- 180.93 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
回扣8 函数与导数
1.函数的定义域和值域
(1)求函数定义域的类型和相应方法
①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围;
②若已知f(x)的定义域为[a,b],则f(g(x))的定义域为不等式a≤g(x)≤b的解集;反之,已知f(g(x))的定义域为[a,b],则f(x)的定义域为函数y=g(x)(x∈[a,b])的值域.
(2)常见函数的值域
①一次函数y=kx+b(k≠0)的值域为R;
②二次函数y=ax2+bx+c(a≠0):当a>0时,值域为,当a<0时,值域为;
③反比例函数y=(k≠0)的值域为{y∈R|y≠0}.
2.函数的奇偶性、周期性
(1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x(定义域关于原点对称),都有f(-x)=-f(x)成立,则f(x)为奇函数(都有f(-x)=f(x)成立,则f(x)为偶函数).
(2)周期性是函数在其定义域上的整体性质,一般地,对于函数f(x),如果对于定义域内的任意一个x的值,若f(x+T)=f(x)(T≠0),则f(x)是周期函数,T是它的一个周期.
3.关于函数周期性、对称性的结论
(1)函数的周期性
①若函数f(x)满足f(x+a)=f(x-a),则f(x)为周期函数,2a是它的一个周期;
②设f(x)是R上的偶函数,且图象关于直线x=a(a≠0)对称,则f(x)是周期函数,2a是它的一个周期;
③设f(x)是R上的奇函数,且图象关于直线x=a(a≠0)对称,则f(x)是周期函数,4a是它的一个周期.
(2)函数图象的对称性
①若函数y=f(x)满足f(a+x)=f(a-x),
即f(x)=f(2a-x),
则f(x)的图象关于直线x=a对称;
②若函数y=f(x)满足f(a+x)=-f(a-x),
即f(x)=-f(2a-x),
则f(x)的图象关于点(a,0)对称;
③若函数y=f(x)满足f(a+x)=f(b-x),
则函数f(x)的图象关于直线x=对称.
4.函数的单调性
函数的单调性是函数在其定义域上的局部性质.
①单调性的定义的等价形式:设任意x1,x2∈[a,b],
那么(x1-x2)[f(x1)-f(x2)]>0⇔>0⇔f(x)在[a,b]上是增函数;
(x1-x2)[f(x1)-f(x2)]<0⇔<0⇔f(x)在[a,b]上是减函数.
②若函数f(x)和g(x)都是减函数,则在公共定义域内,f(x)+g(x)是减函数;若函数f(x)和g(x)都是增函数,则在公共定义域内,f(x)+g(x)是增函数;根据同增异减判断复合函数y=f(g(x))的单调性.
5.函数图象的基本变换
(1)平移变换
y=f(x)y=f(x-h),
y=f(x)y=f(x)+k.
(2)伸缩变换
y=f(x)y=f(ωx),
y=f(x)y=Af(x).
(3)对称变换
y=f(x)y=-f(x),
y=f(x)y=f(-x),
y=f(x)y=-f(-x).
6.准确记忆指数函数与对数函数的基本性质
(1)定点:y=ax(a>0,且a≠1)恒过(0,1)点;
y=logax(a>0,且a≠1)恒过(1,0)点.
(2)单调性:当a>1时,y=ax在R上单调递增;y=logax在(0,+∞)上单调递增;
当00的解集确定函数f(x)的单调增区间,由f′(x)<0的解集确定函数f(x)的单调减区间.
(2)由函数的单调性求参数的取值范围
①若可导函数f(x)在区间M上单调递增,则f′(x)≥0(x∈M)恒成立;若可导函数f(x)在区间M上单调递减,则f′(x)≤0(x∈M)恒成立;
②若可导函数在某区间上存在单调递增(减)区间,f′(x)>0(或f′(x)<0)在该区间上存在解集;
③若已知f(x)在区间I上的单调性,区间I中含有参数时,可先求出f(x)的单调区间,则I是其单调区间的子集.
