- 4.52 MB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题15 利用导数证明多元不等式
【热点聚焦与扩展】
利用函数性质、导数证明不等式,是导数综合题常涉及的问题,多元不等式的证明则是导数综合题的一个难点,其困难之处是如何构造、转化合适的一元函数,本专题拟通过一些典型模拟习题为例介绍常用的处理方法.
1、在处理多元不等式时起码要做好以下准备工作:
(1)利用条件粗略确定变量的取值范围
(2)处理好相关函数的分析(单调性,奇偶性等),以备使用
2、若多元不等式是一个轮换对称式(轮换对称式:一个元代数式,如果交换任意两个字母的位置后,代数式不变,则称这个代数式为轮换对称式),则可对变量进行定序
3、证明多元不等式通常的方法有两个
(1)消元:① 利用条件代入消元 ② 不等式变形后对某多元表达式进行整体换元
(2)变量分离后若结构相同,则可将相同的结构构造一个函数,进而通过函数的单调性与自变量大小来证明不等式
(3)利用函数的单调性将自变量的不等关系转化为函数值的不等关系,再寻找方法.
【经典例题】
例1【2018届四川省资阳市高三4月模拟(三诊)】已知函数(其中).
(1)当时,判断零点的个数 ;
(2)在(1)的条件下,记这些零点分别为,求证: .
【答案】(1)见解析;(2)见解析.
【解析】试题分析:(1)先求导数,再求导函数零点,根据零点列表分析导函数符号,进而确定函数单调性,再根据零点存在定理确定函数零点个数,(2)先根据零点条件化简得,令则,利用导数研究函数
单调性,根据单调性得,即证得结论.
试题解析:(1)由题知x>0, ,
所以,由得,
当x>时, , 为增函数;当0