- 879.00 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
【考向解读】
1.命题角度:复数的四则运算和几何意义;以平面图形为背景,考查平面向量的线性运算、平面向量的数量积.
2.题目难度:复数题目为低档难度,平面向量题目为中低档难度.
【命题热点突破一】平面向量的线性运算
(1)在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化;
(2)在用三角形加法法则时要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量终点所在的向量;在用三角形减法法则时要保证“同起点”,结果向量的方向是指向被减向量.
例1、(2018·全国Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则等于( )
A.- B.-
C.+ D.+
答案 A
解析 作出示意图如图所示.
=+=+=×(+)+(-)=-.
故选A.
【方法技巧】
(1)向量加法的平行四边形法则:共起点;三角形法则:首尾相连;向量减法的三角形法则:共起点连终点,指向被减.
(2)已知O为平面上任意一点,则A,B,C三点共线的充要条件是存在s,t,使得=s+t,且s+t=1,s,t∈R.
(3)证明三点共线问题,可转化为向量共线解决.
【变式探究】【2017课标1,理13】已知向量a,b的夹角为60°,|a|=2,|b|=1,则| a +2 b |= .
【答案】
【解析】利用如下图形,可以判断出的模长是以2为边长的菱形对角线的长度,
所以.
【变式探究】如图,在△ABC中,N是AC边上一点,且=,P是BN上的一点,若=m+,则实数m的值为( )
A. B. C.1 D.3
答案 B
解析 ∵=,∴=,
∴=m+=m+.
又B,N,P三点共线,∴m+=1,∴m=.
【变式探究】(1)设0<θ<,向量a=(sin2θ,cosθ),b=(cosθ,1),若a∥b,则tanθ=______.
(2)如图,在△ABC中,AF=AB,D为BC的中点,AD与CF交于点E.若=a,=b,且=xa+yb,则x+y=________.
【答案】(1) (2)-
【解析】(1)因为a∥b,
所以sin2θ=cos2θ,2sinθcosθ=cos2θ.
因为0<θ<,所以cosθ>0,
得2sinθ=cosθ,tanθ=.
方法一 因为=a,=b,D为BC的中点,
所以=(a+b).
所以==(a+b).
所以=+=-+
=-b+(a+b)
=a-b.
所以x=,y=-,所以x+y=-.
方法二 易得EF=MD,MD=CF,
所以EF=CF,所以CE=CF.
因为=+=-+=-b+a,
所以=(-b+a)=a-b.
所以x=,y=-,则x+y=-.
【感悟提升】(1)对于平面向量的线性运算,要先选择一组基底;同时注意共线向量定理的灵活运用.(2)
运算过程中重视数形结合,结合图形分析向量间的关系.
【变式探究】如图,在正方形ABCD中,M,N分别是BC,CD的中点,若=λ+μ,则λ+μ等于( )
A.2 B. C. D.
答案 D
解析 方法一 如图以AB,AD为坐标轴建立平面直角坐标系,设正方形边长为1,=,=,=(1,1).
∵=λ+μ=λ+μ=,
∴解得故λ+μ=.
方法二 以,作为基底,
∵M,N分别为BC,CD的中点,
∴=+=+,=+=-,
∴=λ+μ=+,
又=+,
因此解得所以λ+μ=.
【命题热点突破二】平面向量的数量积
(1)数量积的定义:a·b=|a||b|cosθ.
(2)三个结论
①若a=(x,y),则|a|==.
②若A(x1,y1),B(x2,y2),则
||=.
③若a=(x1,y1),b=(x2,y2),θ为a与b的夹角,
则cosθ==.
例2、(2018年天津卷)如图,在平面四边形ABCD中,,,,. 若点E为边CD上的动点,则的最小值为
A. B. C. D.
【答案】A
【解析】建立如图所示的平面直角坐标系,则,,,,
点在上,则,设,则:
,即,
据此可得:,且:
,,
由数量积的坐标运算法则可得:
,
整理可得:,
结合二次函数的性质可知,当时,取得最小值.
本题选择A选项.
【命题热点突破四】复数的概念与运算
复数运算的重点是除法运算,其关键是进行分母实数化,分子分母同时乘分母的共轭复数.对一些常见的运算,如(1±i)2=±2i,=i,=-i等要熟记.
例4、(2018·全国Ⅰ)设z=+2i,则|z|等于( )
A.0 B. C.1 D.
答案 C
解析 ∵z=+2i=+2i=+2i=i,
∴|z|=1.故选C.
【变式探究】【2017山东,理2】已知,i是虚数单位,若,则a=
(A)1或-1 (B) (C)- (D)
【答案】A
【解析】由得,所以,故选A.
【变式探究】已知,i是虚数单位,若,则的值为_______.
【答案】2
【解析】由,可得,所以,,故答案为2.
【变式探究】(1)若复数z=,则|z|=( )
A. B.
C.1 D.2
(2)已知复数z=(i为虚数单位),则复数z在复平面内对应的点在( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
【答案】(1)C (2)B
【解析】 (1)z===-i,,所以|z|==1.
(2)z==-1-i,则复数z=-1+i,对应的点在第二象限.
