- 325.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第四节 直线与圆、圆与圆的位置关系
1.判断直线与圆的位置关系常用的两种方法
(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系:dr⇔相离.
(2)代数法:联立直线l与圆C的方程,消去y(或x),得一元二次方程,计算判别式Δ=b2-4ac,Δ>0⇔相交,Δ=0⇔相切,Δ<0⇔相离.
2.圆与圆的位置关系
设圆O1:(x-a1)2+(y-b1)2=r(r1>0),
圆O2:(x-a2)2+(y-b2)2=r(r2>0).
方法
位置关系
几何法:圆心距d与r1,r
2的关系
代数法:联立两个圆的方程
组成方程组的解的情况
相离
d>r1+r2
无解
外切
d=r1+r2
一组实数解
相交
|r2-r1|0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )
A.内切 B.相交
C.外切 D.相离
B [法一:由得两交点为(0,0),(-a,a).
∵圆M截直线所得线段长度为2,
∴=2.又a>0,∴a=2.
∴圆M的方程为x2+y2-4y=0,即x2+(y-2)2=4,圆心M(0,2),半径r1=2.
又圆N:(x-1)2+(y-1)2=1,圆心N(1,1),半径r2=1,
∴|MN|==.
∵r1-r2=1,r1+r2=3,1<|MN|<3,∴两圆相交.
法二:∵x2+y2-2ay=0(a>0)⇔x2+(y-a)2=a2(a>0),
∴M(0,a),r1=a.
∵圆M截直线x+y=0所得线段的长度为2,∴圆心M到直线x+y=0的距离d==,解得a=2.
以下同法一.]
[规律方法] 1.圆与圆的位置关系取决于圆心距与两个半径的和与差的大小关系.
2.若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.
3.若两圆相交,则两圆的连心线垂直平分公共弦.
[变式训练2] 若⊙O:x2+y2=5与⊙O1:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是__________.
4 [由题意⊙O1与⊙O在A处的切线互相垂直,则两切线分别过另一圆的圆心,
∴O1A⊥OA.
又∵|OA|=,|O1A|=2,
∴|OO1|=5.
又A,B关于OO1对称,
∴AB为Rt△OAO1斜边上高的2倍.
又∵·OA·O1A=OO1·AC,得AC=2.
∴AB=4.]
直线与圆的综合问题
如图841,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).
图841
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程.
[解] 圆M的标准方程为(x-6)2+(y-7)2=25,
所以圆心M(6,7),半径为5.2分
(1)由圆心N在直线x=6上,可设N(6,y0).
因为圆N与x轴相切,与圆M外切,
所以01,圆心到直线的距离d=<1,故直线与圆相交.]
2.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=( )
A.21 B.19
C.9 D.-11
C [圆C1的圆心为C1(0,0),半径r1=1,因为圆C2的方程可化为(x-3)2+(y-4)2=25-m,所以圆C2的圆心为C2(3,4),半径r2=(m<25).从而|C1C2|==5.
两圆外切得|C1C2|=r1+r2,即1+=5,解得m=9.]
3.已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是( )
A.-2 B.-4
C.-6 D.-8
B [由x2+y2+2x-2y+a=0,
得(x+1)2+(y-1)2=2-a,
所以圆心坐标为(-1,1),半径r=,
圆心到直线x+y+2=0的距离为=,
所以22+()2=2-a,解得a=-4.]
4.(2017·浙江金丽衢十二校模拟)过点P(4,2)作圆x2+y2=4的两条切线,切点分别为A,B,O为坐标原点,则△OAB外接圆的方程是( )
【导学号:51062276】
A.(x-2)2+(y-1)2=5
B.(x-4)2+(y-2)2=20
C.(x+2)2+(y+1)2=5
D.(x+4)2+(y+2)2=20
A [由题意知,O,A,B,P四点共圆,所以所求圆的圆心为线段OP的中点(2,1).
又圆的半径r=|OP|=,
所以所求圆的方程为(x-2)2+(y-1)2=5.]
5.(2017·杭州二中三模)已知圆C:(x-1)2+y2=25,则过点P(2,-1)的圆C的所有弦中,以最长弦和最短弦为对角线的四边形的面积是( )
A.10 B.9
C.10 D.9
C [易知最长弦为圆的直径10.又最短弦所在直线与最长弦垂直,且|PC|=,∴最短弦的长为2=2=2.故所求四边形的面积S=×10×2=10].
二、填空题
6.已知圆C1:x2+y2-6x-7=0与圆C2:x2+y2-6y-27=0相交于A,B两点,则线段AB的中垂线方程为________________.
x+y-3=0 [∵圆C1的圆心C1(3,0),圆C2的圆心C2(0,3),∴直线C1C2的方程为x+y-3=0,
AB的中垂线即直线C1C2,故其方程为x+y-3=0.]
