- 812.50 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第9讲 空间中的平行与垂直关系
题型1 空间位置关系的判断与证明
(对应 生用书第30页)
■核心知识储备………………………………………………………………………·
1.直线、平面平行的判定及其性质
(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.
(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.
(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.
(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.
2.直线、平面垂直的判定及其性质
(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.
(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.
(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.
(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.
■典题试解寻法………………………………………………………………………·
【典题1】 (考查空间位置关系的判断)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则( )
A.α∥β且l∥α
B.α⊥β且l⊥β
C.α与β相交,且交线垂直于l
D.α与β相交,且交线平行于l
[解析] 根据所给的已知条件作图,如图所示.
由图可知α与β相交,且交线平行于l,故选D.
[答案] D
【典题2】 (考查空间位置关系的证明)如图91,在三棱锥PABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.
图91
(1)求证:PA⊥BD;
(2)求证:平面BDE⊥平面PAC;
(3)当PA∥平面BDE时,求三棱锥EBCD的体积.
[思路分析] (1)通过证明PA⊥平面ABC得PA⊥BD;
(2)通过证明BD⊥平面PAC得面面垂直;
(3)由PA∥平面BDE,D为AC的中点得PA与DE的位置及数量关系,从而求出三棱锥的体积.
[解] (1)证明:因为PA⊥AB,PA⊥BC,且AB∩BC=B,所以PA⊥平面ABC.
又因为BD⊂平面ABC,所以PA⊥BD.
(2)证明:因为AB=BC,D为AC的中点,所以BD⊥AC.
由(1)知,PA⊥BD,且PA∩AC=A,
所以BD⊥平面PAC,
所以平面BDE⊥平面PAC.
(3)因为PA∥平面BDE,平面PAC∩平面BDE=DE,所以PA∥DE.
因为D为AC的中点,
所以DE=PA=1,BD=DC=.
由(1)知,PA⊥平面ABC,所以DE⊥平面ABC,
所以三棱锥EBCD的体积V=BD·DC·DE=.
[类题通法] 平行关系及垂直关系的转化
空间平行、垂直关系证明的主要思想是转化,即通过判定定理、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.
■对点即时训练………………………………………………………………………·
如图92所示,四棱锥PABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD=AD=.
图92
(1)求证:平面PAB⊥平面PCD;
(2)求三棱锥DPBC的体积.
【导 号:07804065】
[解] (1)法一:(几何法)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
又CD⊥AD,所以CD⊥平面PAD,所以CD⊥PA.
因为PA=PD=AD,所以△PAD是等腰直角三角形,且∠APD=,即PA⊥PD.
又CD∩PD=D,所以PA⊥平面PCD.
又PA⊂平面PAB,所以平面PAB⊥平面PCD.
法二:(向量法)取AD的中点O、BC的中点Q,连接OP,OQ,易知OQ⊥AD.
因为PA=PD,所以PO⊥AD,
因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
所以PO⊥平面ABCD.
建立如图所示的空间直角坐标系.
由PA=PD=AD=,知OP=1.
则O(0,0,0),A(1,0,0),B(1,2,0),Q(0,2,0),C(-1,2,0),D(-1,0,0),P(0,0,1).
设平面PCD的法向量为n=(x,y,z),
又=(0,2,0),=(1,0,1),
则
即
令x=1,则n=(1,0,-1).
同理,可求得平面PAB的一个法向量为m=(-1,0,-1),
又n·m=-1×1+0×0+(-1)×(-1)=0,
故平面PAB⊥平面PCD.
(2)取AD的中点O,连接OP,如图.
因为PA=PD,所以PO⊥AD.
因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
所以PO⊥平面ABCD.
即PO为三棱锥PBCD的高,
由PA=PD=AD=,知OP=1.
因为底面ABCD是正方形,所以S△BCD=×2×2=2.
所以V三棱锥DPBC=V三棱锥PBCD=PO·S△BCD=×1×2=.
■题型强化集训………………………………………………………………………·
(见专题限时集训T1、T3、T6、T7、T8、T9、T10、T12、T14)
题型2 平面图形的翻折问题
(对应 生用书第31页)
■核心知识储备………………………………………………………………………·
翻折问题的注意事项
(1)画好两图:翻折之前的平面图形与翻折之后形成的几何体的直观图.
(2)把握关系:即比较翻折前后的图形,准确把握平面图形翻折前后的线线关系,哪些平行与垂直的关系不变,哪些平行与垂直的关系发生变化,这是准确把握几何体结构特征,进行空间线面关系逻辑推理的基础.
