- 140.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时跟踪检测(七) 函数的图象
一、选择题
1.函数y=e1-x2的图象大致是( )
2.为了得到函数y=2x-3-1的图象,只需把函数y=2x的图象上所有的点( )
A.向右平移3个单位长度,再向下平移1个单位长度
B.向左平移3个单位长度,再向下平移1个单位长度
C.向右平移3个单位长度,再向上平移1个单位长度
D.向左平移3个单位长度,再向上平移1个单位长度
3.(2015·海淀区期中测试)下列函数f(x)图象中,满足f>f(3)>f(2)的只可能是( )
4.设函数F(x)=f(x)+f(-x),x∈R,且是函数F(x)的一个单调递增区间.将函数F(x)的图象向右平移π个单位,得到一个新的函数G( x)的图象,则G(x)的一个单调递减区间是( )
A. B.
C. D.
5.(2015·成都模拟)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )
A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1)
C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)
6.已知函数f(x)的定义域为R,且f(x)=若方程f(x)=x+a有两个不同实根,则a的取值范围为( )
A.(-∞,1) B.(-∞,1]
C.(0,1) D.(-∞,+∞)
二、填空题
7.已知函数f(x)的图象如图所示,则函数g(x)=logf(x)的定义域是________.
8.函数f(x)=的图象的对称中心为________.
9.如图,定义在[-1,+∞)上的函数f(x)的图象由一条线段及抛物线的一部分组成,则f(x)的解析式为___________________________________________________________.
10.设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是____________.
三、解答题
11.已知函数f(x)=
(1)在如图所示给定的直角坐标系内画出f(x)的图象;
(2)写出f(x)的单调递增区间;
(3)由图象指出当x取什么值时f(x)有最值.
12.已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)若g(x)=f(x)+,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.
答案
1.选C 易知函数f(x)为偶函数,因此排除A,B;又因为f(x)=e1-x2>0,故排除D,因此选C.
2.选A y=2xy=2x-3y=2x-3-1.故选A.
3.选D 因为f>f(3)>f(2),所以函数f(x)有增有减,排除A,B.在C中,f<f(0)=1,f(3)>f(0),即f<f(3),排除C,选D.
4.选D ∵F(x)=f(x)+f(-x),x∈R,∴F(-x)=f(-x)+f(x)=F(x),∴F(x)为偶函数,∴为函数F(x)的一个单调递减区间.将F(x)的图象向右平移π个单位,得到一个新的函数G(x)的图象,则G(x)的一个单调递减区间是.
5.选D f(x)为奇函数,所以不等式<0化为<0,即xf(x)<0,f(x)的大致图象如图所示.所以xf(x)<0的解集为(-1,0)∪(0,1).
6.选A x≤0时,
f(x)=2-x-1,
00时,f(x)是周期函数,
如图所示.
若方程f(x)=x+a有两个不同的实数根,则函数f(x)的图象与直线y=x+a有两个不同交点,
故a<1,即a的取值范围是(-∞,1),故选A.
7.解析:当f(x)>0时,函数g(x)=log f(x)有意义,
由函数f(x)的图象知满足f(x)>0的x∈(2,8].
答案:(2,8]
8.解析:因为f(x)==1+,故f(x)的对称中心为(0,1).
答案:(0,1)
9.解析:当-1≤x≤0时,设解析式为y=kx+b,
则得∴y=x+1.
当x>0时,设解析式为y=a(x-2)2-1,
∵图象过点(4,0),∴0=a(4-2)2-1,得a=.
答案:f(x)=
10.解析:如图作出函数f(x)=|x+a|与g(x)=x-1的图象,观察图象可知:当且仅当-a≤1,即a≥-1时,不等式f(x)≥g(x)恒成立,因此a的取值范围是[-1,+∞).
答案:[-1,+∞)
11.解:(1)函数f(x)的图象如图所示.
(2)由图象可知,
函数f(x)的单调递增区间为[-1,0],[2,5].
(3)由图象知当x=2时,f(x)min=f(2)=-1,
当x=0时,f(x)max=f(0)=3.
12.解:(1)设f(x)图象上任一点P(x,y),则点P关于(0,1)点的对称点P′(-x,2-y)在h(x)的图象上,
即2-y=-x-+2,
∴y=f(x)=x+(x≠0).
(2)g(x)=f(x)+=x+,g′(x)=1-.
∵g(x)在(0,2]上为减函数,
∴1-≤0在(0,2]上恒成立,
即a+1≥x2在(0,2]上恒成立,
∴a+1≥4,即a≥3,
故a的取值范围是[3,+∞).