• 1.55 MB
  • 2021-06-15 发布

高考数学【理科】真题分类详细解析版专题13 统计(解析版)

  • 33页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
专题13 统计 ‎【2013高考真题】‎ ‎(2013·江西理)4.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为 ( )‎ ‎7816 6572 0802 6314 0702 4369 9728 0198‎ ‎3204 9234 4934 8200 3623 4869 6938 7481‎ A.08 B.07 C.02 D.01‎ ‎【答案】D ‎【解析】从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个个体是01,选D.‎ ‎【学科网考点定位】此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力.‎ ‎(2013·福建理)4.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100]加以统计,得到如图所示的频率分布直方图。已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )‎ A.588 B.480 C.450 D.120 ‎ ‎【答案】B ‎【解析】由直方图可知少于60分的频率为(0.005+0.010)*10=0.2,所以不少于60的频率为1-0.2=0.8,故不少于60分的人数=600*0.8=480‎ ‎【学科网考点定位】本题考查了统计的直方图,在此图中切记其纵坐标为频率/组距,属于简单题。‎ ‎【2012高考真题】‎ ‎(2012·天津卷)某地区有小学150所,中学75所,大学25所,现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.‎ ‎【答案】18 9 【解析】 本题考查简单随机抽样中的分层抽样,考查运算求解能力,(2012·山东卷)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为(  )‎ A.7 B.‎9 C.10 D.15‎ ‎【答案】C 【解析】 本题考查系统抽样,考查数据处理能力,中档题.‎ 第n个抽到的编号为9+×30=30n-21,由题意得451≤30n-21≤750,解之得 ‎15≤n≤25,又∵n∈Z,∴满足条件的n共有10个.‎ ‎(2012·江苏卷)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.‎ ‎【答案】15 【解析】 本题考查简单随机抽样中的分层抽样.解题突破口为直接运用分层抽样的定义即可.由题意可得高二年级应该抽取学生50×=15(名).‎ ‎(2012·北京卷)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):‎ ‎“厨余垃圾”箱 ‎“可回收物”箱 ‎“其他垃圾”箱 厨余垃圾 ‎400‎ ‎100‎ ‎100‎ 可回收物 ‎30‎ ‎240‎ ‎30‎ 其他垃圾 ‎20‎ ‎20‎ ‎60‎ ‎(1)试估计厨余垃圾投放正确的概率;‎ ‎(2)试估计生活垃圾投放错误的概率;‎ ‎(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.‎ 注:s2=[(x1-)2+(x2-)2+…+(xn-)2],其中为数据x1,x2,…,xn的平均数 圾”箱里其他垃圾量的总和除以生活垃圾总量,‎ 即P()约为=0.7,‎ 所以P(A)约为1-0.7=0.3.‎ ‎(3)当a=600,b=c=0时,s2取得最大值.‎ 因为=(a+b+c)=200,‎ 所以s2=[(600-200)2+(0-200)2+(0-200)2]=80 000.‎ ‎(2012·上海卷)设10≤x1乙,m甲>m乙 D.甲>乙,m甲m C.n=m D.不能确定 ‎(2012·安徽卷)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则(  )‎ A.甲的成绩的平均数小于乙的成绩的平均数 B.甲的成绩的中位数等于乙的成绩的中位数 C.甲的成绩的方差小于乙的成绩的方差 D.甲的成绩的极差小于乙的成绩的极差 ‎【答案】C 【解析】 本题考查频率分布直方图,平均数,中位数,方差,极差.‎ 由条形图易知甲的平均数为x甲==6,中位数为6,所以方差为s==2,极差为8-4=4;‎ 乙的平均数为x乙==6,中位数为5,‎ 所以方差为s==>2,‎ 极差为9-5=4,‎ 比较得x甲=x乙,甲的极差等于乙的极差,甲乙中位数不相等且s>s.‎ ‎(2012·辽宁卷)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图.‎ 图1-6‎ 将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.‎ ‎(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?‎ 非体育迷 体育迷 合计 男 女 ‎10‎ ‎55‎ 合计 ‎(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中.