- 166.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时跟踪检测(十四) 小题考法——圆锥曲线的方程与性质
A组——10+7提速练
一、选择题
1.(2018·浙江高考)双曲线-y2=1的焦点坐标是( )
A.(-,0),(,0) B.(-2,0),(2,0)
C.(0,-),(0,) D.(0,-2),(0,2)
解析:选B ∵双曲线方程为-y2=1,
∴a2=3,b2=1,且双曲线的焦点在x轴上,
∴c===2,
即得该双曲线的焦点坐标为(-2,0),(2,0).
2.双曲线C:-=1(a>0,b>0)的离心率e=,则它的渐近线方程为( )
A.y=±x B.y=±x
C.y=±x D.y=±x
解析:选A 由双曲线C:-=1(a>0,b>0)的离心率e=,可得=,∴+1=,可得=,故双曲线的渐近线方程为y=±x.
3.(2018·全国卷Ⅲ)已知椭圆C:+=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为( )
A. B.
C. D.
解析:选A 以线段A1A2为直径的圆的方程为x2+y2=a2,由圆心到直线bx-ay+2ab=0的距离d==a,得a2=3b2,所以C的离心率e= =.
4.(2018·温州适应性测试)已知双曲线-=1(a>0,b>0)的离心率e∈(1,2],则其经过第一、三象限的渐近线的倾斜角的取值范围是( )
A. B.
C. D.
解析:选C 因为双曲线-=1(a>0,b>0)的离心率e∈(1,2],所以1<≤2,所以1<≤4,又c2=a2+b2,所以0<≤3,所以≥,所以≥.
因为-=1(a>0,b>0)经过第一、三象限的渐近线的方程为y=x,设其倾斜角为α,则tan α=≥,又α∈,所以α∈,故选C.
5.(2018·全国卷Ⅱ)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为( )
A. B.2
C.2 D.3
解析:选C 由题意,得F(1,0),
则直线FM的方程是y=(x-1).
由得x=或x=3.
由M在x轴的上方,得M(3,2),
由MN⊥l,得|MN|=|MF|=3+1=4.
又∠NMF等于直线FM的倾斜角,即∠NMF=60°,
因此△MNF是边长为4的等边三角形,
所以点M到直线NF的距离为4×=2.
6.已知F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,若椭圆C上存在点P使∠F1PF2为钝角,则椭圆C的离心率的取值范围是( )
A. B.
C. D.
解析:选A 法一:设P(x0,y0),由题意知|x0|x+y,即c2>(x+y)min,又y=b2-x,0≤xb2,又b2=a2-c2,所以e2=>,解得e>,又0,又00,b>0)的左、右焦点分别为F1,F2,点M与双曲线C的焦点不重合,点M关于F1,F2的对称点分别为A,B,线段MN的中点在双曲线的右支上,若|AN|-|BN|=12,则a=( )
A.3 B.4
C.5 D.6
解析:选A 如图,设MN的中点为P.
∵F1为MA的中点,F2为MB的中点,∴|AN|=2|PF1|,|BN|=2|PF2|,又|AN|-|BN|=12,∴|PF1|-|PF2|=6=2a,∴a=3.故选A.
9.设AB是椭圆的长轴,点C在椭圆上,且∠CBA=,若AB=4,BC=,则椭圆的两个焦点之间的距离为( )
A. B.
C. D.
解析:选A 不妨设椭圆的标准方程为+=1(a>b>0),如图,由题意知,2a=4,a=2,∵∠CBA=,BC=,∴点C的坐标为(-1,1),∵点C在椭圆上,∴+=1,∴b2=,
∴c2=a2-b2=4-=,c=,则椭圆的两个焦点之间的距离为2c=.
10.过双曲线-=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率e的取值范围为( )
A. B.
C. D.
解析:选B 将x=c代入-=1得y=±,不妨取A,B,所以|AB|=.
将x=c代入双曲线的渐近线方程y=±x,得y=±,不妨取C,D,所以|CD|=.
因为|AB|≥|CD|,所以≥×,即b≥c,则b2≥c2,即c2-a2≥c2,即c2≥a2,所以e2≥,所以e≥,故选B.
二、填空题
11.过抛物线y=x2的焦点F作一条倾斜角为30°的直线交抛物线于A,B两点,则|AB|=________.
解析:依题意,设点A(x1,y1),B(x2,y2),题中的抛物线x2=4y的焦点坐标是F(0,1),直线AB的方程为y=x+1,即x=(y-1).由消去x得3(y-1)2=4y,即3y2-10y+3=0,Δ=(-10)2-4×3×3>0,y1+y2=,则|AB|=|AF|+|BF|=(y1+1)+(y2+1)=y1+y2+2=.
答案:
12.(2018·浙江高考猜题卷)已知双曲线C:-=1(a>0,b>0)的离心率e=,若直线l:y=k(x-2 018)与双曲线C的右支有且仅有一个交点,则a-b=_______;k的取值范围是________.
解析:因为双曲线的离心率e=,所以=,从而可得a=b,即a-b=0,故双曲线的渐近线方程为x±y=0,其斜率为±1,易知直线l必过定点(2 018,0),且直线l:y=k(x-2 018)与双曲线C的右支有且仅有一个交点,所以由数形结合可知-1≤k≤1,即k的取值范围是[-1,1].