【高考真题解读】
1. (2018年浙江卷)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是
A. −1 B. +1 C. 2 D. 2−
【答案】A
【解析】设,则由得,
由得
因此的最小值为圆心到直线的距离减去半径1,为选A.
2. (2018年天津卷)如图,在平面四边形ABCD中,,,,. 若点E为边CD上的动点,则的最小值为
A. B. C. D.
【答案】A
【解析】建立如图所示的平面直角坐标系,则,,,,
点在上,则,设,则:
,即,
据此可得:,且:
,,
由数量积的坐标运算法则可得:
,
整理可得:,
结合二次函数的性质可知,当时,取得最小值.
本题选择A选项.
3. (2018年全国I卷理数)设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=
A. 5 B. 6 C. 7 D. 8
【答案】D
【解析】根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.
4. (2018年全国I卷理数)在△中,为边上的中线,为的中点,则
A. B.
C. D.
【答案】A
【解析】根据向量的运算法则,可得
,
所以,故选A.
5. (2018年全国Ⅱ卷理数)已知向量,满足,,则
A. 4 B. 3 C. 2 D. 0
【答案】B
【解析】因为
所以选B.
6. (2018年江苏卷)在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________.
5.【2017天津,理13】在中,,,.若,,且,则的值为___________.
【答案】
【解析】,则
.
6.【2017山东,理12】已知是互相垂直的单位向量,若与的夹角为,则实数的值是 .
【答案】
【解析】,
,
,
,解得:.
7.【2017浙江,15】已知向量a,b满足则的最小值是________,最大值是_______.
【答案】4,
【解析】设向量的夹角为,由余弦定理有:,
,则:
,
令,则,
据此可得:,
即的最小值是4,最大值是.
8.【2017浙江,10】如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD
交于点O,记,,,则
A. B. C. D.
【答案】C
【解析】因为, , ,所以,故选C。
9.【2017江苏,12】如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为,且tan=7,与的夹角为45°.若, 则 ▲ .
A
C
B
O
(第12题)
【答案】3
10.【2017江苏,16】 已知向量
(1)若a∥b,求x的值;
(2)记,求的最大值和最小值以及对应的的值.
【答案】(1)(2)时,取得最大值,为3; 时,取得最小值,为.
【解析】
解:(1)因为,,a∥b,
所以.
若,则,与矛盾,故.
于是.
又,所以.
(2).
因为,所以,
从而.
于是,当,即时, 取到最大值3;
当,即时, 取到最小值.
1.【2017课标1,理3】设有下面四个命题
:若复数满足,则;:若复数满足,则;
:若复数满足,则;:若复数,则.
其中的真命题为
A. B. C. D.
【答案】B
【解析】令,则由得,所以,故正确;
当时,因为,而知,故不正确;
当时,满足,但,故不正确;
对于,因为实数的共轭复数是它本身,也属于实数,故正确,故选B.
2.【2017课标II,理1】( )
A. B. C. D.
【答案】D
【解析】由复数除法的运算法则有:,故选D。
3.【2017山东,理2】已知,i是虚数单位,若,则a=
(A)1或-1 (B) (C)- (D)
【答案】A
【解析】由得,所以,故选A.
3.【2016高考新课标2理数】已知在复平面内对应的点在第四象限,则实数的取值范围是( )
(A) (B) (C) (D)
【答案】A
【解析】要使复数对应的点在第四象限应满足:,解得,故选A.
4.【2016年高考北京理数】设,若复数在复平面内对应的点位于实轴上,则_______________.
【答案】-1
【解析】,故填:-1
5.【2016高考山东理数】若复数z满足其中i为虚数单位,则z=( )
(A)1+2i (B)12i (C) (D)
【答案】B
【解析】设,则,故,则,选B.
6.【2016高考天津理数】已知,i是虚数单位,若,则的值为_______.
【答案】2
【解析】由,可得,所以,,故答案为2.
7.【2016高考江苏卷】复数其中i为虚数单位,则z的实部是________▲________.
【答案】5
【解析】,故z的实部是5
1.(2015·新课标全国Ⅱ,2)若a为实数,且(2+ai)(a-2i)=-4i,则a=( )
A.-1 B.0 C.1 D.2
2.(2015·广东,2)若复数z=i(3-2i)(i是虚数单位),则z=( )
A.3-2i B.3+2i C.2+3i D.2-3i
解析 因为z=i(3-2i)=2+3i,所以z=2-3i,故选D.
答案 D
3.(2015·四川,2)设i是虚数单位,则复数i3-=( )
A.-i B.-3i C.i D.3i
解析 i3-=-i-=-i+2i=i.选C.
答案 C
4.(2015·山东,2)若复数z满足=i,其中i为虚数单位,则z=( )
A.1-i B.1+i C.-1-i D.-1+i
解析 ∵=i,∴z=i(1-i)=i-i2=1+i,∴z=1-i.
答案 A
5.(2015·新课标全国Ⅰ,1)设复数z满足=i,则|z|=( )
A.1 B. C. D.2
解析 由=i,得1+z=i-zi,z==i,∴|z|=|i|=1.
答案 A