采用随机抽样方法每次抽取1名观众,抽取3次.记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).‎ 附:χ2=,‎ P(χ2≥k)‎ ‎0.05‎ ‎0.01‎ k ‎3.841‎ ‎6.635‎ ‎【答案】解:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:‎ 非体育迷 体育迷 合计 男 ‎30‎ ‎15‎ ‎45‎ 女 ‎45‎ ‎10‎ ‎55‎ 合计 ‎75‎ ‎25‎ ‎100‎ 将2×2列联表中的数据代入公式计算,得 X ‎0‎ ‎1‎ ‎2‎ ‎3‎ P E(X)=np=3×=.‎ D(X)=np(1-p)=3××=.‎ ‎(2012·广东卷)某班50位学生期中考试数学成绩的频率分布直方图如图1-4所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].‎ ‎(1)求图中x的值;‎ ‎(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.‎ 图1-4‎ ‎(2012·北京卷)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):‎ ‎“厨余垃圾”箱 ‎“可回收物”箱 ‎“其他垃圾”箱 厨余垃圾 ‎400‎ ‎100‎ ‎100‎ 可回收物 ‎30‎ ‎240‎ ‎30‎ 其他垃圾 ‎20‎ ‎20‎ ‎60‎ ‎(1)试估计厨余垃圾投放正确的概率;‎ ‎(2)试估计生活垃圾投放错误的概率;‎ ‎(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.‎ 注:s2=[(x1-)2+(x2-)2+…+(xn-)2],其中为数据x1,x2,…,xn的平均数 圾”箱里其他垃圾量的总和除以生活垃圾总量,‎ 即P()约为=0.7,‎ 所以P(A)约为1-0.7=0.3.‎ ‎(3)当a=600,b=c=0时,s2取得最大值.‎ 因为=(a+b+c)=200,‎ 所以s2=[(600-200)2+(0-200)2+(0-200)2]=80 000.‎ ‎(2012·课标全国卷)某一部件由三个电子元件按图1-4方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为________.‎ 图1-4‎ ‎【答案】 ‎【解析】 解法一:设该部件的使用寿命超过1000小时的概率为P(A).因为三个元件的使用寿命均服从正态分布N(1 000,502),所以元件1,2,3的使用寿命超过1 000小时的概率分别为P1=,P2=,P3=.因为P()=P3+=××+=,所以P(A)=1-P()=.‎ ‎(2012·湖南卷)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是(  )‎ A.y与x具有正的线性相关关系 B.回归直线过样本点的中心(,)‎ C.若该大学某女生身高增加‎1 cm,则其体重约增加‎0.85 kg D.若该大学某女生身高为‎170 cm,则可断定其体重必为‎58.79 kg ‎【答案】D 【解析】 本题考查线性回归方程的特征与性质,意在考查考生对线性回归方程的了解,解题思路:A,B,C均正确,是回归方程的性质,D项是错误的,线性回归方程只能预测学生的体重.选项D应改为“若该大学某女生身高为‎170 cm,则估计其体重大约为‎58.79 kg”.‎ ‎(2012·辽宁卷)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图.‎ 图1-6‎ 将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.‎ ‎(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?‎ 非体育迷 体育迷 合计 男 女 ‎10‎ ‎55‎ 合计 ‎(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中.采用随机抽样方法每次抽取1名观众,抽取3次.记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).‎ 附:χ2=,‎ P(χ2≥k)‎ ‎0.05‎ ‎0.01‎ k ‎3.841‎ ‎6.635‎ ‎【答案】解:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:‎ 非体育迷 体育迷 合计 男 ‎30‎ ‎15‎ ‎45‎ 女 ‎45‎ ‎10‎ ‎55‎ 合计 ‎75‎ ‎25‎ ‎100‎ 将2×2列联表中的数据代入公式计算,得 X ‎0‎ ‎1‎ ‎2‎ ‎3‎ P E(X)=np=3×=.‎ D(X)=np(1-p)=3××=.‎ ‎【2011高考真题】‎ ‎(2011·天津卷)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.‎ ‎【答案】12 【解析】 设抽取男运动员人数为n,则=,解之得n=12.‎ ‎(2011·北京卷)以下茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示.