- 1.45 MB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
www.ks5u.com
漳州八中2019-2020学年上学期期中考高一数学试题
一、选择题
1.设集合,集合,则等于( ).
A. B.
C. D.
【答案】D
【解析】
【分析】
根据交集的概念和运算,求得两个集合的交集.
【详解】交集是两个集合的公共元素,故.
故选:D.
【点睛】本小题主要考查两个集合交集的概念和运算,属于基础题.
2.下列各组函数中,表示同一函数的是( ).
A. , B. ,
C. , D. ,
【答案】C
【解析】
【分析】
对选项逐一分析函数的定义域、值域和对应关系,由此判断出正确选项.
【详解】对于A选项,函数的定义域为,函数的定义域为,故不是同一函数.
对于B选项,函数的定义域为,函数的定义域为,故不是同一函数.
对于C选项,函数的定义域为,函数的定义域为,且,故是同一函数.
对于D选项,函数的定义域为,函数的定义域为,故不是同一函数.
故选:C
【点睛】本小题主要考查两个函数是否是同一函数的判断,考查函数的定义域、值域和对应关系,属于基础题.
3.若函数,则的值为( ).
A. 0 B. 2 C. 4 D. 6
【答案】D
【解析】
【分析】
先求得的值,进而求得的值.
【详解】依题意,所以.
故选:D.
【点睛】本小题主要考查分段函数的函数值计算,属于基础题.
4.已知函数(且)的图象恒过定点,则点的坐标是( ).
A. B. C. D.
【答案】D
【解析】
【分析】
根据,求得函数所过定点的坐标.
【详解】当时,,即,故.
故选:D.
点睛】本小题主要考查指数型函数过定点问题,属于基础题.
5.若幂函数的图象经过点,则的值等于( ).
A. 2 B. C. 4 D.
【答案】A
【解析】
【分析】
根据幂函数的概念和所过点,求得的值,由此求得的值.
【详解】由于函数幂函数,故,即,将代入得,所以,故.
故选:A
【点睛】本小题主要考查幂函数的定义,考查幂函数函数值的求法,属于基础题.
6.已知,,,则( ).
A. B. C. D.
【答案】B
【解析】
【分析】
利用分段法,比较出三者的大小关系.
【详解】依题意可知,故.
故选:B.
【点睛】本小题主要考查利用分段法比较对数、幂的大小,属于基础题.
7.已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2﹣2x,则当x<0时,f(x)的解析式是( )
A. f(x)=﹣x(x+2) B. f(x)=x(x﹣2)
C. f(x)=﹣x(x﹣2) D. f(x)=x(x+2)
【答案】A
【解析】
因为函数在时,,所以时,,所以,因为函数是奇函数,所以,所以选A
点睛:本题考察分段函数的性质,注意每段函数所对应的范围为其切入点.
8.今有一组实验数据如下:
12
现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( ).
A. B. C. D.
【答案】B
【解析】
【分析】
令代入选项中函数的解析式,由此判断最接近的函数.
【详解】对于A选项,时,,与表格差距较大,故排除.
对于B选项,时,,时,,与表格数据较为吻合.
对于C选项,时,,与表格差距较大,故排除.
对于D选项,时,,与表格差距较大,故排除.
故选:B.
点睛】本小题主要考查根据实验数据选取函数模型,属于基础题.
9.已知,则的解析式为( )
A. ,且 B. ,且
C. ,且 D. ,且
【答案】C
【解析】
令t=,得到x=,∵x≠1,∴t≠1且t≠0,
∴且t≠0)
∴且x≠0),
故选C.
点睛:求函数解析式常用方法
(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法;
(2)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;
(3)方程法:已知关于f(x)与或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).
10.若函数f(x)=ax-1的图象经过点(2,4),则函数的图象是
A. B. C. D.
【答案】D
【解析】
由条件知;函数定义域为
,在定义域上是减函数;故选D
11.函数(且)在区间上的值不大于2,则函数的值域是( ).
A. B.
C. D.
【答案】A
【解析】
【分析】
根据指数函数的单调性列不等式,求得的取值范围,由此求得的值域.