10.利用导数研究函数的极值与最值
(1)求函数的极值的一般步骤
①确定函数的定义域;
②解方程f′(x)=0;
③判断f′(x)在方程f′(x)=0的根x0两侧的符号变化:
若左正右负,则x0为极大值点;
若左负右正,则x0为极小值点;
若不变号,则x0不是极值点.
(2)求函数f(x)在区间[a,b]上的最值的一般步骤
①求函数y=f(x)在[a,b]内的极值;
②比较函数y=f(x)的各极值与端点处的函数值f(a),f(b)的大小,最大的一个是最大值,最小的一个是最小值.
1.解决函数问题时要注意函数的定义域,要树立定义域优先原则.
2.解决分段函数问题时,要注意与解析式对应的自变量的取值范围.
3.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“及”连接或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.
4.判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响.
5.准确理解基本初等函数的定义和性质.如函数y=ax(a>0,a≠1)的单调性容易忽视字母a的取值讨论,忽视ax
>0;对数函数y=logax(a>0,a≠1)容易忽视真数与底数的限制条件.
6.易混淆函数的零点和函数图象与x轴的交点,不能把函数零点、方程的解、不等式解集的端点值进行准确互化.
7.已知可导函数f(x)在(a,b)上单调递增(减),则f′(x)≥0(≤0)对∀x∈(a,b)恒成立,不能漏掉“=”,且需验证“=”不能恒成立;已知可导函数f(x)的单调递增(减)区间为(a,b),则f′(x)>0(<0)的解集为(a,b).
8.f′(x)=0的解不一定是函数f(x)的极值点.一定要检验在x=x0的两侧f′(x)的符号是否发生变化,若变化,则为极值点;若不变化,则不是极值点.
1.若曲线f(x)=x4-4x在点A处的切线平行于x轴,则点A的坐标为( )
A.(-1,2) B.(1,-3)
C.(1,0) D.(1,5)
答案 B
解析 对f(x)=x4-4x,求导得f′(x)=4x3-4,由在点A处的切线平行于x轴,可得4x3-4=0,解得x=1,即点A的坐标为(1,-3).
2.若函数f(x)=则f(-3)的值为( )
A.5 B.-1 C.-7 D.2
答案 D
解析 依题意,f(-3)=f(-3+2)=f(-1)
=f(-1+2)=f(1)=1+1=2,故选D.
3.若函数y=f(x)的导函数y=f′(x)的图象如图所示,则y=f(x)的图象可能为( )
答案 C
解析 根据f′(x)的符号,f(x)图象应该是先下降后上升,最后下降,排除A,D;从适合f′(x)=0的点可以排除B,故选C.
4.(2016·全国Ⅰ)函数y=2x2-e|x|在[-2,2]的图象大致为( )
答案 D
解析 f(2)=8-e2>8-2.82>0,排除A;f(2)=8-e2<8-2.72<1,排除B;当x>0时,f(x)=2x2-ex,f′(x)=4x-ex,当x∈时,f′(x)<×4-e0=0,因此f(x)在上单调递减,排除C,故选D.
5.函数f(x)=ex+4x-3的零点所在的区间为( )
A. B.
C. D.
答案 C
解析 由题意可知,f(0)=-2<0,f=-1>0,f=-2<0,
根据函数零点的判定定理知,零点所在的区间为,故选C.
6.已知函数f(x)为奇函数,且在[0,2]上单调递增,若f(log2m)时,f=f,则f(6)等于( )
A.-2 B.-1 C.0 D.2
答案 D
解析 当x>时,f=f,即f(x)=f(x+1),∴T=1,∴f(6)=f(1).当x<0时,f(x)=x3-1且当-1≤x≤1时,f(-x)=-f(x),∴f(6)=f(1)=-f(-1)=2,故选D.
9.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于( )
A.11或18 B.11
C.18 D.17或18
答案 C
解析 ∵函数f(x)=x3+ax2+bx+a2在x=1处有极值10,
又f′(x)=3x2+2ax+b,∴f(1)=10,且f′(1)=0,
即解得或
而当时,函数在x=1处无极值,故舍去.