‎ ‎ (1)如果X=8,求乙组同学植树棵数的平均数和方差;‎ ‎(2)如果X=9,分别从甲,乙两组中随机选取一名同学,求这两名同学的植树总棵数Y的分布列和数学期望.‎ ‎(注:方差s2=[(x1-)2+(x2-)2+…+(xn-)2],其中为x1,x2,…,xn的平均数)‎ ‎【解答】 (1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10.所以平均数 ‎+21×P(Y=21)‎ ‎=17×+18×+19×+20×+21× ‎=19.‎ ‎(2011·课标全国卷)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:‎ A配方的频数分布表 指标值 分组,[90,94),[94,98),[98,102),[102,106),[106,110]频数,8,20,42,22,8B配方的频数分布表 指标值 分组,[90,94),[94,98),[98,102),[102,106),[106,110]频数,4,12,42,32,10(1)分别估计用A配方,B配方生产的产品的优质品率;‎ ‎(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为 y= 从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数 学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)‎ ‎【解答】 (1)由试验结果知,用A配方生产的产品中优质品的频率为=0.3,所以用A配方生产的产品的优质品率的估计值为0.3.‎ 由试验结果知,用B配方生产的产品中优质品的频率为=0.42,所以用B配方生产的产品的优质品率的估计值为0.42.‎ ‎(2)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110] (2011·江苏卷)某老师从星期一到星期五收到的信件数分别是10,6,8,5,6,则该组数据的方差s2=________.‎ ‎【答案】3.2 【解析】 因为==7,所以s2=(9+1+1+4+1)=3.2.‎ ‎(2011·江苏卷)某老师从星期一到星期五收到的信件数分别是10,6,8,5,6,则该组数据的方差s2=________.‎ ‎【答案】3.2 【解析】 因为==7,所以s2=(9+1+1+4+1)=3.2.‎ ‎(2011·湖北卷)已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<2)=(  )‎ A.0.6 B.0.4 C.0.3 D.0.2‎ ‎【答案】C 【解析】 因为P=0.8,所以P=0.2.由图象的对称性知,P=P=0.2,所以P=1-P-P=0.6.所以P=P=0.3. ‎ ‎(2011·广东卷)某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm、170 cm和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm.‎ ‎【答案】185 【解析】 因为儿子身高与父亲身高有关,所以设儿子身高为Y,父亲身高为X,根据数据列表:‎ X,173,170,176Y,170,176,182得回归系数:=1,=3,‎ 于是儿子身高与父亲身高的关系式为:Y=X+3,‎ 当X=182时,该老师的孙子身高为185 cm.‎ ‎(2011·湖南卷)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:‎ ‎,男,女,总计爱好,40,20,60‎ 不爱好,20,30,50‎ 总计,60,50,110由K2=算得,‎ K2=≈7.8.‎ 附表:‎ P(K2≥k),0.050,0.010,0.001k,3.841,6.635,10.828参照附表,得到的正确结论是(  )‎ A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”‎ B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”‎ C.有99%以上的把握认为“爱好该项运动与性别有关”‎ D.有99%以上的把握认为“爱好该项运动与性别无关”‎ ‎【答案】C 【解析】 由附表可得知当K2≥6.635时,有=1-P=0.99,当K2≥10.828时,有=1-P=0.999,而此时的K2≈7.8显然有0.99<<0.999,故可以得到有99%以上的把握认为“爱好该项运动与性别有关”,故选C.‎ ‎(2011·辽宁卷)调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.‎ ‎【答案】0.254 【解析】 由题意得2-1=[0.254(x+1)+0.321]-[0.254x+0.321]=0.254,即家庭年收入每增加1万元,年饮食支出平均增加0.254万元.‎ ‎(2011·山东卷)某产品的广告费用x与销售额y的统计数据如下表:‎ 广告费用x(万元),4,2,3,5销售额y(万元),49,26,39,54根据上表可得回归方程=x+中的为9.4,据此模型预报广告费用为6万元时销售额为(  )‎ A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元 ‎【答案】B 【解析】==3.5,==42,由于回归方程过点(,),所以42=9.4×3.5+,解得=9.1,故回归方程为 =9.4x+9.1,所以当x=6时,y=6×9.4+‎ ‎9.1=65.5.