- 344.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题10 不等式、推理与证明
(十三)不等式
1.不等关系
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
2.一元二次不等式
(1)会从实际情境中抽象出一元二次不等式模型.
(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.
(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
3.二元一次不等式组与简单线性规划问题
(1)会从实际情境中抽象出二元一次不等式组.
(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
4.基本不等式:
(1)了解基本不等式的证明过程.
(2)会用基本不等式解决简单的最大(小)值问题.
(十八)推理与证明
1.合情推理与演绎推理
(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.
(2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.
(3)了解合情推理和演绎推理之间的联系和差异.
2.直接证明与间接证明
(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.
(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.
3.数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.
1.从考查题型来看,涉及不等式的题目主要在选择题、填空题中考查二元一次不等式(组)表示的平面区域问题以及简单的线性规划问题,利用基本不等式求解最小(大)值问题,以及基本不等式的实际应用等.而对于推理与证明的考查,选择题、填空题中重点在于考查推理的应用以及学生联想、归纳、假设、证明的数学应用能力,解答题中重点考查数学归纳法.
2.从考查内容来看,线性规划重点考查不等式(组)表示的可行域的确定,目标函数的最大(小)值的计算等,重点体现数形结合的特点.推理与证明则主要考查归纳、类比推理,以及综合函数、导数、不等式、数列等知识考查直接证明和间接证明.
3.从考查热点来看,通过线性规划求最值、推理是高考命题的热点,考查了学生的数形结合思想以及联想、归纳、假设、证明的能力.
考向一 比较大小
样题1 已知,则m、n、p的大小关系为
A.nmp B.npm
C.pnm D.mpn
【答案】B
考向二 一元二次不等式的解法
样题2 已知集合,则
A. B.
C. D.
【答案】C
【解析】因为,
所以.
样题3 若不等式的解集为,则不等式的解集为
A.或 B.
C. D.或
【答案】B
考向三 目标函数的最值问题
样题4 (2017新课标全国Ⅱ理科)设,满足约束条件,则的最小值是
A. B.
C. D.
【答案】A
【解析】画出不等式组表示的平面区域如下图中阴影部分所示,目标函数即:,其中表示斜率为的直线系与可行域有交点时直线的纵截距,数形结合可得目标函数在点处取得最小值,,故选A.
【名师点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.
样题5 已知满足,则的取值范围是
A. B.
C. D.
【答案】A
考向四 利用线性规划解决实际问题
样题6 某颜料公司生产两种产品,其中生产每吨产品,需要甲染料1吨,乙染料4吨,丙染料2吨,生产每吨产品,需要甲染料1吨,乙染料0吨,丙染料5吨,且该公司一天之内甲、乙、丙三种染料的用量分别不超过50吨、160吨和200吨,如果产品的利润为300元/吨,产品的利润为200元/吨,则该颜料公司一天之内可获得的最大利润为
A.14000元 B.16000元
C.16000元 D. 20000元
【答案】A
故.
所以工厂每天生产产品40吨,产品10吨时,才可获得最大利润,为14000元.选A.
考向五 推理
样题7 (2017新课标全国Ⅱ理科)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则
A.乙可以知道四人的成绩 B.丁可以知道四人的成绩
C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩
【答案】D
考向六 数学归纳法
样题8 设数列{an}的前n项和为Sn,且方程x2-anx-an=0有一根为Sn-1(n∈N*).
(1)求a1,a2;
(2)猜想数列{Sn}的通项公式,并给出证明.
【解析】(1)当n=1时,方程x2-a1x-a1=0有一根为S1-1=a1-1,
∴(a1-1)2-a1(a1-1)-a1=0,解得a1=.