• 1.41 MB
  • 2021-06-16 发布

广东省广州市六区2021届高三数学9月质量检测试题(Word版附答案)

  • 14页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
广东省广州市六区2021届高三9月教学质量检测(一)‎ 数学试题 ‎2020.9‎ 一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)‎ ‎1.复数的共轭复数是 ‎ A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i ‎2.已知集合M=,N=,则MN=‎ ‎ A.[﹣1,0] B.(0,1) C.[0,1] D.‎ ‎3.已知抛物线C:(p>0)的准线为l,圆M:与l相切,则p=‎ ‎ A.1 B.2 C.3 D.4‎ ‎4.某学校组织学生参加数学测试,某班成绩的频 率分布直方图如下图,数据的分组依次为[20,‎ ‎40),[40,60),[60,80),[80,100].若不低 于60分的人数是35人,则该班的学生人数是 ‎ A.45 B.50‎ C.55 D.60‎ ‎5.中国古代数学名著《周髀算经》记载的“日月 历法”曰:“阴阳之数,日月之法,十九岁为一 第4题 章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁,….生数皆终,万物复苏,天以更元作纪历”.某老年公寓住有20位老人,他们的年龄(都为正整数)之和恰好为一遂,其中最年长者的年龄大于90且不大于100,其余19人的年龄依次相差一岁,则最年长者的年龄为 ‎ A.94 B.95 C.96 D.98‎ ‎6.已知(0,),,则=‎ ‎ A. B. C. D.‎ ‎7.已知直三棱柱ABC—A1B1C1的6个顶点都在球O的球面上,若AB=1,AC=,AB⊥AC,AA1=4,则球O的表面积为 ‎ A.5 B.10 C.20 D.‎ ‎8.对于定义在R上的函数,为偶函数.当x(0,)时,‎ 14‎ ‎,设,,,a,b,c的大小关系为 ‎ A.a<b<c B.b<c<a C.b<a<c D.c<a<b 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)‎ ‎9.设a,b,c为正实数,且a>b,则 ‎ A. B. C. D.‎ ‎10.已知曲线C1:y=2sinx,C2:,则 A.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平行移动个单位长度,得到曲线C2‎ B.把C1上各点的横坐标缩短到原来的倍,级坐标不变,再把得到的曲线向右平行移动个单位长度,得到曲线C2‎ C.把C1向左平行移动个单位长度,再把得到的曲线上各点的横坐标缩短到原来的 倍,纵坐标不变,得到曲线C2‎ D.把C1向左平行移动个单位长度,再把得到的曲线上各点的横坐标缩短到原来的 倍,纵坐标不变,得到曲线C2‎ ‎11.若函数对a,bR,同时满足:(1)当a+b=0时有;(2)当a+b>0时有,则称为函数.下列函数中是函数的有 ‎ A. B. ‎ C. D.‎ 14‎ ‎12.在长方体ABCD—A1B1C1D1中,M,P是平面DCC1D1内不同的两点,N,Q是平面ABCD内不同的两点,且M,P,N,QCD,E,F分别是线段MN,PQ的中点.则下列结论正确的是 ‎ A.若MN∥PQ,则EF∥CD ‎ B.若E,F重合,则MP∥CD ‎ C.若MN与PQ相交,且MP∥CD,则NQ可以与CD相交 ‎ D.若MN与PQ是异面直线,则EF不可能与CD平行 三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)‎ ‎13.函数的图象在点(1,)处的切线方程为 .‎ ‎14.的展开式中的系数为 (用数字填写答案).‎ ‎15.已知向量=(1,a),=(2b﹣1,3)(a>0,b>0),若⊥,则的最小值为 .‎ ‎16.已知F1,F2是双曲线C:(a>0,b>0)的左、右焦点,以F1F2为直径的圆与C的左支交于点A,AF2与C的右支交于点B,cos∠F1BF2=,则C的离心率为 ‎ .‎ 四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)‎ ‎17.(本小题满分10分)‎ 在①sinB=sinC,②b=4sinA,③B+C=2A这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.‎ 问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且4asinB=bcosA+bsinA,a=2, ?‎ 注:如果选择多个条件分别解答,按第一个解答计分.‎ ‎18.(本小题满分12分)‎ 设是公比大于1的等比数列,,且是,的等差中项.‎ ‎(1)求数列的通项公式;‎ ‎(2)若,求数列的前n项和.‎ 14‎ ‎19.(本小题满分12分)‎ 如图,在圆柱O1O2中,AB为圆O1的直径,C,D是弧上的两个三等分点,CF是圆柱O1O2的母线.‎ ‎(1)求证:CO1∥平面AFD;‎ ‎(2)设AC=,∠FBC=45°,求二面角B—AF—C的余弦值.‎ ‎20.(本小题满分12分)‎ 为了进一步提升广电网络质量,某市广电运营商从该市某社区随机抽取140名客户,对广电网络业务水平和服务水平的满意程度进行调查,其中业务水平的满意率为,服务水平的满意率为,对业务水平和服务水平都满意的有90名客户.‎ ‎(1)完成下面2×2列联表,并分析是否有97.5%的把握认为业务水平与服务水平有关;‎ 对服务水平满意人数 对服务水 平不满意人数 合计 对业务水平满意人数 对业务水平不满意人数 合计 ‎(2)为进一步提高服务质量,在选出的对服务水平不满意的客户中,抽取2名征求改进意见,用X表示对业务水平不满意的人数,求X的分布列与期望;‎ ‎(3)若用频率代替概率,假定在业务服务协议终止时,对业务水平和服务水平两项都满意的客户流失率为5%,只对其中一项不满意的客户流失率为40%,对两项都不满意的客户流失率为75%,从该社区中任选4名客户,则在业务服务协议终止时至少有2名客户流失的概率为多少?‎ 附:‎ P()‎ ‎0.10‎ ‎0.05‎ ‎0.025‎ ‎0.010‎ ‎0.005‎ ‎0.001‎ ‎2.706‎ ‎3.841‎ ‎5.024‎ ‎6.635‎ ‎7.879‎ ‎10.828‎ ‎,其中.‎ ‎21.(本小题满分12分)‎ 14‎ 已知椭圆C的两个焦点分别是(﹣1,0),(1,0),并且经过点(1,).‎ ‎(1)求椭圆C的标准方程;‎ ‎(2)已知点Q(0,2),若C上总存在两个点A、B关于直线y=x+m对称,且,求实数m的取值范围.‎ ‎22.(本小题满分12分)‎ 已知函数.‎ ‎(1)讨论的单调性;‎ ‎(2)设,函数有两个不同的零点,(<),求实数a的取值范围.‎ 14‎ 14‎ 14‎ 14‎ 14‎ 14‎ 14‎ 14‎ 14‎ 14‎

相关文档