- 52.00 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时跟踪检测(一) 集 合
一、选择题
1.(2015·广州测试)已知集合A=,则集合A中的元素个数为( )
A.2 B.3
C.4 D.5
2.(2014·江西高考)设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁RB)=( )
A.(-3,0) B.(-3,-1)
C.(-3,-1] D.(-3,3)
3.已知集合A={x|y=},B={x|x=m2,m∈A},则( )
A.AB B.BA
C.A⊆B D.B⊆A
4.设函数f(x)=lg(1-x2),集合A={x|y=f(x)},B={y|y=f(x)},则图中阴影部分表示的集合为( )
A.[-1,0] B.(-1,0)
C.(-∞,-1)∪[0,1) D.(-∞,-1]∪(0,1)
5.(2015·西安一模)设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M的个数是( )
A.0 B.1
C.2 D.3
6.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:
①2 014∈[4];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.
其中,正确结论的个数是( )
A.1 B.2
C.3 D.4
二、填空题
7.已知A={0,m,2},B={x|x3-4x=0},若A=B,则m=________.
8.(2014·重庆高考)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=________.
9.(2015·昆明二模)若集合A={x|x2-9x<0,x∈N*},B=,则A∩B中元素的个数为________.
10.(2015·南充调研)已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是________.
三、解答题
11.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.
(1)9∈(A∩B);
(2){9}=A∩B.
12.(2015·福州月考)已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)当m=-1时,求A∪B;
(2)若A⊆B,求实数m的取值范围;
(3)若A∩B=∅,求实数m的取值范围.
答案
1.选C ∵∈Z,∴2-x的取值有-3,-1,1,3,又∵x∈Z,∴x值分别为5,3,1,-1,
故集合A中的元素个数为4,故选C.
2.选C 由题意知,A={x|x2-9<0}={x|-3<x<3},∵B={x|-1<x≤5},∴∁RB={x|x≤-1或x>5}.
∴A∩(∁RB)={x|-3<x<3}∩{x|x≤-1或x>5}={x|-3<x≤-1}.
3.选B 由题意知A={x|y=},∴A={x|-1≤x≤1},∴B={x|x=m2,m∈A}={x|0≤x≤1},∴BA,故选B.
4.选D 因为A={x|y=f(x)}={x|1-x2>0}={x|-1<x<1},则u=1-x2∈(0,1],
所以B={y|y=f(x)}={y|y≤0},
A∪B=(-∞,1),A∩B=(-1,0],
故图中阴影部分表示的集合为(-∞,-1]∪(0,1),选D.
5.选C 由题中集合可知,集合A表示直线x+y=1上的点,集合B表示直线x-y=3上的点,联立可得A∩B={(2,-1)},M为A∩B的子集,可知M可能为{(2,-1)},∅,所以满足M⊆(A∩B)的集合M的个数是2,故选C.
6.选C 因为2 014=402×5+4,又因为[4]={5n+4|n∈Z},所以2 014∈[4],故①正确;因为-3=5×(-1)+2,所以-3∈[2],故②不正确;因为所有的整数Z除以5可得的余数为0,1,2,3,4,所以③正确;若a,b属于同一‘类’,则有a=5n1+k,b=5n2+k,所以a-b=5(n1-n2)∈[0],反过来,如果a-b∈[0],也可以得到a,b属于同一“类”,故④正确.故有3个结论正确.
7.解析:由题知B={0,-2,2},A={0,m,2},若A=B,则m=-2.
答案:-2
8.解析:由题意,得U={1,2,3,4,5,6,7,8,9,10},故∁UA={4,6,7,9,10},所以(∁UA)∩B={7,9}.
答案:{7,9}
9.解析:解不等式x2-9x<0可得0<x<9,所以A={x|0<x<9,x∈N*}={1,2,3,4,5,6,7,8},又∈N*,y∈N* ,所以y可以为1,2,4,所以B={1,2,4},所以A∩B=B,A∩B中元素的个数为3.
答案:3
10.解析:集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4],因为A⊆B,所以a≤2,b≥4,所以a-b≤2-4=-2,即实数a-b的取值范围是(-∞,-2].
答案:(-∞,-2]
11.解:(1)∵9∈(A∩B),∴2a-1=9或a2=9,
∴a=5或a=3或a=-3.
当a=5时,A={-4,9,25},B={0,-4,9};
当a=3时,a-5=1-a=-2,不满足集合元素的互异性;
当a=-3时,A={-4,-7,9},B={-8,4,9},
所以a=5或a=-3.
(2)由(1)可知,当a=5时,A∩B={-4,9},不合题意,
当a=-3时,A∩B={9}.
所以a=-3.
12.解:(1)当m=-1时,B={x|-2