- 372.50 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
人教A高中数学必修3同步训练
1.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80 mg/100 mL(不含80)之间,属于酒后驾车,处暂扣一个月以上三个月以下驾驶证,并处200元以上500元以下罚款;血液酒精浓度在80 mg/100 mL(含80)以上时,属醉酒驾车,处十五日以下拘留和暂扣三个月以上六个月以下驾驶证,并处500元以上2000元以下罚款.在2011年元旦前的半个月里,全国查处酒后驾车和醉酒驾车共28800人,如图是对这28800人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )
A.2160 B.2880
C.4320 D.8640
解析:选C.由题意及频率分布直方图可知,属于醉酒驾车的酒精含量为80 mg/100 mL及以上,其占有的频率为(0.01+0.005)×10=0.15,所以查处的醉酒驾车的人数约为28800×0.15=4320,故选C.
2.如图是某学校抽取的学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为10,则抽取的学生人数为( )
A.20 B.30
C.40 D.50
解析:选C.前3组的频率之和等于1-(0.0125+0.0375)×5=0.75,第2小组的频率是0.75×=0.25,设样本容量为n,则=0.25,则n=40.所以选C.
3.在育才中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、三、四、五小组的频率分别是0.30,0.15,0.10,0.05.则第二小组的小长方形的高为( )
A.0.04 B.0.40
C.10 D.0.025
解析:选A.各小组的频率之和为1.00,∵第一、三、四、五小组的频率分别是0.30,0.15,0.10,0.05.
∴第二小组的频率为:1.00-(0.30+0.15+0.10+0.05)=0.40.
∴第二小组的小长方形的高为:==0.04.
4.甲、乙两个班级各随机选出15名同学进行测验,成绩的茎叶图如图.则甲、乙两班的最高成绩各是________,从图中看,________班的平均成绩较高.
答案:96,92 乙
1.一个容量为100的样本,其数据的分组与各组的频数如下:
组别
(0,10]
(10,20]
(20,30]
(30,40]
(40,50]
(50,60]
(60,70]
频数
12
13
24
15
16
13
7
则样本数据落在(10,40]上的频率为( )
A.0.13 B.0.39
C.0.52 D.0.64
解析:选C.由列表可知样本数据落在(10,40]上的频数为52,故其频率为0.52.
2.已知样本:12,7,11,12,11,12,10,10,9,8,13,12,10,9,6,11,8,9,8,10,那么频率为0.35的样本范围是( )
A.[5.5,7.5) B.[7.5,9.5)
C.[9.5,11.5) D.[11.5,13.5)
解析:选C.
分组
频数累计
频数
频率
[5.5,7.5)
2
0.1
[7.5,9.5)
正一
6
0.3
[9.5,11.5)
正
7
0.35
[11.5,13.5)
正
5
0.25
合计
20
1
从表中可看出,频率为0.35的样本范围是[9.5,11.5).
3.如图所示是一容量为100的样本的频率分布直方图,则由图形中的数据,样本落在[15,20]内的频数为( )
A.20 B.30
C.40 D.50
解析:选B.由频率分布直方图可知,样本落在[15,20]内的频率为0.3,故样本落在[15,20]内的频数为100×0.3=30.
4.从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图.根据茎叶图,下列描述正确的是( )
A.甲种树苗的平均高度大于乙种树苗的平均高度,且甲种树苗比乙种树苗长得整齐
B.甲种树苗的平均高度大于乙种树苗的平均高度,但乙种树苗比甲种树苗长得整齐
C.乙种树苗的平均高度大于甲种树苗的平均高度,且乙种树苗比甲种树苗长得整齐
D.乙种树苗的平均高度大于甲种树苗的平均高度,但甲种树苗比乙种树苗长得整齐
解析:选D.根据茎叶图计算得甲种树苗的平均高度为27,而乙种树苗的平均高度为30,但乙种树苗的高度分布不如甲种树苗的高度分布集中,故D正确.
