- 773.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2011年普通高等学校招生全国统一考试(广东卷)
数学(理科)
本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:
1.答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑。如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求做大的答案无效。
4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再做答。漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡得整洁。考试结束后,将试卷和答题卡一并交回。
参考公式:
柱体的体积公式V=Sh其中S为柱体的底面积,h为柱体的高
线性回归方程中系数计算公式
其中表示样本均值。
N是正整数,则…)
一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数满足,其中为虚数单位,则=
A. B. C. D.
2.已知集合 ∣为实数,且,为实数,且,则的元素个数为
A.0 B.1 C.2 D.3
3.若向量a,b,c满足a∥b且a⊥b,则
A.4 B.3 C.2 D.0
4.设函数和分别是R上的偶函数和奇函数,则下列结论恒成立的是
A.是偶函数 B.是奇函数
C.是偶函数 D.是奇函数
5.已知在平面直角坐标系上的区域由不等式组给定。若为上的动点,点的坐标为,则的最大值为
A. B. C.4 D.3
6.甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为
A. B. C. D.
7.如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为
A. B. C. D.
8.设S是整数集Z的非空子集,如果有,则称S关于数的乘法是封闭的.若T,V是Z的两个不相交的非空子集,且有有,则下列结论恒成立的是
A.中至少有一个关于乘法是封闭的
B.中至多有一个关于乘法是封闭的
C.中有且只有一个关于乘法是封闭的
D.中每一个关于乘法都是封闭的
二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
(一)必做题(9-13题)
9.不等式的解集是 .
10.的展开式中,的系数是 (用数字作答)
11.等差数列前9项的和等于前4项的和.若,则k=____________.
12.函数在x=____________处取得极小值。
13.某数学老师身高176cm,他爷爷、父亲和儿子的身高分别是173cm、170cm和182cm .因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为_____cm.
(二)选做题(14 - 15题,考生只能从中选做一题)
14.(坐标系与参数方程选做题)已知两曲线参数方程分别为 和,它们的交点坐标为___________.
15.(几何证明选讲选做题)如图4,过圆外一点分别作圆的切线
和割线交圆于,,且=7,是圆上一点使得=5,
∠=∠, 则= 。
三、解答题。本大题共6小题,满分80分。解答需写出文字说明、证明过程和演算步骤。
16.(本小题满分12分)
已知函数
(1)求的值;
(2)设求的值.
17.(本小题满分13分)
为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
编号
1
2
3
4
5
x
169
178
166
175
180
y
75
80
77
70
81
(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;
(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品。用上述样本数据估计乙厂生产的优等品的数量;
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数
的分布列极其均值(即数学期望)。
18.(本小题满分13分)
如图5.在椎体P-ABCD中,ABCD是边长为1的棱形,
且∠DAB=60,,PB=2,
E,F分别是BC,PC的中点.
(1) 证明:AD 平面DEF;
(2) 求二面角P-AD-B的余弦值.
19.(本小题满分14分)
设圆C与两圆中的一个内切,另一个外切。
(1)求C的圆心轨迹L的方程;
(2)已知点M,且P为L上动点,求的最大值及此时点P的坐标.
20.(本小题共14分)
设b>0,数列满足a1=b,.
(1)求数列的通项公式;
(2)证明:对于一切正整数n,
21.(本小题满分14分)
在平面直角坐标系xOy上,给定抛物线L:.实数p,q满足,x1,x2是方程的两根,记。
(1)过点作L的切线教y轴于点 B.证明:对线段AB上任一点Q(p,q)有
(2)设M(a,b)是定点,其中a,b满足a2-4b>0,a≠0.过M(a,b)作L的两条切线,切点分别为,与y轴分别交与F,F'。线段EF上异于两端点的点集记为X.证明:M(a,b) X;
(3)设D={ (x,y)|y≤x-1,y≥(x+1)2-}.当点(p,q)取遍D时,求的最小值 (记为)和最大值(记为).
参考答案
一、选择题:本大题考查基本知识和基本运算,共8小题,每小题5分,满分40分。
A卷:1—4BCDA 5—8CDBA
二、填空题:本大题考查基本知识和基本运算,体现选择性。共7小题,每小题5分,满分35分,其中14—15题是选做题,考生只能选做一题。
9. 10.84 11.10 12.2 13.185 14. 15.
三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤。
16.(本小题满分12分)
解:(1)
;
(2)
故
17.(本小题满分13分)
解:(1),即乙厂生产的产品数量为35件。
(2)易见只有编号为2,5的产品为优等品,所以乙厂生产的产品中的优等品
故乙厂生产有大约(件)优等品,
(3)的取值为0,1,2。
所以的分布列为
0
1
2
P
故
18.(本小题满分13分)
法一:(1)证明:取AD中点G,连接PG,BG,BD。
因PA=PD,有,在中,,有为等边三角形,因此,所以平面PBG
又PB//EF,得,而DE//GB得AD DE,又,所以AD 平面DEF。
(2),
为二面角P—AD—B的平面角,
在
在
法二:(1)取AD中点为G,因为
又为等边三角形,因此,,从而平面PBG。
延长BG到O且使得PO OB,又平面PBG,PO AD,
所以PO 平面ABCD。
以O为坐标原点,菱形的边长为单位长度,直线OB,OP分别为轴,z轴,平行于AD的直线为轴,建立如图所示空间直角坐标系。
设
由于
得
平面DEF。
(2)
取平面ABD的法向量
设平面PAD的法向量
由
取
19.(本小题满分14分)
(1)解:设C的圆心的坐标为,由题设条件知
化简得L的方程为
(2)解:过M,F的直线方程为,将其代入L的方程得
解得
因T1在线段MF外,T2在线段MF内,故
,若P不在直线MF上,在中有
故只在T1点取得最大值2。
20.(本小题满分14分)
(1)由
令,
当
①当时,
②当
(2)当时,(欲证)
,
当
综上所述
21.(本小题满分14分)
解:(1)证明:切线的方程为
当
当
(2)的方程分别为
求得的坐标,由于,故有
1)先证:
()设
当
当
()设
当
注意到
2)次证:
()已知利用(1)有
()设,断言必有
若不然,令Y是上线段上异于两端点的点的集合,
由已证的等价式1)再由(1)得,矛盾。
故必有再由等价式1),
综上,
(3)求得的交点
而是L的切点为的切线,且与轴交于,
由(1)线段Q1Q2,有
当
在(0,2)上,令
由于
在[0,2]上取得最大值
故
,
故
相关文档
- 理科高考数学试题分章汇集练习:概率2021-06-1521页
- 考点30+异面直线所成的角-2018版典2021-06-1519页
- 理科高考数学试题分章汇集练习:圆锥2021-06-1230页
- 理科高考数学试题分章汇集练习:变换2021-06-122页
- 考点47+条件概率与二项的分布-20182021-06-119页
- 考点20 平面向量-2018版典型高考数2021-06-1112页
- 考点22 等差数列与等比数列-2018版2021-06-1111页
- 考点21 数列的通项公式-2018版典型2021-06-118页
- 高考数学试题分类汇编:概率与统计2021-06-1119页
- 考点49+离散型随机变量的分布列、2021-06-1113页