‎ ‎(2011·陕西卷)设(x1,y1),(x2,y2),…,(xn,yn)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图1-4),以下结论中正确的是(  )‎ 图1-4‎ A.x和y的相关系数为直线l的斜率 B.x和y的相关系数在0到1之间 C.当n为偶数时,分布在l两侧的样本点的个数一定相同 D.直线l过点(,)‎ ‎(2011·广东卷)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:‎ 编号,1,2,3,4,5x,169,178,166,175,180‎ y,75,80,77,70,81(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;‎ ‎(2)当产品中微量元素x,y满足x≥175且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;‎ ‎(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望).‎ ‎【解答】 (1)=7,5×7=35,即乙厂生产的产品数量为35件.‎ ‎(2)易见只有编号为2,5的产品为优等品,所以乙厂生产的产品的优等品率为,故乙厂生产大约35×=14(件)优等品.‎ ‎(3)ξ的取值为0,1,2.‎ P(ξ=0)==,P(ξ=1)==,‎ ‎【2010高考真题】‎ ‎(2010广东理数)8.为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定,每个彩灯彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同.记这5个彩灯有序地闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒。如果要实现所有不同的闪烁,那么需要的时间至少是( )‎ A、 1205秒 B.1200秒 C.1195秒 D.1190秒 ‎【答案】C ‎【解析】每次闪烁时间5秒,共5×120=600s,每两次闪烁之间的间隔为5s,共5×(120-1)=595s.总共就有600+595=1195s. ‎ ‎(2010广东理数)7.已知随机变量X服从正态分布N(3.1),且=0.6826,则p(X>4)=( )‎ A、0.1588 B、‎0.1587 C、0.1586 D0.1585‎ ‎(2010安徽理数)15、甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号)。‎ ‎①; ②; ③事件与事件相互独立;‎ ‎④是两两互斥的事件; ⑤的值不能确定,因为它与中哪一个发生有关 ‎【答案】②④‎ ‎【解析】易见是两两互斥的事件,而 ‎。‎ ‎(2010湖北理数)14.某射手射击所得环数的分布列如下:‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ P x ‎0.1‎ ‎0.3‎ y 已知的期望E=8.9,则y的值为 .‎ ‎【答案】0.4‎ ‎【解析】由表格可知:‎ 联合解得.‎ ‎(2010福建理数)13.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮。假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于 。‎ ‎【答案】0.128‎ ‎【解析】由题意知,所求概率为。‎ ‎(2010浙江理数)19.(本题满分l4分)如图,一个小球从M处投入,通过管道自上而下落A或B或C。已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖.‎ ‎(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量为获得 k(k=1,2,3)等奖的折扣率,求随机变量的分布列及期望;‎ ‎(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求.‎ 解析:本题主要考察随机事件的概率和随机变量的分布列、数学期望、二项分布等概念,同时考查抽象概括、运算求解能力和应用意识。‎ ‎ (Ⅰ)解:由题意得ξ的分布列为 ξ ‎50%‎ ‎70%‎ ‎90%‎ p 则Εξ=×50%+×70%+90%=.‎ ‎(Ⅱ)解:由(Ⅰ)可知,获得1等奖或2等奖的概率为+=.‎ 由题意得η~(3,)‎ 则P(η=2)=()2(1-)=.‎ ‎(2010江西理数)18. (本小题满分高☆考♂资♀源*网12分)‎ 某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门。再次到达智能门时,系统会随机打开一个你未到过的通道,直至走完迷宫为止。令表示走出迷宫所需的时间。‎ ‎(1)求的分布列;‎ ‎(2)求的数学期望。