- 154.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
板块命题点专练(八) 平面向量
命题点一 平面向量基本定理
1.(2015·全国卷Ⅰ)已知点A(0,1),B(3,2),向量=(-4,-3),则向量=( )
A.(-7,-4) B.(7,4)
C.(-1,4) D.(1,4)
解析:选A 法一:设C(x,y),
则=(x,y-1)=(-4,-3),
所以
从而=(-4,-2)-(3,2)=(-7,-4).故选A.
法二:=(3,2)-(0,1)=(3,1),
=-=(-4,-3)-(3,1)=(-7,-4).故选A.
2.(2018·全国卷Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=( )
A.- B.-
C.+ D.+
解析:选A 法一:作出示意图如图所示.=+=+=×(+)+(-)=-.
法二:不妨设△ABC为等腰直角三角形,且∠A=,AB=AC=1.建立如图所示的平面直角坐标系,
则A(0,0),B(1,0),C(0,1),D,E.故=(1,0),=(0,1),=(1,0)-=,即=-.
3.(2017·全国卷Ⅲ)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为( )
A.3 B.2
C. D.2
解析:选A 以A为坐标原点,AB,AD所在直线分别为x轴,y轴建立如图所示的平面直角坐标系,
则A(0,0),B(1,0),C(1,2),D(0,2),可得直线BD的方程为2x+y-2=0,点C到直线BD的距离为=,所以圆C:(x-1)2+(y-2)2=.
因为P在圆C上,所以P.
又=(1,0),=(0,2),=λ+μ=(λ,2μ),
所以
λ+μ=2+cos θ+sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=+2kπ-φ,k∈Z时,λ+μ取得最大值3.
4.(2018·全国卷Ⅲ)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=________.
解析:2a+b=(4,2),因为c∥(2a+b),
所以4λ=2,解得λ=.
答案:
命题点二 平面向量数量积
1.(2018·浙江高考)已知a,b,e是平面向量,e是单位向量,若非零向量a与e的夹角为,向量b满足b2-4e·b+3=0,则|a-b|的最小值是( )
A.-1 B.+1
C.2 D.2-
解析:选A 法一:∵b2-4e·b+3=0,
∴(b-2e)2=1,∴|b-2e|=1.
如图所示,把a,b,e的起点作为公共点O,以O为原点,向量e所在直线为x轴,则b的终点在以点(2,0)为圆心,1为半径的圆上,|a-b|就是线段AB的长度.
要求|AB|的最小值,就是求圆上动点到定直线的距离的最小值,也就是圆心M到直线OA的距离减去圆的半径长,因此|a-b|的最小值为-1.
法二:设O为坐标原点,a=,b==(x,y),e=(1,0),由b
2-4e·b+3=0得x2+y2-4x+3=0,即(x-2)2+y2=1,所以点B的轨迹是以C(2,0)为圆心,1为半径的圆.因为a与e的夹角为,不妨令点A在射线y=x(x>0)上,如图,数形结合可知|a-b|min=||-||=-1.
2.(2017·浙江高考)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O.记I1=·,I2=·,I3=·,则( )
A.I1<I2<I3 B.I1<I3<I2
C.I3<I1<I2 D.I2<I1<I3
解析:选C 如图所示,四边形ABCE是正方形,F为正方形的对角线的交点,易得AO<AF,而∠AFB=90°,∴∠AOB与∠COD为钝角,∠AOD与∠BOC为锐角.根据题意,I1-I2=·-·=·(-)=·=||·||cos∠AOB<0,∴I1<I2,
同理得,I2>I3,作AG⊥BD于G,又AB=AD,
∴OB<BG=GD<OD,而OA<AF=FC<OC,
∴||·||<||·||,
而cos∠AOB=cos∠COD<0,
∴·>·,即I1>I3,
∴I3<I1<I2.
3.(2018·全国卷Ⅱ)已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=( )
A.4 B.3
C.2 D.0
解析:选B a·(2a-b)=2a2-a·b=2|a|2-a·b.
∵|a|=1,a·b=-1,∴原式=2×12+1=3.
4.(2018·天津高考)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则·的最小值为( )
A. B.
C. D.3
解析:选A 如图,以D为坐标原点建立平面直角坐标系,连接AC.
由题意知∠CAD=∠CAB=60°,∠ACD=∠ACB=30°,
则D(0,0),A(1,0),B,C(0,).
设E(0,y)(0≤y≤ ),
则=(-1,y),=,
∴·=+y2-y=2+,
∴当y=时,·有最小值.
5.(2017·浙江高考)已知向量a,b满足|a|=1,|b|=2,则|a+b|+|a-b|的最小值是________,最大值是________.
解析:法一:由向量三角不等式得,|a+b|+|a-b|≥|(a+b)-(a-b)|=|2b|=4.
又≤ ==,∴|a+b|+|a-b|的最大值为2.
法二:设a,b的夹角为θ.
∵|a|=1,|b|=2,
∴|a+b|+|a-b|=+
=+.
令y=+,
则y2=10+2.
∵θ∈[0,π],∴cos2θ∈[0,1],∴y2∈[16,20],
∴y∈[4,2 ],即|a+b|+|a-b|的最小值为4,最大值为2.
答案:4 2
6.(2017·天津高考)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ- (λ∈R),且·=-4,则λ的值为________.
解析:法一:=+=+
=+(-)=+.
又·=3×2×=3,
所以·=·(-+λ)
=-2+·+λ2
=-3+3+λ×4=λ-5=-4,
解得λ=.
法二:以点A为坐标原点,的方向为x轴正方向,建立平面直角坐标系,不妨假设点C在第一象限,
则A(0,0),B(3,0),C(1,).
由=2,得D,
由=λ-,得E(λ-3,λ),
则·=·(λ-3,λ)=(λ-3)+×λ=λ-5=-4,解得λ=.
答案:
7.(2016·浙江高考)已知向量a,b,|a|=1,|b|=2.若对任意单位向量e,均有|a·e|+|b·e|≤,则a·b的最大值是________.
解析:由于e是任意单位向量,可设e=,
则|a·e|+|b·e|=+
≥
==|a+b|.
∵|a·e|+|b·e|≤,∴|a+b|≤,
∴(a+b)2≤6,∴|a|2+|b|2+2a·b≤6.
∵|a|=1,|b|=2,∴1+4+2a·b≤6,
∴a·b≤,∴a·b的最大值为.
答案:
8.(2017·全国卷Ⅰ)已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=________.
解析:法一:易知|a+2b|===2.
法二:(数形结合法)由|a|=|2b|=2,知以a与2b为邻边可作出边长为2的菱形OACB,如图,则|a+2b|=||.又∠AOB=60°,所以
|a+2b|=2.
答案:2