- 462.50 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题2 平面向量的线性运算
平面向量的线性运算
★★★
○○○○
1.向量的线性运算
向量运算
定义
法则(或几何意义)
运算律
加法
求两个向量和的运算
交换律:
a+b=b+a;
结合律:
(a+b)+c=a+(b+c)
减法
求a与b的相反向量-b的和的运算
a-b=a+(-b)
数乘
求实数λ与向量a的积的运算
|λa|=|λ||a|,
当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0
λ(μ a) =(λ μ)a;
(λ+μ)a=λa+μa;
λ(a+b) =λa+λb
1.平面向量的线性运算技巧
(1)不含图形的情况:可直接运用相应运算法则求解.
(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来求解.
2.利用平面向量的线性运算求参数的一般思路
(1)没有图形的准确作出图形,确定每一个点的位置.
(2)利用平行四边形法则或三角形法则进行转化,转化为要求的向量形式.
(3)比较,观察可知所求.
[例1] (1)在△ABC中,=c,=b.若点D满足=2,则=( )
A.b+c B.c-b
C.b-c D.b+c
(2)在△ABC中,N是AC边上一点且=,P是BN上一点,若=m+,则实数m的值是________.
[答案] (1)D (2)
1.如图所示,下列结论正确的是( )
①=a+b;②=a-b;③=a-b;④=a+b.
A.①② B.③④
C.①③ D.②④
解析:选C 根据向量的加法法则,得=a+b,故①正确;根据向量的减法法则,得=a-b,故②错误;=+=a+b-2b=a-b,故③正确;=+=a+b-b=a+b,故④错误.故选C.
2.在平行四边形ABCD中,E,F分别是BC,CD的中点,DE交AF于H,记,分别为a,b,则=( )
A.a-b B.a+b
C.-a+b D.-a-b
3.(2014·新课标全国卷Ⅰ)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=( )
A. B. C. D.
解析:选A +=(+)+(+)=
(+)=,故选A.
1.(2017·杭州模拟)在△ABC中,已知M是BC中点,设=a,=b,则=( )
A.a-b B.a+b
C.a-b D.a+b
解析:选A =+=-+=-b+a,故选A.
2.已知O,A,B,C为同一平面内的四个点,若2+=0,则向量等于( )
A. - B.-+
C.2- D.-+2
3.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,则四边形ABCD的形状是( )
A.矩形 B.平行四边形
C.梯形 D.以上都不对
解析:选C 由已知得,=++=a+2b-4a-b-5a-3b=-8a-2b=2(-4a-b)=2,故∥.又因为与不平行,所以四边形ABCD是梯形.
4.已知向量a,b,c中任意两个都不共线,但a+b与c共线,且b+c与a共线,则向量a+b+c=( )
A.a B.b
C.c D.0
解析:选D 依题意,设a+b=mc,b+c=na,则有(a+b)-(b+c)=mc-na,即a-c=mc-na.又a与c不共线,于是有m=-1,n=-1,a+b=-c,a+b+c=0.
5.已知△ABC和点M满足++=0.若存在实数m使得+=m成立,则m=________.
解析:由++=0知,点M为△ABC的重心,设点D为底边BC的中点,则==×(+)=(+),所以+=3,故m=3.
答案:3
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________