‎ 分布列为:‎ ‎1‎ ‎3‎ ‎4‎ ‎6‎ ‎(2)小时 ‎ ‎ ‎【2009高考真题】‎ ‎ ( 2009·山东理)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是96,106:,样本数据分组为96,98),98,100),100,102),102,104),104,106:,已知样本中产品净重小于‎100克的个数是36,则样本中净重大于或等于‎98克并且小于‎104克的产品的个数是( ).‎ A.90 B.‎75 C. 60 D.45‎ ‎(2009·宁夏海南理)对变量x, y 有观测数据理力争(,)(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(,)(i=1,2,…,10),得散点图2. ‎ 由这两个散点图可以判断。‎ ‎(A)变量x 与y 正相关,u 与v 正相关 (B)变量x 与y 正相关,u 与v 负相关 ‎(C)变量x 与y 负相关,u 与v 正相关 (D)变量x 与y 负相关,u 与v 负相关 解析:由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关。‎ 答案:C ‎(2009·广东理)已知离散型随机变量的分布列如右表.若,,则 , .‎ 解析:由题知,,,解得,.‎ ‎(2009·江苏)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表: ‎ 学生 ‎1号 ‎2号 ‎3号 ‎4号 ‎5号 甲班 ‎6‎ ‎7‎ ‎7‎ ‎8‎ ‎7‎ 乙班 ‎6‎ ‎7‎ ‎6‎ ‎7‎ ‎9‎ 则以上两组数据的方差中较小的一个为= . ‎ 解析: 考查统计中的平均值与方差的运算。‎ 甲班的方差较小,数据的平均值为7,‎ 故方差 ‎ ‎(2009·辽宁理)某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100‎ 件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h,1020h,1032h,则抽取的100件产品的使用寿命的平均值为 h.‎ 解析:=1013‎ 答案:1013‎ ‎(2009·天津理)某学院的A,B,C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本。已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取____名学生。‎ 答案:40‎ 解析:C专业的学生有,由分层抽样原理,应抽取名。‎ ‎(2009·广东理)(本小题满分12分)‎ 根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:‎ 对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间,,,,,进行分组,得到频率分布直方图如图5. ‎ ‎(1)求直方图中的值; ‎ ‎(2)计算一年中空气质量分别为良和轻微污染的天数;‎ ‎(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.‎ ‎(结果用分数表示.已知,, .‎ ‎(2009·浙江理)(本题满分14分)在这个自然数中,任取个数.‎ ‎(I)求这个数中恰有个是偶数的概率;‎ ‎(II)设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数和,此时的值是).求随机变量的分布列及其数学期望.‎ 解析:(I)记“这3个数恰有一个是偶数”为事件A,则;. ‎ ‎(II)随机变量的取值为的分布列为 ‎0‎ ‎1‎ ‎2‎ P 所以的数学期望为 . ‎ ‎ ( 2009·山东理)(本小题满分12分)‎ 在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为 ‎ ‎ ‎0 ‎ ‎2 ‎ ‎3 ‎ ‎4 ‎ ‎5 ‎ p ‎ ‎0.03 ‎ P1 ‎ P2 ‎ P3 ‎ P4 ‎ ‎(1)求q的值; ‎ ‎(2)求随机变量的数学期望E;‎ ‎(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。‎ 解:(1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25,, P(B)= q,.‎ 根据分布列知: =0时=0.03,所以,q=0.8.‎ 所以随机变量的分布列为 ‎ ‎ ‎0 ‎ ‎2 ‎ ‎3 ‎ ‎4 ‎ ‎5 ‎ p ‎ ‎0.03 ‎ ‎0.24 ‎ ‎0.01 ‎ ‎0.48 ‎ ‎0.24 ‎ 随机变量的数学期望 ‎(3)该同学选择都在B处投篮得分超过3分的概率为 ‎;‎ 该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.‎ 由此看来该同学选择都在B处投篮得分超过3分的概率大.‎ ‎(2009·安徽理)(本小题满分12分)‎ ‎ 某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是.同样也假定D受A、B和C感染的概率都是.在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量.写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).