- 556.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高二年级数学(文)试卷
1、命题范围:人教B版选修1-2 . 选修4-4 必修1集合与函数
2、考试时间120分钟150分
3、第一卷为客观题60分第二卷为主观题90分
一、 选择题:(每小题5分,共60分)
1. .已知集合,,则( )
A. B.
C. D.
2. 下列函数中,既是偶函数又在区间上单调递减的是( )
A. B. C. D.
3. 若复数z满足 (3-4i)z=|4+3i |,则z的虚部为
A 4 B C -4 D -
4. 观察下列各式:31=3,32=9,33=27,34=81,…,则32018的末位数字为( )
A.1 B.3 C.7 D.9
5. 用反证法证明命题:“,若可被2整除,那么中至少有一个能被2整除”时,假设的内容应该是( )
A. 都能被2整除 B. 都不能被2整除
C. 不都能被2整除 D. 不能被2整除
6. 在图1的程序框图中,若输入的x值为2,则输出的y值为
A. B. 0 C. D.
7. 已知定义在上的减函数满足条件:对任意,总有
,则关于的不等式的解集是( )
A. B. C. D.
8. 已知是定义在上的偶函数,且在上是增函数,设, ,则的大小关系是( )
A. B. C. D.
9. 将正整数对作如下分组,第组为,第组为,第组为,第组为则第组第个数对为( )
A.(14,18) B.(15,17) C.(16,16) D.(17,15)
10. 在一段时间内,甲去某地的概率是,乙去此地的概率是,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )
A. B. C. D.
11. 已知函数是上的增函数,则的取值范围是( )
A. B. C. D.
12. 以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cos θ,则直线l被圆C截得的弦长为( )
A. 2 B.2
C. D.
一、 填空题:(每小题5分,共20分)
13. 在极坐标系中,圆上的点到直线的距离的最大值
是__________.
14. 我们知道:在平面内,点到直线的距离公式为,通过类比的方法,可求得:在空间中,点到平面的距离为__________
15. 已知是定义在上的偶函数,且对恒成立,当时, ,则__________
16. 德国数学家科拉茨1937年提出一个著名的猜想:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数(首项)按照上述规则旅行变换后的第9项为1(注:1可以多次出现),则你认为的其中一个确定值为__________.
三、解答题(本大题共6小题,17题10分其他12分,共70分。解答应写出文字说明、证明过程或演算步骤):
17. (10分)已知二次函数满足条件和.
(1)求;
(2)求在区间上的最大值和最小值.
18. (12分)沈阳某中学最强大脑社团对高中学生的记忆力x和判断力y进行统计分析,得下表数据
参考公式: ,或,
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 ,预测记忆力为9的同学的判断力.
(2)若记忆力增加1个单位,预测判断力增加多少个单位?
19. (12分)在平面直角坐标系中,直线的参数方程为(其中为参数),现以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.
(1)写出直线和曲线的普通方程;
(2)已知点为曲线上的动点,求到直线的距离的最大值.
20. (12分) 某中学举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出100人的成绩作为样本,对高一年级的100名学生的成绩进行统计,并按 , , , , , 分组,得到成绩分布的频率分布直方图(如图)。
(1)若规定60分以上(包括60分)为合格,计算高一年级这次竞赛的合格率;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此,估计高一年级这次知识竞赛的学生的平均成绩;
(3)若高二年级这次竞赛的合格率为 ,由以上统计数据填写下面 列联表,并问是否有 的把握认为“这次知识竞赛的成绩与年级有关”。
高一
高二
合计
合格人数
不合格人数
合计
附:参考数据公式
0.050
0.010
3.841
6.635
21. (12分)已知函数(且)是定义在上的奇函数.
(Ⅰ)求的值;
(Ⅱ)求函数的值域;
(Ⅲ)当时, 恒成立,求实数的取值范围.
P
D
C
22. (12分)如图,在四棱锥中,平面平面,//,是等边三角形,
其中.
A
B
(1)求证:;
(2)求三棱锥的体积.
高二年级数学(文)参考答案
一.选择
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
D
A
B
D
B
A
C
B
D
C
A
A
二.填空
13. 4 14. 15.
16. 4.5.6.40.42.256中的任一个均可
三.解答
17. 解析:(10分)(1),
由f(0)=1可知c=1.------------------1分
∵,------3分
又,
∴,-得。------------5分
故.-------------6分
(2)由(1)得,,
∴当时,单调递减;当时,单调递增。---------8分
∴。又,∴.--------10分
18. 【解析】
(1) ----------2分
, ------------6分
-------------------7分
当x=9时,y= 4.-----------------9分
线性回归方程为 ,记忆力为9时,判断力大约是4-----10分
(2)记忆力增加1个单位,判断力增加0.7个单位-------------------------12分
19. 解析:(1)由题意,消去直线的参数方程中的参数,得普通方程为,---3分
又由,得,由得曲线的直角坐标方程为;--------6分
(2)曲线可化为,圆心到直线的距离为,--------9分
再加上半径,即为到直线距离的最大值.---------12分
20. 解析:(1)解:高一合格率为:
-------4分
(2)解:高一样本的平均数为
,
据此,可以估计高一年级这次知识竞赛的学生的平均成绩为72分---------------8分
(3)解: 列联表如下
高一
高二
合计
合格人数
80
60
140
不合格人数
20
40
60
合计
100
100
200
,
所以,有 的把握认为“这次知识竞赛的成绩与年级有关”-------12分
21. 试题解析:
(Ⅰ)∵是上的奇函数,∴,即.
整理可得.
(注:本题也可由解得,但要进行验证,酌情给分)……………………3分
(Ⅱ)由(Ⅰ)可得,
∴函数在上单调递增,
又,∴,∴.
∴函数的值域为…………………………………………………………6分
(Ⅲ)当时, .
由题意得在时恒成立,
∴在时恒成立………………………………………8分
令,则有,
∵当时函数为增函数………………………………………………10分
∴.∴.
故实数的取值范围为………………………………………………………12分
22. (1)证明:因为,,,所以---3分
又因为平面平面,交线为,又有平面,所以平面----6分
又因为平面,所以-------8分
(2) .-------12分