• 564.35 KB
  • 2021-06-16 发布

【数学】2019届一轮复习人教A版集合与常用逻辑用语学案

  • 11页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
一、集合 ‎1.元素与集合之间有且仅有“属于()”和“不属于()”两种关系,且两者必居其一.‎ ‎2.集合中元素的特性:确定性、互异性、无序性.‎ ‎3.常用数集及其记法:‎ 集合 非负整数集(自然数集)‎ 正整数集 整数集 有理数集 实数集 复数集 符号 或 注意:实数集不能表示为{x|x为所有实数}或{},因为“{ }”包含“所有”“全体”的含义.‎ ‎4.理解子集、真子集的概念,知道由“若,有”得是的子集,记作;‎ 上述条件下,若“,”得是的真子集,记作.‎ 注意子集表示符号“”与元素和集合关系符号“”的区别.‎ ‎5.给定一个集合,能够写出其子集、真子集、非空子集的个数,如给定集合的元素个数为,则其子集、真子集、非空子集的个数分别为.‎ ‎6.交集:,取两个集合的公共元素组成集合;‎ 并集:,取两个集合所有元素组成集合;‎ 补集:,取全集中不属于集合A的元素组成集合.‎ 注意:(1)空集不含任何元素,在解题过程中容易被忽略,特别是在隐含有空集参与的集合问题中,往往容易因忽略空集的特殊性而导致漏解.‎ ‎(2)集合的运算顺序,如表示先计算A的补集,再进行并集计算;则表示先进行A与B的并集计算,再进行补集计算.‎ 二、四种命题及其关系 ‎1.四种命题 命题 表述形式 原命题 若p,则q 逆命题 若q,则p 否命题 若,则 逆否命题 若,则 ‎2.四种命题间的关系 三、充分条件、必要条件 ‎1.充分条件与必要条件的概念 ‎(1)若p⇒q,则p是q的充分条件,q是p的必要条件;‎ ‎(2)若p⇒q且qp,则p是q的充分不必要条件;‎ ‎(3)若pq且q⇒p,则p是q的必要不充分条件;‎ ‎(4)若p⇔q,则p是q的充要条件; ‎ ‎(5)若pq且qp,则p是q的既不充分也不必要条件.‎ ‎2.判断充分条件、必要条件的方法:‎ ‎(1)定义法:寻找之间的推理关系,即对“若则”的真假进行判断,获得结论;‎ ‎(2)集合法:借助集合间的基本关系进行充分性与必要性的判断;‎ ‎(3)等价法:借助原命题与逆否命题的真假等价性进行判断.‎ 四、逻辑联结词、全称量词与存在量词 ‎1.常见的逻辑联结词:或、且、非 一般地,用联结词“且”把命题p和q联结起来,得到一个新命题,记作,读作“p且q”;‎ 用联结词“或”把命题p和q联结起来,得到一个新命题,记作,读作“p或q”;‎ 对一个命题p的结论进行否定,得到一个新命题,记作,读作“非p”.‎ ‎2.复合命题的真假判断 ‎“p且q”“p或q”“非p”形式的命题的真假性可以用下面的表(真值表)来确定:‎ p q 真 真 假 假 真 真 真 假 假 真 真 假 假 真 真 假 真 假 假 假 真 真 假 假 ‎3.全称量词和存在量词 量词名称 常见量词 符号表示 全称量词 所有、一切、任意、全部、每一个等 存在量词 存在一个、至少一个、有些、某些等 ‎4.含有一个量词的命题的否定 全称命题的否定是特称命题,特称命题的否定是全称命题,如下所示:‎ 命题 命题的否定 一、考查集合间的基本关系 ‎【例1】已知集合,则集合的子集的个数为 A. B.‎ C. D.‎ ‎【答案】B ‎【解析】集合,,故集合的子集的个数为.故选B.