- 389.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第5节 指数与指数函数
最新考纲 1.了解指数函数模型的实际背景;2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3.理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,,的指数函数的图象;4.体会指数函数是一类重要的函数模型.
知 识 梳 理
1.根式
(1)概念:式子叫做根式,其中n叫做根指数,a叫做被开方数.
(2)性质:()n=a(a使有意义);当n为奇数时,=a,当n为偶数时,=|a|=
2.分数指数幂
(1)规定:正数的正分数指数幂的意义是a=(a>0,m,n∈N*,且n>1);正数的负分数指数幂的意义是a-=(a>0,m,n∈N*,且n>1);0的正分数指数幂等于0;0的负分数指数幂没有意义.
(2)有理指数幂的运算性质:aras=ar+s;(ar)s=ars;(ab)r=arbr,其中a>0,b>0,r,s∈Q.
3.指数函数及其性质
(1)概念:函数y=ax(a>0且a≠1)叫做指数函数,其中指数x是自变量,函数的定义域是R,a是底数.
(2)指数函数的图象与性质
a>1
00时,y>1;
当x<0时,01;
当x>0时,00,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),.
2.在第一象限内,指数函数y=ax(a>0且a≠1)的图象越高,底数越大.
基 础 自 测
1.判断下列结论正误(在括号内打“√”或“×”)
(1)=-4.( )
(2)(-1)=(-1)=.( )
(3)函数y=2x-1是指数函数.( )
(4)函数y=a x2+1 (a>1)的值域是(0,+∞).( )
解析 (1)由于==4,故(1)错.
(2)(-1)==1,故(2)错.
(3)由于指数函数解析式为y=ax(a>0,且a≠1),
故y=2x-1不是指数函数,故(3)错.
(4)由于x2+1≥1,又a>1,∴ax2+1≥a.
故y=a x2+1 (a>1)的值域是[a,+∞),(4)错.
答案 (1)× (2)× (3)× (4)×
2.(必修1P56例6改编)若函数f(x)=ax(a>0,且a≠1)的图象经过,则
f(-1)=( )
A.1 B.2 C. D.3
解析 依题意可知a2=,解得a=,
所以f(x)=,所以f(-1)==.
答案 C
3.(必修1P59A6改编)某种产品的产量原来是a件,在今后m年内,计划使每年的产量比上一年增加p%,则该产品的产量y随年数x变化的函数解析式为( )
A.y=a(1+p%)x(00,将表示成分数指数幂,其结果是( )
A.a B.a C.a D.a
解析 由题意得=a2--=a.
答案 C
5.(2017·北京卷)已知函数f(x)=3x-,则f(x)( )
A.是偶函数,且在R上是增函数
B.是奇函数,且在R上是增函数
C.是偶函数,且在R上是减函数
D.是奇函数,且在R上是减函数
解析 函数f(x)的定义域为R,
f(-x)=3-x-=-3x=-f(x),
∴函数f(x)是奇函数.
又y=3x在R上是增函数,函数y=在R上是减函数,
∴函数f(x)=3x-在R上是增函数.
答案 B
6.(2019·福州检测)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是( )
A.a1,∴b0,b>0).
解 (1)原式=1+×-
=1+×-=1+-=.
(2)原式==a+-1+b1+-2-=.
规律方法 1.指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:(1)必须同底数幂相乘,指数才能相加;(2)运算的先后顺序.
2.当底数是负数时,先确定符号,再把底数化为正数.
3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.
【训练1】 化简下列各式:
(1)[(0.064)-2.5]--π0;
(2)a·b-2·÷.
解 (1)原式=--1
=--1
=--1=0.
(2)原式=-a-b-3÷
=-a-b-3÷(ab-)=-a-·b-
=-·=-.
考点二 指数函数的图象及应用
【例2】 (1)(2019·衡水中学检测)不论a为何值,函数y=(a-1)2x-恒过定点,则这个定点的坐标是( )
A. B.
C. D.
(2)若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是________.