(3)准确定量:即根据平面图形翻折的要求,把平面图形中的相关数量转化为空间几何体的数字特征,这是进行准确计算的基础.
■典题试解寻法………………………………………………………………………·
【典题】 (2016·全国Ⅱ卷)如图93,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=.
图93
(1)证明:D′H⊥平面ABCD;
(2)求二面角BD′AC的正弦值.
[思路分析] (1)题设条件翻折,D′H⊥EFD′H⊥OH―→D′H⊥平面ABCD;
(2)建系―→求法向量―→求二面角的余弦值―→求二面角的正弦值.
[解] (1)证明:由已知得AC⊥BD,AD=CD.
又由AE=CF得=,
故AC∥EF.
因为EF⊥HD,从而EF⊥D′H.
由AB=5,AC=6得DO=BO==4.
由EF∥AC得==.
所以OH=1,D′H=DH=3.
于是D′H2+OH2=32+12=10=D′O2,故D′H⊥OH.
又D′H⊥EF,而OH∩EF=H,所以D′H⊥平面ABCD.
(2)如图,以H为坐标原点,的方向为x轴正方向,建立空间直角坐标系Hxyz,则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D′(0,0,3),
=(3,-4,0),=(6,0,0),=(3,1,3).
设m=(x1,y1,z1)是平面ABD′的法向量,则
即
所以可取m=(4,3,-5).
设n=(x2,y2,z2)是平面ACD′的法向量,则
即
所以可取n=(0,-3,1).
于是cos〈m,n〉===-.
sin〈m,n〉=.
因此二面角BD′AC的正弦值是.
[类题通法] 平面图形翻折问题的求解方法
(1)解决与折叠有关的问题的关键是搞清折叠前后的变和不变,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.
(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.
■对点即时训练………………………………………………………………………·
如图94(1),在四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,E,F分别在BC,AD上,EF∥AB,现将四边形ABEF沿EF折起,使平面ABEF⊥平面EFDC,如图94(2).
图94(1)
图94(2)
(1)若BE=1,在折叠后的线段AD上是否存在一点P,且=λ,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,请说明理由;
(2)求三棱锥ACDF体积的最大值,并求此时二面角EACF的余弦值.
【导 号:07804066】
[解] 因为平面ABEF⊥平面EFDC,平面ABEF∩平面EFDC=EF,FD⊥EF,
所以FD⊥平面ABEF.
又AF⊂平面ABEF,所以FD⊥AF.
易知AF⊥EF,又FD∩EF=F,
所以AF⊥平面EFDC.
(1)以F为坐标原点,FE,FD,FA所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系.
则F(0,0,0),A(0,0,1),D(0,5,0),C(2,3,0).
∵=λ,∴=+=.
∴=.
若CP∥平面ABEF,则⊥,即·=0,
即=0,解得λ=.
∴AD上存在一点P,当=时,满足CP∥平面ABEF.
(2)设BE=x,则AF=x(0<x≤4),所以三棱锥ACDF的体积
V=x××2(6-x)=x(6-x)≤×=3.
∴当x=3时,三棱锥ACDF的体积V有最大值,最大值为3.此时A(0,0,3),D(0,3,0),C(2,1,0),则=(0,0,3),=(2,1,0).
设平面ACE的法向量m=(x1,y1,z1),则
即
令x1=3,则m=(3,0,2).
设平面ACF的法向量n=(x2,y2,z2),则
即
令x2=1,则n=(1,-2,0).
∴cos〈m,n〉==,
则二面角EACF的余弦值为.
■题型强化集训………………………………………………………………………·
(见专题限时集训T2、T4、T5、T11、T13)
三年真题| 验收复习效果
(对应 生用书第32页)
1.(2016·全国Ⅰ卷)平面α过正方体ABCDA1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )
【导 号:07804067】
A. B.
C. D.
A [设平面CB1D1∩平面ABCD=m1.
∵平面α∥平面CB1D1,∴m1∥m.
又平面ABCD∥平面A1B1C1D1,
且平面CB1D1∩平面A1B1C1D1=B1D1,
∴B1D1∥m1.∴B1D1∥m.
∵平面ABB1A1∥平面DCC1D1,
且平面CB1D1∩平面DCC1D1=CD1,
同理可证CD1∥n.
因此直线m与n所成的角即直线B1D1与CD1所成的角.