‎ ‎【名师点睛】对于集合间的基本关系,高考中一般考查求子集的个数或由集合间的关系求参数的取值范围问题.‎ 二、考查集合的基本运算 ‎【例2】已知集合,,则 A. B.‎ C. D.‎ ‎【答案】C ‎【解析】由已知得,则,‎ 又,‎ 故,故选C.‎ ‎【例3】已知集合,,则 A. B.‎ C. D.‎ ‎【答案】C ‎【解析】∵集合,∴.‎ ‎∵集合,‎ ‎∴,,,.‎ 故选C.‎ ‎【名师点睛】集合间的运算问题,常和函数等其他知识相结合,求解时注意区分是求有限集间集合的运算还是无限集间集合的运算,若是有限集间集合的运算问题,一般使用定义法和Venn图法 ‎;若是无限集间集合的运算,则一般用数轴求解.‎ 三、充分条件、必要条件 ‎【例4】已知条件p:函数的定义域,条件,则是的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 ‎【答案】A ‎【解析】依题意,要使函数有意义,则,得x<-3‎或x≥1‎,故命题p:x<-3‎或x≥1‎.‎ 由‎5x-6>‎x‎2‎得‎22}‎ ‎【答案】C ‎【解析】因为P={x|00,x+≥4,命题q:∃x0∈(0,+∞),,则下列判断正确的是 A.p是假命题 B.q是真命题 C.p∧(¬q)是真命题 D.( ¬p)∧q是真命题 ‎【答案】C ‎【解析】由基本不等式,知p为真命题;‎ 由,知x0=-1,故q为假命题.‎ 所以p∧(¬q)为真命题,故选C.‎ ‎6.已知命题: “关于的方程有实根”,若非为真命题的充分不必要条件为,则实数的取值范围是 A. B.‎ C. D.‎ ‎【答案】A ‎【解析】由命题:“关于的方程有实根”,得,则,所以非为真命题时,.‎ 又是的充分不必要条件,所以,即,‎ 则m的取值范围为.所以选A.‎ ‎7.命题:若a≥2‎,则a‎2‎‎≥4‎,其否命题是___________.‎ ‎【答案】若a<2‎,则a‎2‎‎<4‎ ‎【解析】根据否命题的定义,原命题为:若a≥2‎,则a‎2‎‎≥4‎,则否命题为:若a<2‎,则a‎2‎‎<4‎.‎ ‎8.已知条件p(x):x2+2x-m>0,如果p(1)是假命题,p(2)是真命题,则实数m的取值范围是____________.‎ ‎【答案】[3,8)‎ ‎【解析】由p(1)是假命题,知12+2×1-m=3-m≤0,得m≥3;‎ 又由p(2)是真命题,知22+2×2-m=8-m>0,得m<8.‎ 所以m的取值范围是[3,8).‎ ‎9.下面四个命题:‎ ‎:命题“”的否定是“”;‎ ‎:向量,则是的充分且必要条件;‎ ‎:“在中,若,则”的逆否命题是“在中,若,则”;‎ ‎:若“”是假命题,则是假命题.‎ 其中为真命题的是_________.(填所有真命题的序号)‎ ‎【答案】‎ ‎【解析】对于:命题“”的否定是“”,所以是假命题;‎ 对于:向量,所以等价于m−n=0即m=n,则是的充分且必要条件,所以是真命题;‎ 对于:“在中,若,则”的逆否命题是“在中,若,则”,所以是真命题;‎ 对于:若“”是假命题,则p或q是假命题,所以是假命题.‎ 故填.‎ ‎10.设有两个命题,:关于的不等式(,且)的解集是;:函数的定义域为.如果为真命题,为假命题,则实数的取值范围是_________.‎ ‎【答案】‎ ‎【解析】易知p:08‎可得x>2‎,求解绝对值不等式x‎>2‎可得x>2‎或x<-2‎,据此可知:“x‎3‎‎>8‎”是“‎|x|>2‎” 的充分而不必要条件.故选A.‎

相关文档