解析 (1)y=(a-1)2x-=a-2x,令2x-=0,得x=-1,故函数y=(a-1)2x-恒过定点.
(2)在同一平面直角坐标系中画出y=|2x-2|与y=b的图象,如图所示.
∴当01,b<0
B.a>1,b>0
C.00
D.01.73 B.0.6-1>0.62
C.0.8-0.1>1.250.2 D.1.70.3<0.93.1
(2)设函数f(x)=若f(a)<1,则实数a的取值范围是________.
解析 (1)A中,∵函数y=1.7x在R上是增函数,2.5<3,
∴1.72.5<1.73,错误;
B中,∵y=0.6x在R上是减函数,-1<2,
∴0.6-1>0.62,正确;
C中,∵(0.8)-1=1.25,
∴问题转化为比较1.250.1与1.250.2的大小.
∵y=1.25x在R上是增函数,0.1<0.2,
∴1.250.1<1.250.2,即0.8-0.1<1.250.2,错误;
D中,∵1.70.3>1, 0<0.93.1<1,
∴1.70.3>0.93.1,错误.
(2)当a<0时,原不等式化为-7<1,
则2-a<8,解之得a>-3,所以-30,且a≠1)在区间[-1,1]上的最大值是14,则a的值为________.
解析 令ax=t,则y=a2x+2ax-1=t2+2t-1=(t+1)2-2.当a>1时,因为x∈
[-1,1],所以t∈,又函数y=(t+1)2-2在上单调递增,所以ymax=(a+1)2-2=14,解得a=3(负值舍去).当01且a≠2)在区间(0,+∞)上具有不同的单调性,则M=(a-1)0.2与N=的大小关系是( )
A.M=N B.M≤N C.MN
(2)函数f(x)=的单调递增区间为________,单调递减区间为________.
(3)已知函数f(x)=b·ax(其中a,b为常量,且a>0,a≠1)的图象经过点A(1,6),B(3,24).若不等式+-m≥0在x∈(-∞,1]上恒成立,则实数m的最大值为________.
解析 (1)因为f(x)=x2-a与g(x)=ax(a>1,且a≠2)在(0,+∞)上具有不同的单调性.
所以a>2.
因此M=(a-1)0.2>1,N=<1.
故M>N.
(2)依题意知x2-5x+4≥0,解得x≥4或x≤1,令u==,x∈(-∞,1]∪[4,+∞),所以当x∈(-∞,1]时,u是减函数,当x∈[4,+∞)时,u是增函数.而3>1,所以由复合函数的单调性可知,f(x)=在区间(-∞,1]上是减函数,在区间[4,+∞)上是增函数.
(3)把A(1,6),B(3,24)代入f(x)=b·ax,得结合a>0,且a≠1,解得所以f(x)=3·2x.要使+≥m在区间(-∞,1]上恒成立,
只需保证函数y=+在区间(-∞,1]上的最小值不小于m即可.因为函数y=+在区间(-∞,1]上为减函数,所以当x=1时,y=+有最小值.所以只需m≤即可.所以m的最大值为.
答案 (1)D (2)[4,+∞) (-∞,1] (3)
[思维升华]
1.
根式与分数指数幂的实质是相同的,分数指数幂与根式可以互化,通常利用分数指数幂进行根式的化简运算.
2.判断指数函数图象上底数大小的问题,可以先通过令x=1得到底数的值再进行比较.
3.指数函数的单调性取决于底数a的大小,当底数a与1的大小关系不确定时应分01两种情况分类讨论.
[易错防范]
1.对与复合函数有关的问题,要弄清楚复合函数由哪些基本初等函数复合而成,并且一定要注意函数的定义域.
2.对可化为a2x+b·ax+c=0或a2x+b·ax+c≥0(≤0)形式的方程或不等式,常借助换元法解题,但应注意换元后“新元”的范围.