‎ 解:随机变量X的分布列是 X ‎1‎ ‎2‎ ‎3‎ P X的均值为 附:X的分布列的一种求法 共有如下6种不同的可能情形,每种情形发生的概率都是:‎ ‎(2009·安徽文)(本小题满分12分)某良种培育基地正在培育一种小麦新品种A,将其与原有的一个优良品种B进行对照试验,两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:. ‎ 品种A:357,359,367,368,375,388,392,399,400,405,414,415,421,423,423,427,430,430,434,443,445,451,454‎ 品种B:363,371,374,383,385,386,391,392,394,395,397397,400,401,401,403,406,407,410,412,415,416,422,430‎ ‎(Ⅰ)完成所附的茎叶图 ‎(Ⅱ)用茎叶图处理现有的数据,有什么优点?. ‎ ‎(Ⅲ)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论。 ‎ 解析:(1)茎叶图如图所示 A B ‎9 7‎ ‎35‎ ‎8 7‎ ‎36‎ ‎3‎ ‎5‎ ‎37‎ ‎1 4‎ ‎8‎ ‎38‎ ‎3 5 6‎ ‎9 2‎ ‎39‎ ‎1 2 4 457 7‎ ‎5 0‎ ‎40‎ ‎0 1 1 3 6 7‎ ‎5 4 2‎ ‎41‎ ‎0 2 5 6‎ ‎7 3 3 1‎ ‎42‎ ‎2‎ ‎4 0 0‎ ‎43‎ ‎0‎ ‎5 5 3‎ ‎44‎ ‎4 1‎ ‎45‎ ‎(2)用茎叶图处理现有的数据不仅可以看出数据的分布状况,而且可以看出每组中的具体数据.‎ ‎(3)通过观察茎叶图,可以发现品种A的平均每亩产量为411.‎1千克,品种B的平均亩产量为397.‎8千克.由此可知,品种A的平均亩产量比品种B的平均亩产量高.但品种A的亩产量不够稳定,而品种B的亩产量比较集中D平均产量附近.‎ ‎(2009·辽宁理)(本小题满分12分)‎ 某人向一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。‎ ‎(Ⅰ)设X表示目标被击中的次数,求X的分布列;‎ ‎(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A)。‎ 解:(Ⅰ)依题意X的分列为. ‎ ‎ ‎ ‎(Ⅱ)设A1表示事件“第一次击中目标时,击中第i部分”,i=1,2.‎ B1表示事件“第二次击中目标时,击中第i部分”,i=1,2.‎ 依题意知P(A1)=P(B1)=0.1,P(A2)=P(B2)=0.3,‎ 某工厂有工人1000名, 其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)。‎ ‎(I)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人; ‎ ‎(II)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2.‎ 表1:‎ 生产能力分组 人数 ‎4‎ ‎8‎ ‎5‎ ‎3‎ 表2:‎ 生产能力分组 人数 ‎ 6‎ ‎ y ‎ 36‎ ‎ 18‎ ‎(i)先确定x,y,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论) ‎ ‎(ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数,同一组中的数据用该组区间的中点值作代表) ‎ ‎【解析】解:(Ⅰ)甲、乙被抽到的概率均为,且事件“甲工人被抽到”与事件“乙工人被抽到”相互独立,故甲、乙两工人都被抽到的概率为 ‎ ‎  .‎ ‎ (Ⅱ)(i)由题意知A类工人中应抽查25名,B类工人中应抽查75名.‎ ‎ 故 ,得,‎ ‎    ,得 . ‎ ‎ 频率分布直方图如下 ‎ 从直方图可以判断:B类工人中个体间的关异程度更小 .‎ ‎ A类工人生产能力的平均数,B类工人生产能力的平均数以及全工厂工人生产能力的平均数的会计值分别为123,133.8和131.1 .‎ ‎【2008年高考真题】‎ ‎(2008·山东理)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为 ‎(A)304.6     (B)303.6 (C)302.6 (D)301.6‎ 解析:本题考查茎叶图、用样本数字特征估计总体特征。‎ 答案:B ‎(2008·广东理)某校共有学生2000名,各年级男、女生人数如下表.已知在全校 学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )‎ 一年级 二年级 三年级 女生 ‎373‎ 男生 ‎377‎ ‎370‎ A.24 B.‎18 ‎ C.16 D.12 ‎ 解析:依题意我们知道二年级的女生有380人,那么三年级的学生的人数应该是,即总体中各个年级的人数比例为,故在分层抽样中应在三年级抽取的学生人数为 答案:C ‎(2008·山东理)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,‎ 答错得零分。假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为且各人正确与否相互之间没有影响.