• 311.50 KB
  • 2021-06-16 发布

【数学】2020届一轮复习浙江专版5-2平面向量的基本定理及坐标表示学案

  • 12页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第二节平面向量的基本定理及坐标表示 ‎1.平面向量基本定理 如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.‎ 其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.‎ ‎2.平面向量的坐标运算 ‎(1)向量加法、减法、数乘向量及向量的模:‎ 设a=(x1,y1),b=(x2,y2),则 a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),‎ λa=(λx1,λy1),|a|=.‎ ‎(2)向量坐标的求法:‎ ‎①若向量的起点是坐标原点,则终点坐标即为向量的坐标.‎ ‎②设A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1),‎ ‎||=.‎ ‎3.平面向量共线的坐标表示 设a=(x1,y1),b=(x2,y2),其中b≠0,则a∥b⇔x1y2-x2y1=0.‎ ‎[小题体验]‎ ‎1.已知a=(4,2),b=(-6,m),若a∥b,则m的值为______.‎ 答案:-3‎ ‎2.(教材习题改编)已知a=(2,1),b=(-3,4),则3a+4b=________.‎ 答案:(-6,19)‎ ‎3.设e1,e2是平面内一组基向量,且a=e1+2e2,b=-e1+e2,则向量e1+e2可以表示为另一组基向量a,b的线性组合,即e1+e2=________a+________b.‎ 解析:由题意,设e1+e2=ma+nb.‎ 因为a=e1+2e2,b=-e1+e2,‎ 所以e1+e2=m(e1+2e2)+n(-e1+e2)=(m-n)e1+(2m+n)e2.‎ 由平面向量基本定理,得所以 答案: - ‎4.已知向量a=(2,-1),b=(-1,m),c=(-1,2),若(a+b)∥c,则m=________.‎ 答案:-1‎ ‎1.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.‎ ‎2.若a=(x1,y1),b=(x2,y2),则a∥b的充要条件不能表示成=,因为x2,y2有可能等于0,所以应表示为x1y2-x2y1=0.‎ ‎[小题纠偏]‎ ‎1.设e1,e2是平面内一组基底,若λ1e1+λ2e2=0,则λ1+λ2=________.‎ 答案:0‎ ‎2.已知向量a=(2,1),b=(1,-2),若ma+nb=(9,-8)(m,n∈R),则m-n的值为________.‎ 解析:∵ma+nb=(2m+n,m-2n)=(9,-8),‎ ‎∴∴∴m-n=2-5=-3.‎ 答案:-3‎ ‎[题组练透]‎ ‎1.(2019·温州模拟)如图,在直角梯形ABCD中,AB=2AD=2DC,E为BC边上一点,=3,F为AE的中点,则=(  )‎ A.-     B.- C.-+ D.-+ 解析:选C 如图,取AB的中点G,连接DG,CG,易知四边形DCBG为平行四边形,∴==-=-,‎ ‎∴=+=+=+=+,于是=-=‎ eq f(1,2)-=-=-+,故选C.‎ ‎2.在△ABC中,点M,N满足=2,=.若=x+y,则x=________;y=________.‎ 解析:∵=2,∴=.‎ ‎∵=,∴=(+),‎ ‎∴=-=(+)- ‎=-.‎ 又=x+y,‎ ‎∴x=,y=-.‎ 答案: - ‎3.如图,已知平行四边形ABCD的边BC,CD的中点分别是K,L,且=e1,=e2,试用e1,e2表示,.‎ 解:设=x,=y,则=x,=-y.‎ 由+=,+=,‎ 得 ‎①+②×(-2),得x-2x=e1-2e2,‎ 即x=-(e1-2e2)=-e1+e2,‎ 所以=-e1+e2.‎ 同理可得y=-e1+e2,即=-e1+e2.‎ ‎[谨记通法]‎ 用平面向量基本定理解决问题的一般思路 ‎(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.‎ ‎(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.‎ ‎[题组练透]‎ ‎1.向量a,b满足a+b=(-1,5),a-b=(5,-3),则b为(  )‎ A.(-3,4)         B.