基础巩固题组
(建议用时:40分钟)
一、选择题
1.(2019·永州模拟)下列函数中,与函数y=2x-2-x的定义域、单调性与奇偶性均一致的是( )
A.y=sin x B.y=x3
C.y= D.y=log2x
解析 y=2x-2-x是定义域为R的单调递增函数,且是奇函数.而y=sin x不是单调递增函数,不符合题意;y=是非奇非偶函数,不符合题意;
y=log2x的定义域是(0,+∞),不符合题意;
y=x3是定义域为R的单调递增函数,且是奇函数符合题意.
答案 B
2.函数y=ax-(a>0,且a≠1)的图象可能是( )
解析 若a>1时,y=ax-在R上是增函数,
当x=0时,y=1-∈(0,1),A,B不满足.
若00,a≠1)的图象恒过点A,下列函数中图象不经过点A的是( )
A.y= B.y=|x-2|
C.y=2x-1 D.y=log2(2x)
解析 f(x)过定点A(1,1),将点A(1,1)代入四个选项,y=的图象不过点A(1,1).
答案 A
4.设x>0,且10时,11.
又x>0时,bx0时,>1.
∴>1,∴a>b,∴10,且a≠1),满足f(1)=,则f(x)的单调递减区间是( )
A.(-∞,2] B.[2,+∞)
C.[-2,+∞) D.(-∞,-2]
解析 由f(1)=,得a2=,解得a=或a=-(舍去),即f(x)=.
由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,
所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减.
答案 B
二、填空题
6.化简=________.
解析 原式=
=a---·b+-=.
答案
7.函数y=-+1在区间[-3,2]上的值域是________.
解析 令t=,因为x∈[-3,2],所以t∈,故y=t2-t+1=+.当t=时,ymin=;当t=8时,ymax=57.故所求函数的值域为.
答案
8.设偶函数g(x)=a|x+b|在(0,+∞)上单调递增,则g(a)与g(b-1)的大小关系是________.
解析 由于g(x)=a|x+b|是偶函数,知b=0,
又g(x)=a|x|在(0,+∞)上单调递增,得a>1.
则g(b-1)=g(-1)=g(1),
故g(a)>g(1)=g(b-1).
答案 g(a)>g(b-1)
三、解答题
9.已知函数f(x)=,a为常数,且函数的图象过点(-1,2).
(1)求a的值;
(2)若g(x)=4-x-2,且g(x)=f(x),求满足条件的x的值.
解 (1)由已知得=2,解得a=1.
(2)由(1)知f(x)=,
又g(x)=f(x),则4-x-2=,
∴--2=0,
令=t,则t>0,t2-t-2=0,即(t-2)(t+1)=0,
又t>0,故t=2,即=2,解得x=-1,
故满足条件的x的值为-1.
10.(2018·长沙一中月考)已知函数f(x)=为奇函数.
(1)求a的值;
(2)判断函数f(x)的单调性,并加以证明.
解 (1)因为函数f(x)是奇函数,且f(x)的定义域为R;所以f(0)==0,所以a=-1.
(2)由(1)知f(x)==1-,函数f(x)在定义域R上单调递增.
证明:设x10,函数f(x)=的图象经过点P,Q.若2p+q=36pq,则a=________.
解析 因为f(x)==,且其图象经过点P,Q,
则f(p)==,即=-,①
f(q)==-,即=-6,②
①×②得=1,则2p+q=a2pq=36pq,
所以a2=36,解得a=±6,因为a>0,所以a=6.
答案 6
14.已知定义在R上的函数f(x)=2x-,
(1)若f(x)=,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.
解 (1)当x<0时,f(x)=0,故f(x)=无解;
当x≥0时,f(x)=2x-,
由2x-=,得2·22x-3·2x-2=0,
将上式看成关于2x的一元二次方程,
解得2x=2或2x=-,
因为2x>0,所以2x=2,所以x=1.
(2)当t∈[1,2]时,2t+m≥0,
即m(22t-1)≥-(24t-1),因为22t-1>0,
所以m≥-(22t+1),
因为t∈[1,2],所以-(22t+1)∈[-17,-5],
故实数m的取值范围是[-5,+∞).