用表示甲队的总得分.‎ ‎(Ⅰ)求随机变量分布列和数学期望; ‎ ‎(Ⅱ)用A表示“甲、乙两个队总得分之和等于‎3”‎这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).‎ 解析:(Ⅰ)解法一:由题意知,ε的可能取值为0,1,2,3,且 ‎ 所以的分布列为 ‎0‎ ‎1‎ ‎2‎ ‎3‎ P 的数学期望为E=‎ 解法二:根据题设可知 因此的分布列为 ‎(Ⅱ)解法一:用C表示“甲得2分乙得1分”这一事件,用D表示“甲得3分乙得0分”这一事件,所以AB=C∪D,且C、D互斥,又 解法二:用Ak表示“甲队得k分”这一事件,用Bk表示“已队得k分”这一事件,k=0,1,2,3由于事件A3B0,A2B1为互斥事件,故事件 P(AB)=P(A3B0∪A2B1)=P(A3B0)+P(A2B1).‎ ‎=‎ ‎(2008·广东理)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为.‎ ‎(1)求的分布列;‎ ‎(2)求1件产品的平均利润(即的数学期望);‎ ‎(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?‎ 解析:的所有可能取值有6,2,1,-2;,‎ ‎,‎ 故的分布列为:‎ ‎6‎ ‎2‎ ‎1‎ ‎-2‎ ‎0.63‎ ‎0.25‎ ‎0.1‎ ‎0.02‎ ‎(2)‎ ‎(3)设技术革新后的三等品率为,则此时1件产品的平均利润为 依题意,,即,解得 所以三等品率最多为 ‎(2008·广东文)某初级中学共有学生2000名,各年级男、女生人数如下表:‎ 初一年级 初二年级 初三年级 女生 ‎373‎ x y 男生 ‎377‎ ‎370‎ z 已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.‎ (1) 求x的值;‎ (2) 现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?‎ (3) 已知y245,z245,求初三年级中女生比男生多的概率.‎ 解析:(1) ‎ ‎ (2)初三年级人数为y+z=2000-373+377+380+370)=500,‎ ‎ 现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为: 名 ‎ (3)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y,z);‎ ‎ 由(2)知 ,且 ,基本事件空间包含的基本事件有:‎ ‎ ‎ ‎(2008·海南、宁夏)从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:‎ 甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307‎ ‎ 308 310 314 319 323 325 325 328 331 334 337 352‎ 乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318‎ ‎ 320 322 322 324 327 329 331 333 336 337 343 356‎ 由以上数据设计了如下茎叶图 ‎3 1 27‎ ‎7 5 5 0 28 4‎ ‎5 4 2 29 2 5‎ ‎8 7 3 3 1 30 4 6 7‎ ‎9 4 0 31 2 3 5 5 6 8 8‎ ‎8 5 5 3 32 0 2 2 4 7 9‎ ‎7 4 1 33 1 3 6 7‎ ‎34 3‎ ‎2 35 6‎ 甲 乙 根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:‎ ‎①               ;②               .‎ 解析:1.乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).‎ ‎2.甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大).‎ ‎3.甲品种棉花的纤维长度的中位数为‎307mm,乙品种棉花的纤维长度的中位数为‎318mm.‎ ‎4.乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.‎ ‎(2008·海南、宁夏理)两个投资项目的利润率分别为随机变量X1和X2.根据市场分析,X1和X2的分布列分别为 ‎ X2‎ ‎2%‎ ‎8%‎ ‎12%‎ ‎0.2‎ ‎0.5‎ ‎0.3‎ ‎ X1‎ ‎5%‎ ‎10%‎ ‎0.8‎ ‎0.2‎ ‎(Ⅰ)在两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差DY1,DY2;‎ ‎(Ⅱ)将万元投资A项目,万元投资B项目,表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求的最小值,并指出x为何值时,取到最小值.(注:)‎ 解析:(Ⅰ)由题设可知和的分布列分别为 ‎ Y1‎ ‎5‎ ‎10‎ P ‎0.8‎ ‎0.2‎ ‎ Y2‎ ‎2‎ ‎8‎ ‎12‎ P ‎0.2‎ ‎0.5‎ ‎0.3‎ ‎(Ⅱ)‎

相关文档