- 541.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
§8.6 空间向量及其运算
最新考纲
考情考向分析
1.了解空间直角坐标系,会用空间直角坐标表示点的位置.
2.了解空间向量的概念,了解空间向量的基本定理及其意义,了解空间向量的正交分解及其坐标表示.
3.了解空间向量的加、减、数乘、数量积的定义、坐标表示的运算.
4.了解空间两点间的距离公式、向量的长度公式及两向量的夹角公式.
本节是空间向量的基础内容,涉及空间直角坐标系、空间向量的有关概念、定理、公式及四种运算等内容.一般不单独命题,常以简单几何体为载体;以解答题的形式出现,考查平行、垂直关系的判断和证明及空间角的计算,解题要求有较强的运算能力.
1.空间向量的有关概念
名称
概念
表示
零向量
模为0的向量
0
单位向量
长度(模)为1的向量
相等向量
方向相同且模相等的向量
a=b
相反向量
方向相反且模相等的向量
a的相反向量为-a
共线向量
表示空间向量的有向线段所在的直线互相平行或重合的向量
a∥b
共面向量
平行于同一个平面的向量
2.空间向量中的有关定理
(1)共线向量定理
空间两个向量a与b(b≠0)共线的充要条件是存在实数λ,使得a=λb.
(2)共面向量定理
共面向量定理的向量表达式:p=xa+yb,其中x,y∈R,a,b为不共线向量.
(3)空间向量基本定理
如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p
=xa+yb+zc,{a,b,c}叫做空间的一个基底.
3.空间向量的数量积及运算律
(1)数量积及相关概念
①两向量的夹角
已知两个非零向量a,b,在空间任取一点O,作=a,=b,则∠AOB叫做向量a,b的夹角,记作〈a,b〉,其范围是0≤〈a,b〉≤π,若〈a,b〉=,则称a与b互相垂直,记作a⊥b.
②两向量的数量积
已知空间两个非零向量a,b,则|a||b|cos〈a,b〉叫做向量a,b的数量积,记作a·b,即a·b=|a||b|cos〈a,b〉.
(2)空间向量数量积的运算律
①(λa)·b=λ(a·b);
②交换律:a·b=b·a;
③分配律:a·(b+c)=a·b+a·c.
4.空间向量的坐标表示及其应用
设a=(a1,a2,a3),b=(b1,b2,b3).
向量表示
坐标表示
数量积
a·b
a1b1+a2b2+a3b3
共线
a=λb(b≠0,λ∈R)
a1=λb1,a2=λb2,a3=λb3
垂直
a·b=0
(a≠0,b≠0)
a1b1+a2b2+a3b3=0
模
|a|
夹角
〈a,b〉
(a≠0,b≠0)
cos〈a,b〉=
概念方法微思考
1.共线向量与共面向量相同吗?
提示 不相同.平行于同一平面的向量就为共面向量.
2.零向量能作为基向量吗?
提示 不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.
3.空间向量的坐标运算与坐标原点的位置选取有关吗?
提示 无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)空间中任意两个非零向量a,b共面.( √ )
(2)在向量的数量积运算中(a·b)·c=a·(b·c).( × )
(3)对于非零向量b,由a·b=b·c,则a=c.( × )
(4)两向量夹角的范围与两异面直线所成角的范围相同.( × )
(5)若A,B,C,D是空间任意四点,则有+++=0.( √ )
(6)若a·b<0,则〈a,b〉是钝角.( × )
题组二 教材改编
2.[P97A组T2]如图所示,在平行六面体ABCD—A1B1C1D1中,M为A1C1与B1D1的交点.若=a,=b,=c,则下列向量中与相等的向量是( )
A.-a+b+c B.a+b+c
C.-a-b+c D.a-b+c
答案 A
解析 =+=+(-)
=c+(b-a)=-a+b+c.
3.[P98T3]正四面体ABCD的棱长为2,E,F分别为BC,AD的中点,则EF的长为________.