在正方体ABCDA1B1C1D1中,△CB1D1是正三角形,
故直线B1D1与CD1所成角为60°,其正弦值为.]
2.(2017·全国Ⅱ卷)已知直三棱柱ABCA1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )
A. B.
C. D.
C [法一:(几何法)将直三棱柱ABCA1B1C1补形为直四棱柱ABCDA1B1C1D1,如图①所示,连接AD1,B1D1,BD.
图①
由题意知∠ABC=120°,AB=2,BC=CC1=1,
所以AD1=BC1=,AB1=,∠DAB=60°.
在△ABD中,由余弦定理知BD2=22+12-2×2×1×cos 60°=3,所以BD=,所以B1D1=.
又AB1与AD1所成的角即为AB1与BC1所成的角θ,
所以cos θ===.
故选C.
法二:(向量法)以B1为坐标原点,B1C1所在的直线为x轴,垂直于B1C1的直线为y轴,BB1所在的直线为z轴建立空间直角坐标系,如图②所示.
图②
由已知条件知B1(0,0,0),B(0,0,1),C1(1,0,0),A(-1,,1),则=(1,0,-1),=(1,-,-1).
所以cos〈,〉===.
所以异面直线AB1与BC1所成的角的余弦值为.
故选C.]
3.(2016·全国Ⅱ卷)α,β是两个平面,m,n是两条直线,有下列四个命题:
①如果m⊥n,m⊥α,n∥β,那么α⊥β.
②如果m⊥α,n∥α,那么m⊥n.
③如果α∥β,m⊂α,那么m∥β.
④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.
其中正确的命题有________.(填写所有正确命题的编号)
②③④ [对于①,α,β可以平行,也可以相交但不垂直,故错误.
对于②,由线面平行的性质定理知存在直线l⊂α,n∥l,又m⊥α,所以m⊥l,所以m⊥n,故正确.
对于③,因为α∥β,所以α,β没有公共点.又m⊂α,所以m,β没有公共点,由线面平行的定义可知m∥β,故正确.
对于④,因为m∥n,所以m与α所成的角和n与α所成的角相等.因为α∥β,所以n与α所成的角和n与β所成的角相等,所以m与α所成的角和n与β所成的角相等,故正确.]
4.(2017·全国Ⅲ卷)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最大值为60°.
其中正确的是________.(填写所有正确结论的编号)
②③ [依题意建立如图所示的空间直角坐标系.设等腰直角三角形ABC的直角边长为1.
由题意知点B在平面xOy中形成的轨迹是以C为圆心,1为半径的圆.
设直线a的方向向量为a=(0,1,0),直线b的方向向量为b=(1,0,0),以Ox轴为始边沿逆时针方向旋转的旋转角为θ,θ∈[0,2π),则B(cos θ,sin θ,0),
∴=(cos θ,sin θ,-1),||=.
设直线AB与a所成夹角为α,
则cos α==|sin θ|∈,
∴45°≤α≤90°,∴③正确,④错误.
设直线AB与b所成夹角为β,
则cos β==|cos θ|.
当直线AB与a的夹角为60°,即α=60°时,
则|sin θ|=cos α=cos 60°=,
∴|cos θ|=.∴cos β=|cos θ|=.
∵0°≤β≤90°,∴β=60°,即直线AB与b的夹角为60°.
∴②正确,①错误.]
5.(2015·全国Ⅰ卷)如图95,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.
图95
(1)证明:平面AEC⊥平面AFC;
(2)求直线AE与直线CF所成角的余弦值.
【导 号:07804068】
[解] (1)证明:如图,连接BD,设BD∩AC=G,连接EG,FG,EF.
在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC=.
由BE⊥平面ABCD,AB=BC,可知AE=EC.
又AE⊥EC,所以EG=,且EG⊥AC.
在Rt△EBG中,可得BE=,故DF=.
在Rt△FDG中,可得FG=.
在直角梯形BDFE中,由BD=2,BE=,DF=,可得EF=.
从而EG2+FG2=EF2,所以EG⊥FG.
又AC∩FG=G,所以EG⊥平面AFC.
因为EG⊂平面AEC,所以平面AEC⊥平面AFC.
(2)如图,以G为坐标原点,分别以,的方向为x轴,y轴正方向,||为单位长度,建立空间直角坐标系Gxyz.
由(1)可得A(0,-,0),E(1,0,),F,C(0,,0),
所以=(1,,),=.
故cos〈,〉==-.
所以直线AE与直线CF所成角的余弦值为.