有 即 . 取,于是方程组对应于 = 故特征根所对应的实解为 =,= 所以方程组的解为 = 3.求解下列方程组: (1) (2) (1)解 方程组的系数阵为 . 特征方程为: det(A-E)= = 特征根为 当时, 其中a, b满足( = 0, 即 第一个方程有 令,则 于是由 解得通解 = . (2)解 系数阵为 特征方程为: det(A-E)==. 特征根为 . 通解解为 . 4.求解下列方程组:(1) ‎ ‎ (2) 4.解 方程组的系数阵为 ,其特征方程为:det(A-E)= =. 特征根为 , 方程组有如下形式的解: 代入原方程组有 消去得 令 , 则 令 , 则 所以方程组的解为 (2)解 首先求出相应齐次线性方程组的通解. 对应齐次方程的系数阵为 . 其特征方程为:det(A-E)= =. 特征根为 当时,,其中a, b满足(A-E)= =0, 则有ab = 0 取a = b =1, 则得一特解 同理,当时, 所以对应齐次线性方程组的通解为 然后运用常数变易法计算原方程组的一个特解. 将代入原方程组,得 解得 . 原方程组的特解为 所以原方程组的通解为 5. 已知方程的一个解,求其通解. 5.解 由通解公式,, 6.试求下列n阶常系数线性齐次方程的通解 (1) ‎ ‎ (2)6.(1)解 特征方程为: 特征根为:。它们对应的解为: 方程通解为:. (2)解 特征方程为: 特征根为: 它们对应的解为: 方程通解为: . 7.试求下述各方程满足给定的初始条件的解:(1),, (2),, 7.(1)解 特征方程为:. 特征根为:,方程通解为: 由初始条件有:,解得. 所以方程的初值解为:. (2)解 特征方程为:. 特征根为: ,方程通解为: 由初始条件有:,解得. 所以方程的初值解为:. 8.求下列n阶常系数线性非齐次方程的通解:(1) (2)8.(1)解 由于 ,, 故齐次方程的通解为 . 由于不是特征根,故已知方程有形如 的特解. 将它代入原方程,得, , 所求通解为. (2)解 由于, . 因为不是特征根,故已知方程有形如 的特解.将上式代入原方程,可得 , 所求通解为 . 三、证明题 1.设矩阵函数,在(a, b)上连续,试证明,若方程组 与有相同的基本解组,则º. 2.设在方程中,在区间上连续且恒不为零,试证它的任意两个线性无关解的朗斯基行列式是在区间上严格单调函数. 3.试证明:二阶线性齐次方程的任意两个线性无关解组的朗斯基行列式之比是一个不为零的常数. 1.证明 设为基本解矩阵, 因为基本解矩阵是可逆的, 故有 于是. ‎ ‎ 2.证明 设w(x)是方程的任意两个线性无关解的朗斯基行列式,则且有,.又因为在区间上连续且恒不为零,从而对,或,所以,在上恒正或恒负,即w(x)为严格单调函数. 3.证明 设两个线性的解组的朗斯基行列式分别为 ,,且, 所以有. 四、应用题 1.一质量为m的质点由静止开始沉入液体中,当下沉时,液体的反作用与下沉的速度成正比,求此质点的运动规律。 解 设液体的反作用与质点速度的比例系数为 则指点的运动满足方程:即 则(*)所对应的齐次方程的通解为: 又是齐次方程的特征根,故特解形式为: 代入(*)式得: 所以 由得 故 《管理案例分析》网络课形考答案 形考任务1:客观测验题(10分)判断正误(每小题1分,共10分)题目1 管理案例写作计划的主要内容就是安排案例撰写的时间。