• 754.00 KB
  • 2021-06-16 发布

云南省云天化中学2019-2020学年高二下学期开学考试数学(文科)试题

  • 11页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
云天化中学2019—2020学年度下学期入学考试 高二年级数学试卷(文科)‎ 第Ⅰ卷(选择题)‎ 一、选择题:(每小题分,共分.每小题只有一个选项符合题意.)‎ ‎1.在复平面内,复数对应的点到直线的距离是( )‎ A. B. C. D. 1‎ ‎【答案】B ‎【解析】‎ ‎【分析】‎ 化简复数得出对应点,根据点到直线距离公式即可求解.‎ ‎【详解】,所以复数对应的点为(1,1),‎ 点(1,1)到直线y=x+1的距离为=.‎ 故选:B.‎ ‎【点睛】此题考查复数的基本运算,根据复数的几何意义得其在平面内对应点,根据点到平面距离公式求解.‎ ‎2.用反证法证明命题“设为实数,则方程至少有一个实根”时,要做的假设是(  )‎ A. 方程没有实根 B. 方程至多有一个实根 C. 方程至多有两个实根 D. 方程恰好有两个实根 ‎【答案】A ‎【解析】‎ 分析:反证法证明命题时,假设结论不成立.至少有一个的对立情况为没有.故假设为方程 没有实根.‎ 详解:结论“方程至少有一个实根”假设是“方程没有实根.”‎ 点睛:反证法证明命题时,应假设结论不成立,即结论的否定成立.常见否定词语的否定形式如下:‎ 结论词 没有 至少有一个 至多一个 不大于 不等于 不存在 反设词 有 一个也没有 至少两个 大于 等于 存在 ‎3.中,内角所对的边分别为.若则的面积为( )‎ A. B. C. D. ‎ ‎【答案】C ‎【解析】‎ ‎【分析】‎ 根据条件进行化简,结合三角形面积公式,即可求解,得到答案.‎ ‎【详解】由,整理得,‎ 即,‎ 又因为,由余弦定理可得,解得,‎ 所以三角形的面积为.‎ 故选:C.‎ ‎【点睛】本题主要考查了解三角形的余弦定理的应用,以及三角形面积的计算,其中解答中根据余弦定理求得是解答本题的关键,着重考查了推理与运算能力.‎ ‎4.若将函数图象向右平移个单位,所得图象关于轴对称,则的最小值是( )‎ A. B. C. D. ‎ ‎【答案】B ‎【解析】‎ ‎【分析】‎ 把函数的解析式利用辅助角公式化成余弦型函数解析式形式,然后求出向右平移个单位后函数的解析式,根据题意,利用余弦型函数的性质求解即可.‎ ‎【详解】,该函数求出向右平移个单位后得到新函数的解析式为:,由题意可知:函数的图象关于轴对称,所以有 ‎ 当时,有最小值,最小值为.‎ 故选:B ‎【点睛】本题考查了余弦型函数的图象平移,考查了余弦型函数的性质,考查了数学运算能力.‎ ‎5.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )‎ A. 56 B. ‎60 ‎C. 140 D. 120‎ ‎【答案】C ‎【解析】‎ ‎【详解】试题分析:由题意得,自习时间不少于小时的频率为,故自习时间不少于小时的频率为,故选C.‎ 考点:频率分布直方图及其应用.‎ ‎6.(2017新课标全国卷Ⅲ文科)已知椭圆C:的左、右顶点分别为A1,A2,且以线段A‎1A2为直径的圆与直线相切,则C的离心率为 A. B. ‎ C. D. ‎ ‎【答案】A ‎【解析】‎ 以线段为直径的圆的圆心为坐标原点,半径为,圆的方程为,‎ 直线与圆相切,所以圆心到直线的距离等于半径,即,‎ 整理可得,即即,‎ 从而,则椭圆的离心率,‎ 故选A.‎ ‎【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.‎ 第II卷(非选择题)‎ 二、填空题:(每小题分,共分.)‎ ‎7.观察下列等式 照此规律,第个等式为__________.‎ ‎【答案】‎ ‎【解析】‎ ‎【分析】‎ 根据式子的开始项和中间一项及右边结果的特点得出.‎ ‎【详解】根据题意,由于观察下列等式 照此规律,等式左边的第一个数就是第几行的行数,且相加的连续自然数的个数是中间数字,右边是最中间数字的平方,故第个等式为.‎ ‎【点睛】本题考查了归纳推理,属于中档题.‎ ‎8.(2017新课标全国II理科)等差数列的前项和为,,,则____________.