• 614.00 KB
  • 2021-06-16 发布

【数学】甘肃省张掖市临泽一中2019-2020学年高二下学期期中考试(理)

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
甘肃省张掖市临泽一中2019-2020学年 高二下学期期中考试(理)‎ ‎(考试时间:120分钟 试卷满分:150分)‎ 测试范围: 选修2-2.‎ 一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)‎ ‎1.已知复数(为虚数单位),则复数的虚部是( )‎ A.1 B.‎-1 ‎C. D.‎ ‎2.曲线与轴所围成的封闭图形的面积为( )‎ A.2 B. C. D.4‎ ‎3.已知复数z满足,则( )‎ A. B. C. D.‎ ‎4.利用反证法证明“若,则”时,假设正确的是( )‎ A.都不为2 B.且都不为2‎ C.不都为2 D.且不都为2‎ ‎5.设,,则( )‎ A. B. C. D.‎ ‎6.若曲线上任意一点处的切线的倾斜角都是锐角,那么整数等于( )‎ A.0 B.‎1 ‎C. D. ‎ ‎7.欧拉公式eix=cos x+isin x(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e2i表示的复数在复平面中对应的点位于(  )‎ A.第一象限 B.第二象限 C.第三象限 D.第四象限 ‎8.用数学归纳法证明(,)成立时,第二步归纳假设的正确写法为( )‎ A.假设时,命题成立 B.假设()时,命题成立 C.假设()时,命题成立 D.假设()时,命题成立 ‎9.函数的部分图象大致为( )‎ A. B. C. D.‎ ‎10.在复平面内,复数对应向量(为坐标原点),设,以射线为始边,为终边逆时针旋转的角为,则,法国数学家棣莫弗发现棣莫弗定理:,,则,由棣莫弗定理导出了复数乘方公式:,则( )‎ A. B. C. D.‎ ‎11.定义方程的实根叫做函数的“新驻点”,若函数,,的“新驻点”分别为,,,则,,的大小关系为( )‎ A. B. C. D.‎ ‎12.某莲藕种植塘每年的固定成本是1万元,每年最大规模的种植量是8万斤,每种植一斤藕,成本增加0.5元.如果销售额函数是 (是莲藕种植量,单位:万斤;销售额的单位:万元,是常数),若种植2万斤,利润是2.5万元,则要使利润最大,每年需种植莲藕( )‎ A.8万斤 B.6万斤 C.3万斤 D.5万斤 二、填空题(本题共4小题,每小题5分,共20分)‎ ‎13.一辆汽车沿直线方向行驶,刹车后汽车速度(v的单位:m/s,t的单位:s),则该汽车刹车后至停车时的距离为____________米.‎ ‎14.在平面几何中有如下结论:正三角形的内切圆面积为,外接圆面积为,则,推广到空间可以得到类似结论:已知正四面体的内切球体积为,外接球体积为,则____.‎ ‎15.在等差数列中,若,则有等式成立,类比上述性质,相应地:在等比数列中,若,则有等式________________________________成立.‎ ‎16.已知函数,若函数有四个零点,则实数的的取值范围是__________.‎ 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。‎ ‎17.(10分)已知复数,且为纯虚数.‎ ‎(1)求复数;‎ ‎(2)若,求复数的模.‎ ‎18.(12分)已知(i为虚数单位),求:‎ ‎(1);‎ ‎(2);‎ ‎(3)类比,探讨(,为虚数)的性质,求的值.‎ ‎19.(12分)已知是二次函数,方程有两个相等的实根,且.‎ ‎(1)求的解析式.‎ ‎(2)求曲线与曲线所围成的图形的面积.‎ ‎20.(12分)某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量(万只)与时间(年)(其中)的关系为.为有效控制有害昆虫数量、保护生态环境,环保部门通过实时监控比值(其中为常数,且)来进行生态环境分析.‎ ‎(1)当时,求比值取最小值时的值;‎ ‎(2)经过调查,环保部门发现:当比值不超过时不需要进行环境防护.为确保恰好3年不需要进行保护,求实数的取值范围.(为自然对数的底,)‎ ‎21.(12分)某公司为了获得更大的收益,每年要投入一定的资金用于广告促销,经调查,每年投入广告费t百万元,可增加销售额约为百万元.‎ ‎(Ⅰ)若该公司将一年的广告费控制在4百万元之内,则应投入多少广告费,才能使该公司由此增加的收益最大?‎ ‎(Ⅱ)现该公司准备共投入5百万元,分别用于广告促销和技术改造,经预测,每投入技术改造费百万元,可增加的销售额约为百万元,请设计一个资金分配方案,使该公司由此增加的收益最大.‎ ‎(注:收益=销售额-投入,这里除了广告费和技术改造费,不考虑其他的投入)‎ ‎22.(12分)已知函数 ‎(1)当时,求的单调区间;‎ ‎(2)若函数在区间上无零点,求的最小值.‎ 参考答案 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ B D D C A B B C D D B B ‎13.18 14. 15.16..‎ ‎17.(本小题满分10分)‎ ‎【答案】(1) (2)‎ ‎【解析】‎ ‎∵是纯虚数 ‎∴,且 ‎∴,∴‎ ‎∴‎ ‎18.(本小题满分12分)‎ ‎【答案】(1)3 (2)—1 (3)‎ ‎【解析】(1),‎ ‎,,,,‎ ‎.‎ ‎(2).‎ ‎(3)由(1)可知,,.‎ ‎19.(本小题满分12分)‎ ‎【答案】(1) (2)9‎ ‎【解析】(1)设,则 所以,.‎ ‎(2)或.‎ ‎.‎ ‎20.(本小题满分12分)‎ ‎【答案】(1) (2)‎ ‎【解析】(1)当时,,∴ ‎ 列表得:‎ ‎2‎ ‎0‎ 单调减 极小值 单调增 ‎∴在上单调递减,在上单调递增∴在时取最小值; ‎ ‎(2)∵ 根据(1)知:在上单调减,在上单调增,∵确保恰好3年不需要进行保护 ∴,解得:,实数的取值范围为.‎ ‎21.(本小题满分12分)‎ ‎【解析】(Ⅰ)设投入t百万元的广告费后增加的收益为f(t)百万元,‎ 则由, ‎ ‎∴当t=3时,f(t)取得最大值9,即投入3百万元的广告费时,该公司由此增加的收益最大. ‎ ‎(Ⅱ)用于技术改造的资金为x百万元,则用于广告促销的资金为(5-x)百万元,设由此增加的收益是g(x)百万元.‎ 则.‎ ‎.‎ 则当时,;当时,.‎ ‎∴当x=4时,g(x)取得最大值.‎ 即4百万元用于技术改造,1百万元用于广告促销,该公司由此增加的收益最大.‎ ‎22.(本小题满分12分)‎ ‎【答案】(Ⅰ)的单调递减区间为,单调递增区间为 (2).‎ ‎【解析】(1)当时,,定义域为,‎ 则,‎ 令,得,令,得 的单调递减区间为,单调递增区间为 ‎ ‎(2)函数在区间上无零点,‎ 在区间上,恒成立或恒成立,‎ ‎,‎ ‎,‎ ‎①当时,,‎ 在区间上,,‎ 记,‎ 则,‎ 在区间上,,‎ 在区间上,单调递减,‎ ‎,即,‎ ‎,‎ 即在区间上恒成立,满足题意;‎ ‎②当时,,,‎ ‎,‎ ‎,,‎ ‎,‎ 在上有零点,即函数在区间上有零点,不符合题意.‎ 综上所述,,此时,函数在区间上无零点,的最小值为.‎