(3,4)‎ C.(3,-4) D.(-3,-4)‎ 解析:选A 由a+b=(-1,5),a-b=(5,-3),得2b=(-1,5)-(5,-3)=(-6,8),∴b=(-6,8)=(-3,4),故选A.‎ ‎2.已知M(3,-2),N(-5,-1),且=,则P点的坐标为(  )‎ A.(-8,1) B. C. D.(8,-1)‎ 解析:选B 设P(x,y),则= (x-3,y+2),而=(-8,1)=,所以解得所以P.‎ ‎3.已知A(-2,4),B(3,-1),C(-3,-4).设=a,=b,=c,且=3c,=-2b,‎ ‎(1)求3a+b-3c;‎ ‎(2)求满足a=mb+nc的实数m,n;‎ ‎(3)求M,N的坐标及向量的坐标.‎ 解:由已知得a=(5,-5),b=(-6,-3),c=(1,8).‎ ‎(1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8)‎ ‎=(15-6-3,-15-3-24)=(6,-42).‎ ‎(2)∵mb+nc=(-6m+n,-3m+8n),‎ ‎∴ 解得 ‎(3)设O为坐标原点,∵=-=3c,‎ ‎∴=3c+=(3,24)+(-3,-4)=(0,20).‎ ‎∴M(0,20).‎ 又∵=-=-2b,‎ ‎∴=-2b+=(12,6)+(-3,-4)=(9,2),‎ ‎∴N(9,2),∴=(9,-18).‎ ‎[谨记通法]‎ 平面向量坐标运算的技巧 ‎(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.‎ ‎(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解.‎ ‎[典例引领]‎ ‎1.已知梯形ABCD,其中AB∥CD,且DC=2AB,三个顶点A(1,2),B(2,1),C(4,2),则点D的坐标为________.‎ 解析:∵在梯形ABCD中,DC=2AB,AB∥CD,∴=2.设点D的坐标为(x,y),则=(4-x,2-y),=(1,-1),‎ ‎∴(4-x,2-y)=2(1,-1),即(4-x,2-y)=(2,-2),‎ ‎∴解得故点D的坐标为(2,4).‎ 答案:(2,4)‎ ‎2.已知a=(1,0),b=(2,1).‎ ‎(1)当k为何值时,ka-b与a+2b共线;‎ ‎(2)若=2a+3b,=a+mb,且A,B,C三点共线,求m的值.‎ 解:(1)∵a=(1,0),b=(2,1),‎ ‎∴ka-b=k(1,0)-(2,1)=(k-2,-1),‎ a+2b=(1,0)+2(2,1)=(5,2),‎ ‎∵ka-b与a+2b共线,‎ ‎∴2(k-2)-(-1)×5=0,‎ ‎∴k=-.‎ ‎(2)=2(1,0)+3(2,1)=(8,3),‎ =(1,0)+m(2,1)=(2m+1,m).‎ ‎∵A,B,C三点共线,∴∥,‎ ‎∴8m-3(2m+1)=0,∴m=.‎ ‎[由题悟法]‎ 向量共线的充要条件 ‎(1)a∥b⇔a=λb(b≠0);‎ ‎(2)a∥b⇔x1y2-x2y1=0(其中a=(x1,y1),b=(x2,y2)).当涉及向量或点的坐标问题时一般利用(2)比较方便.‎ ‎[即时应用]‎ ‎1.已知向量a=(-1,2),b=(3,m),m∈R,则“m=-6”是“a∥(a+b)”的(  )‎ A.充要条件        B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 解析:选A 由题意得a+b=(2,2+m),由a∥(a+b),得-1×(2+m)=2×2,所以m=-6.当m=-6时,a∥(a+b),则“m=-6”是“a∥(a+b)”的充要条件.‎ ‎2.(2018·贵阳监测)已知向量m=(λ+1,1),n=(λ+2,2),若(m+n)∥(m-n),则λ=________.‎ 解析:因为m+n=(2λ+3,3),m-n=(-1,-1),‎ 又(m+n)∥(m-n),‎ 所以(2λ+3)×(-1)=3×(-1),解得λ=0.‎ 答案:0‎ ‎3.设向量a,b满足|a|=2,b=(2,1),且a与b的方向相反,则a的坐标为________.‎ 解析:∵a与b方向相反,∴可设a=λb(λ<0),‎ ‎∴a=λ(2,1)=(2λ,λ).‎ 由|a|==2,解得λ=-2或λ=2(舍去),‎ 故a=(-4,-2).‎ 答案:(-4,-2)‎ ‎4.若三点A(2,2),B(a,0),C(0,b)(ab≠0)共线,则+的值等于________.‎ 解析:=(a-2,-2),=(-2,b-2),依题意,有(a-2)(b-2)-4=0,即ab-2a-2b=0,所以+=.