( )选择一项:对 错 题目2 在案例学习的过程中,我们只需要把握住4个关键环节,即分析形势、提出方案、预测结果和做出决策。( )选择一项:对 错 题目3 ‎ 案例的结构安排通常可以遵循两种顺序:一是时间顺序,二是内容顺序。( )选择一项:对 错 题目4 案例写作原则的中立原则要求案例作者在对案例进行描述时,尽量使用中立性的语言,不进行评论或者使用带有倾向性的观点。( )选择一项:对 错 题目5 案例有其特定的文体和书写规范,是为特殊的教学目的服务的;而实例以写实为主,一般是对所发生的客观事实的介绍和描述,没有固定的格式和书写规范。( )选择一项:对 错 题目6 案例写作原则中的前瞻原则是指案例作者根据企业实际发生的事件,推断未来可能产生的后果,启发人们思考。( )选择一项:对 错 题目7 案例写作原则中的仿真原则是指案例作者根据企业实际自己杜撰案例中的人物和内容,设计案例作者关心的问题。( )选择一项:对 错 题目8 在案例学习中,谈判法是指定学生分别扮演谈判各方,设立谈判规则,陈述须要交涉的内容,确定谈判的结果。( )选择一项:对 错 题目9 管理案例就是围绕着一定的管理问题而对某一真实的管理情景所作的文字描述。不包括声像等其他媒介采编撰写方式。( )选择一项:对 错 题目10 案例内容的表述涉及很多方面,第一个就是写好案例的开头和结尾,即指案例的开头必须要和结尾相呼应。( )选择一项:对 错 ‎ 形考任务2:案例补充(20分)请自选(或由本课程辅导教师指定)文字教材中案例篇第五章-第十三章中的任意一章的【示范案例】中的案例,对案例正文进行资料补充。 答:所谓平台型组织,是一种由用户需求“拉动”的组织,企业的动力是接触用户的前台项目。从状态上讲,应该是“创客听用户的”。而科层制组织,是一种由领导者“推动”的组织,企业的动力是在不接触用户的后台职能部门。从状态上讲,应该是“员工听领导的”。 在平台型组织里,前台是最接近用户的 ,它们负责交互用户并理解用户的刚需;而后组织企业内部的资源,形成对应的产品、服务或解决方案。后台是提供资源和机制保障的,要确保平台具备“资源洼地”和“共享机制”,即要有质优价廉的资源和公平分配的政策,能够吸引创客过来。说简单点,人家到你的平台上来创业,一是图你这里资源好,自己更容易成功;二是图你这里政策好,自己更容易致富。当然,后台也需要对整个平台进行“兜底” ,设置一些产品品质、法律风险、内控风险的底线,并进行监督。毕竟,项目由于追求短期收益,长期看有可能带来一些对于平台的系统风险。 按理说,前台因为接近用户而能够洞察市场需求,后台又能提供相应的资源和政策支持,应该会不断有创客前赴后继地充当项目负责人,让一个又一个的项目“冒出来”。但事实上,这只是一种天真的想象,后台的资源只是在理论上可以做到随需调用,但现实中还需要中台作为连接器。 ‎ ‎ 中台,既是后台的代言人,又是前台的业务伙伴,其本身的利益也应该与前台绑定在一起(相当于项目“强制跟投”)——负责甄选出好的项目注入资源,并对项目进行投后管理。 形考任务3:案例分析(30分)请分析产品品质问题对SH精工公司发展的影响。 请结合案例,提炼该企业产品出现品质问题的具体原因。 如果你是该公司的品保部经理,你会怎样做? 答:请分析产品品质问题对SH精工公司发展的影响。 1、造成许多客户撤单 2、丢失许多客户 3、造成巨大金额损失 4、对公司产品质量问题增加了黑点 请结合案例,提炼该企业产品出现品质问题的具体原因:1、员工产品质量意识放松 2、项目部没有给予重视 3、生产部培训考核过于放松 4、品保部工作过于放松。 