答案:0 [-1,1]
13.已知椭圆C:+y2=1的两焦点为F1,F2,点P(x0,y0)满足0<+y<1,则|PF1|+|PF2|的取值范围是________.
解析:由点P(x0,y0)满足0<+y<1,可知P(x0,y0)一定在椭圆内(不包括原点),因为a=,b=1,所以由椭圆的定义可知|PF1|+|PF2|<2a=2,又|PF1|+|PF2|≥|F1F2|=2,故|PF1|+|PF2|的取值范围是[2,2).
答案:[2,2)
14.已知点A(4,4)在抛物线y2=2px(p>0)上,F为抛物线的焦点,过A作该抛物线准线的垂线,垂足为E,则p=________,∠EAF的角平分线所在的直线方程为________.
解析:把A(4,4)代入抛物线方程,得p=2.由抛物线的性质得|AE|=|AF|,连接EF,则△EAF为等腰三角形.设EF的中点为B,则直线AB为∠EAF的角平分线所在的直线.由F(1,0),E(-1,4),得B(0,2),则kAB==,则直线AB的方程为y=x+2,故∠EAF的角平分线所在的直线方程为x-2y+4=0.
答案:2 x-2y+4=0
15.已知椭圆的方程为+=1,过椭圆中心的直线交椭圆于A,B两点,F2是椭圆的右焦点,则△ABF2的周长的最小值为________,△ABF2的面积的最大值为________.
解析:设F1是椭圆的左焦点.如图,连接AF1.由椭圆的对称性,结合椭圆的定义知|AF2|+|BF2|=2a=6,所以要使△ABF2的周长最小,必有|AB|=2b=4,所以△ABF2的周长的最小值为10.S△ABF2=S△AF1F2=×2c×|yA|=|yA|≤2,所以△ABF2面积的最大值为2.
答案:10 2
16.已知抛物线y2=2px(p>0)的焦点为F,△ABC的顶点都在抛物线上,且满足++=0,则++=________.
解析:设A(x1,y1),B(x2,y2),C(x3,y3),F,由+=-,得+=-,y1+y2+y3=0.因为kAB==,kAC==,kBC==,所以++=++==0.
答案:0
17.如图,已知F1,F2分别是双曲线x2-=1(b>0)的左、右焦点,过点F1的直线与圆x2+y2=1相切于点T,与双曲线的左、右两支分别交于A,B,若|F2B|=|AB|,则b的值是________.
解析:法一:因为|F2B|=|AB|,所以结合双曲线的定义,得|AF1|=|BF1|-|AB|=|BF1|-|BF2|=2,连接OT,在Rt△OTF1中,|OT|=1,|OF1|=c,|TF1|=b,所以cos∠F2F1A=,sin∠F2F1A=,所以A,将点A的坐标代入双曲线得-=1,化简得b6-4b5+5b4-4b3-4=0,得(b2-2b-2)(b4-2b3+3b2-2b+2)=0,而b4-2b3+3b2-2b+2=b2(b-1)2+b2+1+(b-1)2>0,故b2-2b-2=0,解得b=1±(负值舍去),即b=1+.
法二:因为|F2B|=|AB|,所以结合双曲线的定义,得|AF1|=|BF1|-|AB|=|BF1|-|BF2|=2,连接AF2,则|AF2|=2+|AF1|=4.连接OT,在Rt△OTF1中,|OT|=1,|OF1|=c,|TF1|=b,所以cos∠F2F1A=.在△AF1F2中,由余弦定理得,cos∠F2F1A==,所以c2-3=2b,又在双曲线中,c2=1+b2,所以b2-2b-2=0,解得b=1±(负值舍去),即b=1+.
答案:1+
B组——能力小题保分练
1.双曲线-=1(a,b>0)的离心率为,左、右焦点分别为F1,F2,P为双曲线右支上一点,∠F1PF2的角平分线为l,点F1关于l的对称点为Q,|F2Q|=2,则双曲线的方程为( )
A.-y2=1 B.x2-=1
C.x2-=1 D.-y2=1
解析:选B ∵∠F1PF2的角平分线为l,点F1关于l的对称点为Q,∴|PF1|=|PQ|,P,F2,Q三点共线,而|PF1|-|PF2|=2a,∴|PQ|-|PF2|=2a,即|F2Q|=2=2a,解得a=1.又e==,∴c=,∴b2=c2-a2=2,∴双曲线的方程为x2-=1.故选B.
2.(2018·浙江高考原创卷)已知椭圆C:+=1(a>b>0)的左焦点F1关于直线y=-c的对称点Q在椭圆上,则椭圆的离心率是( )
A.-1 B.
C.2- D.
解析:选C ∵左焦点F1关于直线y=-c的对称点为Q,∴|F1Q|=2c.
设椭圆的右焦点为F2,则|F1F2|=2c.
由椭圆定义知,|F2Q|=2a-|F1Q|=2a-2c.
在Rt△F1QF2中,|F1F2|2+|F1Q|2=|F2Q|2,
即(2c)2+(2c)2=(2a-2c)2,
∴c2+2ac-a2=0,故e2+2e-1=0,
∴e=2-(负值舍去).故选C.
3.过椭圆C:+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆C于另一点B,且点B在x轴上的射影恰好为右焦点F.若