- 245.43 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
秘密★启用前
威远中学校2019-2020学年高二下学期第二次月考
数学(理科)
数学试题共4页.满分150分.考试时间120分钟.
注意事项:
1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.
4.所有题目必须在答题卡上作答,在试题卷上答题无效.
第Ⅰ卷(选择题,共60分)
一、选择题:(本大题共12个小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是符合题目要求的;各题答案必须答在答题卡上相应的位置.
1.命题“”的否定是( )
A. B.
C. D.
2.椭圆上一点P到一个焦点的距离为2,则点P到另一个焦点的距离为( )
A.3 B.8 C.6 D.26
3.抛物线的焦点到准线的距离等于( )
A. B. C. D. 1
4.双曲的线渐近线方程为( )
A. B. C. D.
5.“”是方程有解”的( )
A. 充分而不必要条件
B. 必要而不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
6.设是双曲线的左,右焦点,离心率,点P为双曲线C的右支上一点,且,,则双曲线C的虚轴长为( )
A.6 B.12 C. D.
7.已知,P是平面上的一动点,且,则P点的轨迹方程为( )
A. B.
C. D.
8.若命题“,使得”是假命题,则实数a的取值范围是( )
A. B.,或
C. D.,或
9.已知椭圆的两个焦点分别为,, 是椭圆上一点,且,则的面积等于( )
A. B. C. D.
10.设椭圆的两焦点为,若椭圆上存在点P,使,则椭圆的离心率e的取值范围为( )
A. B. C. D.
11.已知斜率为2的直线与双曲线: (, )交于,两点,若点是的中点,则双曲线的离心率等于( )
A. B. C. D.
12.抛物线的焦点为已知点为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为( )
A. B.1 C. D.2
第Ⅱ卷(非选择题,共90分)
二、填空题:本大共4小题 ,每小题5分,满分20分.
13.若方程表示双曲线,则实数的取值范围是______________
14.已知抛物线的焦点是,点是抛物线上的动点,又有点,求的最小值______________.
15.过抛物线的焦点F作倾斜角为的直线与之相交于两点,则弦的长度为__________.
16.已知椭圆的右焦点为,过点的两条互相垂直的直线与椭圆相交于点,与椭圆相交于点,则下列叙述正确的是__________.
①存在直线使得值为;
②存在直线使得为;
③弦长存在最大值,且最大值为;
④弦长不存在最小值.
三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).
17(本小题满分10分).求适合下列条件的标准方程: 焦点在x轴上,与椭圆具有相同的离心率且过点的椭圆的标准方程;
18.(本小题满分12分)1.已知,.
(1)若p是q的充分条件,求实数m的取值范围;
(2)若“”是“”的充分条件,求实数m的取值范围.
19.(本小题满分12分)如图所示在四棱锥中,四边形是直角梯形,,平面,N为的中点.
(1)求证平面; (2)求二面角的余弦值.
20.(本小题满分12分)已知椭圆C:的一个顶点为,离心率e为,直线与椭圆C交于不同的两点.
(1)求椭圆C的标准方程;
(2)若的面积等于时,求k的值.
21.(本小题满分12分)1.已知椭圆的离心率为,且过点.
(1)求椭圆C的方程;
(2)设是椭圆C上的两个动点,且横坐标均不为l,若直线的斜率为,
试判断直线与的倾斜角是否互补?并说明理由
22.(本小题满分12分)5.已知椭圆的两个焦点坐标分别是,,并且经过点.
(1)求椭圆的方程;
(2)若直线与圆相切,并与椭圆交于不同的两点.当,且满足时,求面积的取值范围.