如果你是该公司的品保部经理,你会怎样做:1、调整员工工作心态 2、增加员工培训和考核 ‎ 形考任务4:案例撰写(40分)海尔洗衣机创立于1984年的海尔集团,经过19年的持续发展,现已成为享誉海内外的大型国际化企业集团。1984年海尔只生产单一的电冰箱,而目前它拥有白色家电、黑色家电、米色家电在内的96大门类15100多个规格的产品群。海尔的产品出口到世界160多个国家和地区。2003年,海尔全球营业额实现806亿元。2003年,海尔蝉联中国最有价值品牌第一名。2004年1月31日,世界五大品牌价值评估机构之一的世界品牌实验室编制的《世界最具影响力的100个品牌》报告揭晓,海尔排在第95位,是唯一入选的中国企业。2003年12月,全球著名战略调查公司Euromonitor公布了2002年全球白色家电制造商排序,海尔以3.79%的市场分额跃升至全球第二大白色家电品牌。2004年8月号《财富》中文版评出最新“中国最受赞赏的公司”,海尔集团紧随IBM中国有限公司之后,排名第二位。 冰箱、空调、洗衣机等产品属于白色家电。作为在白色家电领域最具核心竞争力的企业之一,海尔有许多令人感慨和感动的营销故事。 ‎ ‎1996年,一位四川成都的一位农民投诉海尔洗衣机排水管老是被堵,服务人员上门维修时发现,这位农民用洗衣机洗地瓜(南方又称红薯),泥土大,当然容易堵塞。服务人员并不推卸自己的责任,而是帮顾客加粗了排水管。顾客感激之余,埋怨自己给海尔人添了麻烦,还说如果能有洗红薯的洗衣机,就不用烦劳海尔人了。农民兄弟的一句话,被海尔人记在了心上。海尔营销人员调查四川农民使用洗衣机的状况时发现,在盛产红薯的成都平原,每当红薯大丰收的时节,许多农民除了卖掉一部分新鲜红薯,还要将大量的红薯洗净后加工成薯条。但红薯上沾带的泥土洗起来费时费力,于是农民就动用了洗衣机。更深一步的调查发现,在四川农村有不少洗衣机用过一段时间后,电机转速减弱、电机壳体发烫。向农民一打听,才知道他们冬天用洗衣机洗红薯,夏天用它来洗衣服。这令张瑞敏萌生一个大胆的想法:发明一种洗红薯的洗衣机。1997年海尔为该洗衣机立项,成立以工程师李崇正为组长的4人课题组,1998年4月投入批量生产。洗衣机型号为XPB40-DS,不仅具有一般双桶洗衣机的全部功能,还可以洗地瓜、水果甚至蛤蜊,价格仅为848元。首次生产了1万台投放农村,立刻被一抢而空。 ‎ 一般来讲,每年的6至8月是洗衣机销售的淡季。每到这段时间,很多厂家就把促销员从商场里撤回去了。张瑞敏纳闷儿:难道天气越热,出汗越多,老百姓越不洗衣裳?调查发现,不是老百姓不洗衣裳,而是夏天里5公斤的洗衣机不实用,既浪费水又浪费电。于是,海尔的科研人员很快设计出一种洗衣量只有1.5公斤的洗衣机——小小神童。小小神童投产后先在上海试销,因为张瑞敏认为上海人消费水平高又爱挑剔。结果,上海人马上认可了这种世界上最小的洗衣机。该产品在上海热销之后,很快又风靡全国。在不到两年的时间里,海尔的小小神童在全国卖了100多万台,并出口到日本和韩国。张瑞敏告诫员工说:“只有淡季的思想,没有淡季的市场。”在西藏,海尔洗衣机甚至可以合格地打酥油。2000年7月,海尔集团研制开发的一种既可洗衣又可打酥油的高原型“小小神童”洗衣机在西藏市场一上市,便受到消费者欢迎,从而开辟出自己独有的市场。这种洗衣机3个小时打制的酥油,相当于一名藏族妇女三天的工作量。