5.从存放号码分别为1,2,…,10的卡片的盒子中,随机地取出一张卡片,每次取一张卡片并记下号码,然后再放回盒子,这样任取100次.统计结果如下:
卡片号码
1
2
3
4
5
6
7
8
9
10
取到的次数
13
8
5
7
6
13
18
10
11
9
则取到的号码为奇数的频率是( )
A.0.53 B.0.5
C.0.47 D.0.37
解析:选A.号码为奇数的,共抽到13+5+6+18+11=53次.∴取到的号码为奇数的频率为53÷100=0.53.故选A.
6.某校在“创新素质实践行”活动中组织学生进行社会调查,并对学生的调查报告进行了评比.如图所示的是将某年级60篇学生调查报告进行整理,分成5组画出的频率分布直方图.那么在这次评比中被评为优秀的调查报告有(分数大于或等于80分为优秀且分数为整数)( )
A.18篇 B.24篇
C.25篇 D.27篇
解析:选D.第5个小组的频率为1-(0.005+0.015+0.035+0.030)×10=0.15,
∴优秀的频率为0.15+0.30=0.45,
∴优秀的调查报告有60×0.45=27(篇).故选D.
7.为了解某地居民的月收入情况,一个社会调查机构调查了20000人,并根据所得数据画出样本的频率分布直方图如图.现按月收入分层,用分层抽样的方法在这20000人中抽出200人作进一步调查,则月收入在[1500,2000)(单位:元)的应抽取________人.
解析:月收入在[1500,2000)的频率为1-(0.0002+0.0005×2+0.0003+0.0001)×500=0.2,故应抽取200×0.2=40.
答案:40
8.某限速路段的监控记录下某时间段经过该路段的50辆车辆的行驶速度,据统计这些车辆的行驶速度全部介于40 km/h~80 km/h之间.按如下方式分成四组:第一组[40,50),第二组[50,60),第三组[60,70),第四组[70,80],按上述分组方法得到的频率分布直方图如图.则车速在区间[50,60)的车辆共有________辆.
解析:由题可知车速在[50,60)的车辆的频率为0.3,所以车速在[50,60)的车辆共有50×0.3=15(辆).
答案:15
9.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.
解析:甲=(10×2+20×5+30×3+17+6+7)=24,
乙=(10×3+20×4+30×3+17+11+2)=23.
答案:24 23
10.甲、乙两篮球运动员上赛季每场比赛的得分如下:
甲:12,15,24,25,31,31,36,36,37,39,44,49,50;
乙:8,13,14,16,23,26,27,33,38,39,51.
试比较这两位运动员的得分水平.
解:画出两人得分的茎叶图如图所示,为便于对比分析,可将茎放在中间共用,叶分列左、右两侧.
从茎叶图可以看出,甲运动员的得分大致对称,平均分、众数及中位数都是30多分;乙运动员的得分除一个51分外,也大致对称,平均分、众数及中位数都是20多分,由此可以看出甲运动员成绩较好.另外,从叶在茎上的分布情况看,甲运动员的得分更集中于峰值附近,这说明甲运动员发挥稳定.
11.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:
(1)估计该校男生的人数;
(2)估计该校学生身高在170~185 cm之间的概率.
解:(1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400.
(2)由统计图知,样本中身高在170~185 cm之间的学生有14+13+4+3+1=35(人),样本容量为70,所以样本中学生身高在170~185 cm之间的频率f==0.5.故由f估计该校学生身高在170~185 cm之间的概率p=0.5.
12.某车站在春运期间为了了解旅客购票情况,随机抽样调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min),下面是这次调查统计分析得到的频率分布表和频率分布直方图(如图所示).
分组
频数
频率
一组
0≤t<5
0
0
二组
5≤t<10
10
0.10
三组
10≤t<15
10
②
四组
15≤t<20
①
0.50
五组
20≤t≤25
30
0.30
合计
100
1.00
解答下列问题:
(1)这次抽样的样本容量是多少?
(2)在表中填写出缺失的数据并补全频率分布直方图;
(3)旅客购票用时的平均数可能落在哪一组?
解:(1)样本容量是100.
(2)①50 ②0.10 所补频率分布直方图如图中的阴影部分.
(3)设旅客平均购票用时为t min,则有
≤t<
,
即15≤t<20.
所以旅客购票用时的平均数可能落在第四组.