【详解】由于是指数函数,当时,在上递增,,解得;当时,在上递减,,解得.所以.注意到在上递增,故函数的值域是,即.
故选:A.
【点睛】本小题主要考查指数函数的单调性和最值,考查对数型函数的单调性和值域,属于基础题.
12.函数,若方程有且只有两个不等的实数根,则实数的取值范围为( ).
A. B. C. D.
【答案】B
【解析】
【分析】
根据函数的分段表达式,画出的图像,画出的图像,根据与图像有两个不同的交点,求得实数的取值范围.
【详解】当时,,所以;
当时,,所以;
当时,,所以;
以此类推,画出的图像如下图所示,在同一个图像中,画出的图像,由图可知,要使与图像有两个不同的交点,则需,即,解得.
故选:B.
【点睛】本小题主要考查分段函数的图像与性质,考查方程的根、两个函数图像的交点的对应关系,考查数形结合的数学思想方法,属于中档题.
二、填空题
13.式子的值等于______.
【答案】0
【解析】
【分析】
根据根式运算公式,化简所求表达式.
【详解】依题意,原式.
故答案为:
【点睛】本小题主要考查根式运算,考查运算求解能力,属于基础题.
14.函数的定义域为______.
【答案】
【解析】
【分析】
根据分式分母不为零,求得函数的定义域.
【详解】由于为分式的形式,故,即,所以函数的定义域为.
故答案为:
【点睛】本小题主要考查具体函数的定义域的求法,属于基础题.
15.已知函数的定义域是一切实数,则m的取值范围是______.
【答案】
【解析】
【分析】
对分成两种情况,根据函数定义域为,求得的取值范围.
【详解】当时,,定义域为,符合题意.
当时,要使在上恒成立,则需,解得.
综上所述,实数的取值范围是.
故答案为:
【点睛】本小题主要考查函数定义域,考查一元二次不等式恒成立问题的求解,属于基础题.
16.已知函数(为常数),若时,恒成立,则的取值范围是______.
【答案】
【解析】
【分析】
令,分离常数,由此求得的取值范围.
【详解】依题意时,恒成立,即,,
,在时成立.而在区间上,为单调递增函数,当时有最小值为,故,所以.
故答案为:
【点睛】本小题主要考查不等式恒成立问题的求解,考查指数函数和对数函数的性质,属于基础题.
三、解答题
17.已知集合,.
(1)求;
(2)已知,若,求实数的取值范围.
【答案】(1)或.
(2)
【解析】
【分析】
(1)先求得和,然后求得.
(2)根据列不等式组,解不等式组求得的取值范围.
【详解】(1),因为或,
所以或.
(2)因为,所以,得,所以.
【点睛】本小题主要考查集合并集、补集的运算,考查根据集合的包含关系求参数,属于基础题.
18.已知函数的图象在内是连续不断的,对应值表如下:
0
1
2
3
4
5
(1)计算上述表格中的对应值和;
(2)从上述对应填表中,可以发现函数在哪几个区间内有零点?说明理由.
【答案】(1),
(2)函数分别在区间,,内有零点,理由见解析
【解析】
【分析】
(1)利用,求得的值.
(2)根据零点的存在性定理,判断出有零点的区间.
【详解】(1)由题意可知,
.
(2)∵,,,
∴函数分别在区间,,内有零点.
【点睛】本小题主要考查根据函数解析式求函数值,考查零点存在性定理的运用,属于基础题.
19.已知函数.
(1)判断函数在区间上的单调性,并用单调性定义证明;
(2)求函数在区间上的值域.
【答案】(1)单调递减,证明见解析
(2)
【解析】
【分析】
(1)利用函数单调性的定义,计算,由此证得函数在区间上递减.
(2)根据(1)中求得的单调性,求得函数在区间上的值域.
【详解】(1)函数在区间上单调递减,证明如下:
任取,且,
则,
∵,∴,
又∵,∴,,,
∴,即.
由单调性的定义可知函数在区间上单调递减.
(2)由(1)知函数在区间上单调递减,
所以函数最大值为,最小值为,
所以函数在区间上的值域为.
【点睛】本小题主要考查利用函数单调性的定义证明函数的单调性,考查利用函数的单调性求函数的值域,属于基础题.