7.若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r=__________.
2 [如图,过点O作OD⊥AB于点D,则
|OD|==1.
∵∠AOB=120°,OA=OB,
∴∠OBD=30°,
∴|OB|=2|OD|=2,即r=2.]
8.(2017·浙江金华十校联考)已知圆C:(x+2)2+y2=4,直线l:kx-y-2k=0(k∈R),若直线l与圆C恒有公共点,则实数k的最小值是__________.
【导学号:51062277】
- [圆心C(-2,0),半径r=2.
又圆C与直线l恒有公共点.
所以圆心C(-2,0)到直线l的距离d≤r.
因此≤2,解得-≤k≤.
所以实数k的最小值为-.]
三、解答题
9.已知圆C:x2+y2-4x-6y+12=0,点A(3,5).
(1)求过点A的圆的切线方程;
(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.
[解] (1)由圆C:x2+y2-4x-6y+12=0,
得(x-2)2+(y-3)2=1,圆心C(2,3).当斜率存在时,设过点A的圆的切线方程为y-5=k(x-3),
即kx-y+5-3k=0.3分
由d==1,得k=.
又斜率不存在时直线x=3也与圆相切,
故所求切线方程为x=3或3x-4y+11=0.6分
(2)直线OA的方程为y=x,即5x-3y=0,
又点C到OA的距离d==.12分
又|OA|==.
所以S=|OA|d=.15分
10.(2017·宁波镇海中学模拟)已知定点M(0,2),N(-2,0),直线l:kx-y-2k+2=0(k为常数).
(1)若点M,N到直线l的距离相等,求实数k的值;
(2)对于l上任意一点P,∠MPN恒为锐角,求实数k的取值范围.
[解] (1)∵点M,N到直线l的距离相等,
∴l∥MN或l过MN的中点.
∵M(0,2),N(-2,0),∴直线MN的斜率kMN=1,
MN的中点坐标为C(-1,1).3分
又∵直线l:kx-y-2k+2=0过定点D(2,2),
∴当l∥MN时,k=kMN=1;
当l过MN的中点时,k=kCD=.
综上可知,k的值为1或.6分
(2)∵对于l上任意一点P,∠MPN恒为锐角,
∴l与以MN为直径的圆相离,即圆心(-1,1)到直线l的距离大于半径,10分
∴d=>,解得k<-或k>1.15分
B组 能力提升
(建议用时:15分钟)
1.若圆C1:x2+y2-2ax+a2-9=0(a∈R)与圆C2:x2+y2+2by+b2-1=0(b∈R)内切,则ab的最大值为( )
A. B.2
C.4 D.2
B [圆C1:x2+y2-2ax+a2-9=0(a∈R).
化为(x-a)2+y2=9,圆心坐标为(a,0),半径为3.
圆C2:x2+y2+2by+b2-1=0(b∈R),化为x2+(y+b)2=1,圆心坐标为(0,-b),半径为1.
∵圆C1:x2+y2-2ax+a2-9=0(a∈R)与圆C2:x2+y2+2by+b2-1=0(b∈R)内切,
∴=3-1,即a2+b2=4,ab≤(a2+b2)=2.
∴ab的最大值为2.]
2.(2017·杭州质检)过点P(1,)作圆x2+y2=1的两条切线,切点分别为A,B,则·=__________. 【导学号:51062278】
[如图所示,可知OA⊥AP,OB⊥BP,OP==2.
又OA=OB=1,可以求得AP=BP=,∠APB=60°.
故·=××cos 60°=.]
3.已知圆C的方程为x2+(y-4)2=4,点O是坐标原点,直线l:y=kx与圆C交于M,N两点.
(1)求k的取值范围;
(2)直线l能否将圆C分割成弧长的比为的两段弧?
若能,求出直线l的方程;若不能,请说明理由.
[解] (1)将y=kx代入圆C的方程x2+(y-4)2=4.
得(1+k2)x2-8kx+12=0.2分
∵直线l与圆C交于M,N两点,
∴Δ=(-8k)2-4×12(1+k2)>0,得k2>3,(*)
∴k的取值范围是(-∞,-)∪(,+∞).6分
(2)假设直线l将圆C分割成弧长的比为的两段弧,
则劣弧所对的圆心角∠MCN=90°,
由圆C:x2+(y-4)2=4知圆心C(0,4),半径r=2.9分
在Rt△MCN中,可求弦心距d=r·sin 45°=,
故圆心C(0,4)到直线kx-y=0的距离=,
∴1+k2=8,k=±,经验证k=±满足不等式(*),12分
故l的方程为y=±x.
因此,存在满足条件的直线l,其方程为y=±x.15分