‎ 答案: 一抓基础,多练小题做到眼疾手快 ‎1.在平行四边形ABCD中,AC为对角线,若=(2,4),=(1,3),则=(  )‎ A.(-2,-4)        B.(-3,-5)‎ C.(3,5) D.(2,4)‎ 解析:选B 由题意得=-=-=(-)-=-2=(1,3)-2(2,4)=(-3,-5).‎ ‎2.已知A(-1,-1),B(m,m+2),C(2,5)三点共线,则m的值为(  )‎ A.1 B.2‎ C.3 D.4‎ 解析:选A =(m,m+2)-(-1,-1)=(m+1,m+3),‎ =(2,5)-(-1,-1)=(3,6),‎ ‎∵A,B,C三点共线,‎ ‎∴∥,∴3(m+3)-6(m+1)=0,‎ ‎∴m=1.故选A.‎ ‎3.如图,在△OAB中,P为线段AB上的一点,=x+y,且=2,则(  )‎ A.x=,y= ‎ B.x=,y= C.x=,y= ‎ D.x=,y= 解析:选A 由题意知=+,又=2,所以=+=+(-)=+,所以x=,y=.‎ ‎4.(2019·舟山模拟)已知向量a=(2,3),b=(-1,2),若ma+b与a-2b共线,则m 的值为________.‎ 解析:由a=(2,3),b=(-1,2),得ma+b=(2m-1,3m+2),a-2b=(4,-1),又ma+b与a-2b共线,所以-1×(2m-1)=(3m+2)×4,解得m=-.‎ 答案:- ‎5.已知向量a=(1,2),b=(x,1),u=a+2b,v=2a-b,且u∥v,则实数x的值为________.‎ 解析:因为a=(1,2),b=(x,1),u=a+2b,v=2a-b,‎ 所以u=(1,2)+2(x,1)=(2x+1,4),‎ v=2(1,2)-(x,1)=(2-x,3).‎ 又因为u∥v,所以3(2x+1)-4(2-x)=0,‎ 即10x=5,解得x=.‎ 答案: 二保高考,全练题型做到高考达标 ‎1.(2018·温州十校联考)已知a=(-3,1),b=(-1,2),则3a-2b=(  )‎ A.(7,1) B.(-7,-1)‎ C.(-7,1) D.(7,-1)‎ 解析:选B 由题可得,3a-2b=3(-3,1)-2(-1,2)=(-9+2,3-4)=(-7,-1).‎ ‎2.已知△ABC的内角A,B,C所对的边分别为a,b,c,向量m=(a,b)与n=(cos A,sin B)平行,则A=(  )‎ A. B. C. D. 解析:选B 因为m∥n,所以asin B-bcos A=0,由正弦定理,得sin Asin B-sin Bcos A=0,又sin B≠0,从而tan A=,由于0<A<π,所以A=.‎ ‎3.已知A(7,1),B(1,4),直线y=ax与线段AB交于点C,且=2,则实数a等于(   )‎ A.2 B.1‎ C. D. 解析:选A 设C(x,y),则=(x-7,y-1),=(1-x,4-y),‎ ‎∵=2,∴解得∴C(3,3).‎ 又∵点C在直线y=ax上,∴3=a×3,∴a=2.‎ ‎4.在平面直角坐标系xOy中,已知A(1,0),B(0,1),C为坐标平面内第一象限内的点,且∠AOC=,|OC|=2,若=λ+μ,则λ+μ=(  )‎ A.2 B. C.2 D.4 解析:选A 因为|OC|=2,∠AOC=,所以C(,),又=λ+μ,所以(,)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=,λ+μ=2.‎ ‎5.在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F.若=a,=b,则=(  )‎ A.a+b B.a+b C.a+b D.a+b 解析:选C 如图,∵=a,=b,‎ ‎∴=+=+=a+b.‎ ‎∵E是OD的中点,‎ ‎∴=,‎ ‎∴|DF|=|AB|.∴==(-)=×=-=a-b,‎ ‎∴=+=a+b+a-b=a+b,故选C.‎ ‎6.已知向量a=(1,3),b=(-2,1),c=(3,2).若向量c与向量ka+b共线,则实数k=________,若c=xa+yb,则x+y的值为________.‎ 解析:ka+b=k(1,3)+(-2,1)=(k-2,3k+1),因为向量c与向量ka+b共线,所以2(k-2)-3(3k+1)=0,解得k=-1.因为c=xa+yb,所以(3,2)=(x-2y,3x+y),即x-2y=3,3x+y=2,解得x=1,y=-1,所以x+y=0.‎ 答案:-1 0‎ ‎7.已知向量=(1,-3),=(2,-1),=(k+1,k-2),若A,B,C三点能构成三角形,则实数k应满足的条件是________.