• 62.50 KB
  • 2021-06-16 发布

【数学】2020届一轮复习人教A版综合法与分析法教案

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
一、 教学目标 知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。‎ ‎ 过程与方法: 多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;‎ ‎ 情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。‎ 二、教学重点:了解分析法和综合法的思考过程、特点来源:gkstk.Com]‎ 教学难点:分析法和综合法的思考过程、特点。‎ 三、教学设想:分析法和综合法的思考过程、特点. “变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。‎ ‎ 课时安排:一课时 ‎ 四、教学过程:‎ 学生探究过程:证明的方法 ‎(1)、分析法和综合法是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。‎ ‎ (2)、例1.设a、b是两个正实数,且a≠b,求证:a3+b3>a2b+ab2.‎ ‎    证明:(用分析法思路书写)‎ ‎    要证 a3+b3>a2b+ab2成立,‎ ‎    只需证(a+b)(a2-ab+b2)>ab(a+b)成立,‎ ‎    即需证a2-ab+b2>ab成立。(∵a+b>0)‎ ‎    只需证a2-2ab+b2>0成立,‎ ‎    即需证(a-b)2>0成立。‎ ‎    而由已知条件可知,a≠b,有a-b≠0,所以(a-b)2>0显然成立,由此命题得证。[来源:学优高考网]‎ ‎    (以下用综合法思路书写)‎ ‎    ∵a≠b,∴a-b≠0,∴(a-b)2>0,即a2-2ab+b2>0[来源:学优高考网]‎ ‎    亦即a2-ab+b2>ab[来源:学优高考网]‎ ‎    由题设条件知,a+b>0,∴(a+b)(a2-ab+b2)>(a+b)ab 即a3+b3>a2b+ab2,由此命题得证 例2、若实数,求证:‎ 证明:采用差值比较法:‎ ‎[来源:学优高考网gkstk]‎ ‎ ‎ ‎ ‎ ‎∴ ∴‎ 例3、已知求证 本题可以尝试使用差值比较和商值比较两种方法进行。 ‎ 证明:1) 差值比较法:注意到要证的不等式关于对称,不妨设 ‎,从而原不等式得证。‎ ‎2)商值比较法:设 ‎ 故原不等式得证。‎ 注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。‎ 讨论:若题设中去掉这一限制条件,要求证的结论如何变换?‎ 五 回顾小结:‎ ‎ 巩固练习:‎ ‎ 课后作业:‎

相关文档