答案
解析 ||2=2=(++)2
=2+2+2+2(·+·+·)
=12+22+12+2(1×2×cos120°+0+2×1×cos120°)=2,
∴||=,∴EF的长为.
题组三 易错自纠
4.在空间直角坐标系中,已知A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是( )
A.垂直 B.平行
C.异面 D.相交但不垂直
答案 B
解析 由题意得,=(-3,-3,3),=(1,1,-1),
∴=-3,∴与共线,又AB与CD没有公共点,∴AB∥CD.
5.已知a=(2,3,1),b=(-4,2,x),且a⊥b,则|b|=________.
答案 2
解析 ∵a⊥b,∴a·b=2×(-4)+3×2+1·x=0,
∴x=2,∴|b|==2.
6.O为空间中任意一点,A,B,C三点不共线,且=++t,若P,A,B,C四点共面,则实数t=______.
答案
解析 ∵P,A,B,C四点共面,∴++t=1,∴t=.
题型一 空间向量的线性运算
例1 如图所示,在空间几何体ABCD-A1B1C1D1中,各面为平行四边形,设=a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:
(1);
(2)+.
解 (1)因为P是C1D1的中点,
所以=++
=a++
=a+c+=a+c+b.
(2)因为M是AA1的中点,
所以=+=+
=-a+=a+b+c.
又=+=+=+=c+a,
所以+=+
=a+b+c.
思维升华用基向量表示指定向量的方法
(1)结合已知向量和所求向量观察图形.
(2)将已知向量和所求向量转化到三角形或平行四边形中.
(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.
跟踪训练1 (1)如图所示,在长方体ABCD-A1B1C1D1中,O为AC的中点.用,,表示,则=________________.
答案 ++
解析 ∵==(+),
∴=+=(+)+=++.
(2)(2018·金华质检)如图,在三棱锥O—ABC中,M,N分别是AB,OC的中点,设=a,=b,=c,用a,b,c表示,则等于( )
A.(-a+b+c) B.(a+b-c)
C.(a-b+c) D.(-a-b+c)
答案 B
解析 =+=(-)+
=-+(-)=+-
=(a+b-c).
题型二 共线定理、共面定理的应用
例2 如图,在四棱柱ABCD—A1B1C1D1中,底面ABCD是平行四边形,E,F,G分别是A1D1,D1D,D1C1的中点.
(1)试用向量,,表示;
(2)用向量方法证明平面EFG∥平面AB1C.
(1)解 设=a,=b,=c.
由图得=++=c+b+=a+b+c
=++.
(2)证明 由题图,得=+=a+b,
=+=b+a=,
∵EG与AC无公共点,
∴EG∥AC,∵EG⊄平面AB1C,AC⊂平面AB1C,
∴EG∥平面AB1C.
又∵=+=a+c,
=+=c+a=,
∵FG与AB1无公共点,
∴FG∥AB1,
∵FG⊄平面AB1C,AB1⊂平面AB1C,
∴FG∥平面AB1C,
又∵FG∩EG=G,FG,EG⊂平面EFG,
∴平面EFG∥平面AB1C.
思维升华证明三点共线和空间四点共面的方法比较
三点(P,A,B)共线
空间四点(M,P,A,B)共面
=λ且同过点P
=x+y
对空间任一点O,=+t
对空间任一点O,=+x+y
对空间任一点O,=x+(1-x)
对空间任一点O,=x+y+(1-x-y)
跟踪训练2 如图所示,已知斜三棱柱ABC—A1B1C1,点M,N分别在AC1和BC上,且满足=k,=k(0≤k≤1).
(1)向量是否与向量,共面?
(2)直线MN是否与平面ABB1A1平行?
解 (1)∵=k,=k,
∴=++
=k++k
=k(+)+
=k(+)+
=k+=-k
=-k(+)
=(1-k)-k,
∴由共面向量定理知向量与向量,共面.
(2)当k=0时,点M,A重合,点N,B重合,
MN在平面ABB1A1内,
当0