‎ ‎【答案】‎ ‎【解析】‎ 设等差数列的首项为,公差为,由题意有 ,解得 ,‎ 数列的前n项和,‎ 裂项可得,‎ 所以.‎ 点睛:等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用得方法.使用裂项法求和时,要注意正、负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点.‎ ‎9.已知复数(i是虚数单位),则________.‎ ‎【答案】‎ ‎【解析】‎ ‎【分析】‎ 化简复数,根据模长公式求解.‎ ‎【详解】,所以.‎ 故答案为:‎ ‎【点睛】此题考查复数的基本运算,关键在于熟练掌握复数的运算法则,根据模长公式计算模长.‎ ‎10.记函数的定义域为,在区间上随机取一个数,则的概率是________.‎ ‎【答案】‎ ‎【解析】‎ 由,即,得,根据几何概型的概率计算公式得的概率是,故答案为.‎ 三、解答题:(解答应写出文字说明、证明过程或演算步骤.其中第题分,每题分,每题分共分.)‎ ‎11.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:)得频率分布直方图如下:‎ ‎(1)设两种养殖方法的箱产量相互独立,记表示事件:“旧养殖法的箱产量低于,新养殖法的箱产量不低于”,估计的概率;‎ ‎(2)填写下面列联表,并根据联表判断是否有的把握认为箱产量与养殖方法有关:‎ 箱产量 箱产量 旧养殖法 新养殖法 附:‎ ‎0.050‎ ‎0.010‎ ‎0.001‎ ‎3.841‎ ‎6.635‎ ‎10.828‎ ‎(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)‎ ‎【答案】(1)(2)填表见解析,有的把握认为箱产量与养殖方法有关(3)‎ ‎【解析】‎ 分析】‎ ‎(1)利用独立事件概率公式求得事件的概率估计值;‎ ‎(2)写出列联表计算,得到答案.‎ ‎(3)结合频率分布直方图估计中位数计算得到答案..‎ ‎【详解】(1)记表示事件“旧养殖法的箱产量低于”,表示事件“新养殖法的箱产量不低于”,由题意知,‎ 旧养殖法的箱产量低于的频率为,故的估计值为0.62.‎ 新养殖法的箱产量不低于的频率为,‎ 故的估计值为0.66.‎ 因此事件的概率估计值为.‎ ‎(2)根据箱产量的频率分布直方图得列联表 箱产量 箱产量 旧养殖法 ‎62‎ ‎38‎ 新养殖法 ‎34‎ ‎66‎ ‎.‎ 由于,故有的把握认为箱产量与养殖方法有关.‎ ‎(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于的直方图面积为 ‎,‎ 箱产量低于的直方图面积为,‎ 故新养殖法箱产量的中位数的估计值为.‎ ‎【点睛】本题考查了概率的计算,独立性检验,中位数,意在考查学生的计算能力和应用能力.‎ ‎12.如图,A,B是海面上位于东西方向相距海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距海里的C点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?‎ ‎【答案】救援船到达D点需要1小时.‎ ‎【解析】‎ ‎【详解】‎ 海里 又海里 中,由余弦定理得,‎ 海里,则需要的时间 答:救援船到达D点需要1小时 ‎13.如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.‎ ‎(Ⅰ)证明:BD⊥平面PAC;‎ ‎(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;‎ ‎(Ⅲ)若G满足PC⊥面BGD,求的值.‎ ‎【答案】(1)见解析 (2)(3)‎ ‎【解析】‎ 试题分析:(Ⅰ)利用直线和平面垂直的判定定理证得BD⊥面PAC.‎ ‎(Ⅱ)由三角形的中位线性质以及条件证明∠DGO为DG与平面PAC所成的角,求出GO和AC的值,可得OC、OD的值,再利用直角三角形中的边角关系求得tan∠DGO的值.‎ ‎(Ⅲ)由△COG∽△CAP,可得,解得GC值,可得PG=PC﹣GC 的值,从而求得的值.‎ 考点:直线与平面垂直的判定;直线与平面所成的角.‎ 点评:本题考查了直线和平面垂直的判定定理的应用,求直线和平面所成的角的求法.‎ ‎ ‎