20.已知是定义在的奇函数,当时,.若函数在上单调递减.
(1)求的取值范围;
(2)若对实数, 恒成立,求实数的取值范围.
【答案】(1)
(2)
【解析】
【分析】
(1)根据函数为奇函数,结合以及二次函数的单调性,得到,由此求得的取值范围.
(2)根据函数的奇偶性和单调性化简,分离常数,根据
的取值范围,求得的取值范围.
【详解】(1)①∵是定义在上的奇函数
∵,在上单调递减
∴,∴.
(2)∵在上单调递减且在上是奇函数,故在上递减,
由得
∴恒成立,.
令,
∵对称轴,∴时,为增函数,
∴当时,取到最大值.∴.
【点睛】本小题主要考查函数的单调性与奇偶性,考查函数不等式的解法,考查不等式恒成立问题的求解策略,属于中档题.
21.某家具厂生产一种办公桌,每张办公桌的成本为100元,出厂单价为160元,该厂为鼓励销售商多订购,决定一次订购量超过100张时,每超过一张,这批订购的全部办公桌出厂单价降低1元.根据市场调查,销售商一次订购量不会超过160张.
(1)设一次订购量为张,办公桌的实际出厂单价为元,求关于的函数关系式;
(2)当一次性订购量为多少时,该家具厂这次销售办公桌所获得的利润最大?其最大利润是多少元?(该家具厂出售一张办公桌的利润=实际出厂单价-成本)
【答案】(1)
(2)当第一次订购量为100张时,该家具厂在这次订购中所获得的利润最大,其最大利润是6000元.
【解析】
【分析】
(1)将订购量分为两种情况,求得办公桌的实际出厂单价的分段函数解析式.
(2)利用单价减去成本,再乘以订购量,求得利润的解析式.根据分段函数的解析式,结合函数的单调性,求得的最大值.
【详解】(1)依题意得
即.
(2)由(1)得
即
(i)当,则时,.
(ii)当,则在单调递减.
∴
∴.
综上所述,的最大值为6000.
答:当第一次订购量为100张时,该家具厂在这次订购中所获得的利润最大,其最大利润是6000元.
【点睛】本小题主要考查分段函数在实际生活中的应用,考查函数最值的求法,属于基础题.
22.已知定义域为R的函数f(x)满足f(f(x)﹣x2+x)=f(x)﹣x2+x.
(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析表达式.
【答案】(1)f(a)=a;(2)f(x)=x2﹣x+1.
【解析】
【分析】
(1)由条件可令x=2,得到 f(f(2)﹣22+2)=f(2)﹣22+2,又由f(2)=3,即可得到f(1)=1,再由f(0)=a,即可得到f(a)=a;
(2)由条件可得,令x=x0,f(x0)﹣x02+x0=x0,解得x0=0或1,代入检验x0
≠0,则有f(x)=x2﹣x+1;
【详解】(1)因为对任意x∈R,有f(f(x)﹣x2+x)=f(x)﹣x2+x,
所以 f(f(2)﹣22+2)=f(2)﹣22+2,又由f(2)=3,得f(3﹣22+2)=3﹣22+2,即f(1)=1;
若f(0)=a,即f(a﹣02+0)=a﹣02+0,即f(a)=a;
(2)因为对任意x∈R,有f(f(x)﹣x2+x)=f(x)﹣x2+x,
又因为有且只有一个实数x0,使得f(x0)=x0,所以对任意x∈R,有f(x)﹣x2+x=x0,
在上式中令x=x0,f(x0)﹣x02+x0=x0,又因为f(x0)=x0,则x02=x0,故x0=0或1.
若x0=0,即f(x)﹣x2+x=0,即f(x)=x2﹣x,
但方程x2﹣x=x0有两个不同实根,与题设条件矛盾,故x0≠0;
若x0=1,则有f(x)﹣x2+x=1,即f(x)=x2﹣x+1,易验证该函数满足题设条件;
综上,所求函数为f(x)=x2﹣x+1.
【点睛】本题考查函数的解析式的求法,考查函数的单调性及运用,属于中档题.