‎ 解析:若点A,B,C能构成三角形,则向量,不共线.‎ ‎∵=-=(2,-1)-(1,-3)=(1,2),‎ =-=(k+1,k-2)-(1,-3)=(k,k+1),‎ ‎∴1×(k+1)-2k≠0,解得k≠1.‎ 答案:k≠1‎ ‎8.如图,在正方形ABCD中,P为DC边上的动点,设向量=λ+μ,则λ+μ的最大值为________.‎ 解析:以A为坐标原点,以AB,AD所在直线分别为x轴,y轴建立平面直角坐标系(图略),设正方形的边长为2,‎ 则B(2,0),C(2,2),D(0,2),P(x,2),x∈[0,2].‎ ‎∴=(2,2),=(2,-2),=(x,2).‎ ‎∵=λ+μ,∴∴ ‎∴λ+μ=.令f(x)=(0≤x≤2),‎ ‎∵f(x)在[0,2]上单调递减,‎ ‎∴f(x)max=f(0)=3,即λ+μ的最大值为3.‎ 答案:3‎ ‎9.平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).‎ ‎(1)求满足a=mb+nc的实数m,n;‎ ‎(2)若(a+kc)∥(2b-a),求实数k.‎ 解:(1)由题意得(3,2)=m(-1,2)+n(4,1),‎ 所以解得 ‎(2)a+kc=(3+4k,2+k),2b-a=(-5,2),‎ 由题意得2×(3+4k)-(-5)×(2+k)=0,‎ 解得k=-.‎ ‎10.如图,在梯形ABCD中,AD∥BC,且AD=BC,E,F分别为线段AD与BC 的中点.设=a,=b,试用a,b为基底表示向量,,.‎ 解:=++=-b-a+b=b-a,‎ =+=-b+=b-a,‎ =+=-b-=a-b.‎ 三上台阶,自主选做志在冲刺名校 ‎1.在平面直角坐标系xOy中,已知点A(2,3),B(3,2),C(1,1),点P(x,y)在△ABC三边围成的区域(含边界)内,设=m-n(m,n∈R),则2m+n的最大值为(  )‎ A.-1 B.1‎ C.2 D.3‎ 解析:选B 由已知得=(1,-1),=(1,2),设=(x,y),∵=m-n,∴ ‎∴2m+n=x-y.‎ 作出平面区域如图所示,令z=x-y,则y=x-z,由图象可知当直线y=x-z经过点B(3,2)时,截距最小,即z最大.‎ ‎∴z的最大值为3-2=1,即2m+n的最大值为1.‎ ‎2.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若=λ(λ∈R),=μ (μ∈R),且+=2,则称A3,A4调和分割A1,A2.已知点C(c,0),D(d,0)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是(  )‎ A.C可能是线段AB的中点 B.D可能是线段AB的中点 C.C,D可能同时在线段AB上 D.C,D不可能同时在线段AB的延长线上 解析:选D 根据已知得(c,0)-(0,0)=λ[(1,0)-(0,0)],即(c,0)=λ(1,0),从而得c=λ.(d,0)-(0,0)=μ[(1,0)-(0,0)],即(d,0)=μ(1,0),得d=μ.根据+=2,得+=2.线段AB的方程是y=0,x∈[0,1].若C是线段AB的中点,则c=,代入+=2得, ‎=0,此等式不可能成立,故选项A的说法不正确;同理选项B的说法也不 正确;若C,D同时在线段AB上,则0<c≤1,0<d≤1,此时≥1,≥1,+≥2,若等号成立,则只能c=d=1,根据定义,C,D是两个不同的点,矛盾,故选项C的说法也不正确;若C,D同时在线段AB的延长线上,即c>1,d>1,则+<2,与+=2矛盾,若c<0,d<0,则+是负值,与+=2矛盾,若c>1,d<0,则<1,<0,此时+<1,与+=2矛盾,故选项D的说法是正确的.‎ ‎3.已知三点A(a,0),B(0,b),C(2,2),其中a>0,b>0.‎ ‎(1)若O是坐标原点,且四边形OACB是平行四边形,试求a,b的值;‎ ‎(2)若A,B,C三点共线,试求a+b的最小值.‎ 解:(1)因为四边形OACB是平行四边形,‎ 所以=,即(a,0)=(2,2-b),‎ 解得 故a=2,b=2.‎ ‎(2)因为=(-a,b),=(2,2-b),‎ 由A,B,C三点共线,得∥,‎ 所以-a(2-b)-2b=0,即2(a+b)=ab,‎ 因为a>0,b>0,所以2(a+b)=ab≤2,‎ 即(a+b)2-8(a+b)≥0,解得a+b≥8或a+b≤0.‎ 因为a>0,b>0,所以a+b≥8,即a+b的最小值是8.‎ 当且仅当a=b=4时,“=”成立.‎

相关文档