藏族同胞购买这种洗衣机后,从此可以告别手工打酥油的繁重家务劳动。 ‎ 在2002年举办的第一届合肥“龙虾节”上,海尔推出的一款“洗虾机”引发了难得一见的抢购热潮,上百台“洗虾机”不到一天就被当地消费者抢购一空,更有许多龙虾店经营者纷纷交定金预约购买。这款海尔“洗虾机”因其巨大的市场潜力被安徽卫视评为“市场前景奖”。5月的安徽,是当地特产龙虾上市的季节,龙虾是许多消费者喜爱的美味。每到这个季节,各龙虾店大小排挡生意异常火爆,仅合肥大小龙虾店就有上千家,每天要消费龙虾近5万斤。但龙虾好吃清洗难的问题一直困绕着当地龙虾店的经营者。因为龙虾生长在泥湾里,捕捞时浑身是泥,清洗异常麻烦,一般的龙虾店一天要用2-3人专门手工刷洗龙虾,但常常一天洗的虾,不及几个小时卖的多,并且,人工洗刷费时又费力,还增加了人工成本。针对这一潜在的市场需求,海尔洗衣机事业部利用自己拥有的“大地瓜洗衣机”技术,迅速推出了一款采用全塑一体桶、宽电压设计的可以洗龙虾的“洗虾机”,不但省时省力、洗涤效果非常好,而且价格定位也较合理,极大地满足了当地消费者的需求。过去洗2公斤龙虾一个人需要10-15分钟,现在用“龙虾机”只需三分钟就可以搞掂。 ‎ ‎“听说你们的洗衣机能为牧民打酥油,还给合肥的饭店洗过龙虾,真是神了!能洗荞麦皮吗?”2003年的一天,一个来自北方某枕头厂的电话打进了海尔总部。海尔洗衣机公司在接到用户需求后,仅用了24小时,就在已有的洗衣机模块技术上,创新地推出了一款可洗荞麦皮枕头的洗衣机,受到用户的极力称赞,更成为继海尔洗地瓜机、打酥油机、洗龙虾机之后,在满足市场个性化需求上的又一经典之作。明代医学家李时珍在《本草纲目》中有一则“明目枕”的记载:“荞麦皮、绿豆皮……菊花同作枕,至老明目。”在我国,人们历来把荞麦皮枕芯视为枕中上品。荞麦皮属生谷类,具有油性,而且硬度较高,如果不常洗或者晒不干又容易滋生细菌,但荞麦皮的清洗与干燥特别费劲,因为“荞麦皮”自身体积微小,重量极轻,很难晾晒,如果在户外晾晒更容易被风刮走。“荞麦皮”的清洗和晾晒问题就成了“荞麦皮”枕头厂家及消费者的一大难题。海尔开发的这款既可以家庭洗衣,又可以用来洗荞麦皮枕头的“爽神童”洗衣机,除了洗涤、脱水等基本功能外,还独有高效的PTC转动烘干、自然风晾干两种干燥技术,同时专门设计了荞麦皮包装洗涤袋,加上海尔独有的“抗菌”技术,非常圆满地解决了荞麦皮枕头的清洗、干燥难题。 专家指出,目前洗衣机市场已进入更新换代、需求快速增长期。始终靠技术创新领先市场的海尔,通过多年以来的技术储备和市场优势的积累,在快速启动的洗衣机市场上占尽先机。世界第四种洗衣机——海尔“双动力”是海尔根据用户需求,为解决用户对波轮式、滚筒式、搅拌式洗衣机的抱怨而创新推出的一款全新的洗衣机,由于集合了洗得净、磨损低、不缠绕、15分钟洗好大件衣物、“省水省时各一半”等优点于一身,迎合了人们新的洗衣需求,产品上市一个月就创造了国内高端洗衣机销量、零售额第一名的非常业绩,成为国内市场上升最快的洗衣机新品,在日前刚刚结束的第95届法国列宾国际发明展览会上一举夺得了世界家电行业唯一发明金奖。 ‎ 赛诺市场研究公司2004年4月份统计数据显示,海尔洗衣机市场份额继续高居全国第一,尤其在我国华北、东北、华东、西北、中南、西南6大地区市场上分别稳居第一,且与竞争对手的距离进一步拉大。在西北地区,海尔洗衣机的市场份额已接近40%,超出第二名近3倍;在其他5大地区,海尔洗衣机的市场份额也都有明显上升,均超出了第二名近两倍。 ‎