∴f(x)=x3+4x2-11x+16,∴f(2)=18.
10.已知奇函数f(x)是定义在R上的可导函数,其导函数为f′(x),当x>0时,有2f(x)+xf′(x)>x2,则不等式(x+2 018)2f(x+2 018)+4f(-2)<0的解集为( )
A.(-∞,-2 016) B.(-2 016,-2 012)
C.(-∞,-2 018) D.(-2 016,0)
答案 A
解析 由题意观察联想可设g(x)=x2f(x),g′(x)=2xf(x)+x2f′(x),结合条件x>0,2f(x)+xf′(x)>x2,得g′(x)=2xf(x)+x2f′(x)>0,g(x)=x2f(x)在(0,+∞)上为增函数.
又f(x)为R上的奇函数,所以g(x)为奇函数,
所以g(x)在(-∞,0)上为增函数.
由(x+2 018)2f(x+2 018)+4f(-2)<0,
可得(x+2 018)2f(x+2 018)<4f(2),
即g(x+2 018)0.02,
所以0≤x≤1不合题意,
又由x>1,得·x≤,得x≤,
所以x≥4,故至少要过4小时后才能开车.
13.偶函数f(x)满足f(1-x)=f(1+x),且当x∈[0,1]时,f(x)=,若直线kx-y+k=0(k>0)与函数f(x)的图象有且仅有三个交点,则k的取值范围是________.
答案
解析 由f(1-x)=f(1+x)可知,函数关于x=1对称,因为f(x)是偶函数,所以f(1-x)=f(1+x)=f(x-1),即f(x+2)=f(x),所以函数的周期是2,由y=f(x)=,得(x-1)2+y2=1(y≥0,x∈[0,1]),
作出函数y=f(x)和直线y=k(x+1)的图象,
要使直线kx-y+k=0(k>0)与函数f(x)的图象有且仅有三个交点,则由图象可知,0)的极大值是正数,极小值是负数,则a的取值范围是________.
答案
解析 f′(x)=3x2-3a2=3(x+a)(x-a),
由f′(x)=0,得x=±a,
当-aa或x<-a时,f′(x)>0,函数单调递增.
∴f(-a)=-a3+3a3+a>0且f(a)=a3-3a3+a<0,
解得a>.∴a的取值范围是.
15.已知函数f(x)=.
(1)若f(x)在区间(-∞,2)上为单调递增函数,求实数a的取值范围;
(2)若a=0,x0<1,设直线y=g(x)为函数f(x)的图象在x=x0处的切线,求证:f(x)≤g(x).
(1)解 易得f′(x)=-,
由已知f′(x)≥0对x∈(-∞,2)恒成立,
故x≤1-a对x∈(-∞,2)恒成立,
∴1-a≥2,∴a≤-1.
故实数a的取值范围为(-∞,-1].
(2)证明 若a=0,则f(x)=.
函数f(x)的图象在x=x0处的切线方程为
y=g(x)=f′(x0)(x-x0)+f(x0).
令h(x)=f(x)-g(x)=f(x)-f′(x0)(x-x0)-f(x0),x∈R,
则h′(x)=f′(x)-f′(x0)
=-=.
设φ(x)=(1-x)-(1-x0)ex,x∈R,
则φ′(x)=--(1-x0)ex,∵x0<1,∴φ′(x)<0,
∴φ(x)在R上单调递减,又φ(x0)=0,
∴当x0,当x>x0时,φ(x)<0,
∴当x0,当x>x0时,h′(x)<0,
∴h(x)在区间(-∞,x0)上为增函数,在区间(x0,+∞)上为减函数,
∴当x∈R时,h(x)≤h(x0)=0,
∴f(x)≤g(x).
16.已知函数f(x)=(e为自然对数的底数).
(1)求函数f(x)的单调区间;
(2)设函数φ(x)=xf(x)+tf′(x)+,存在实数x1,x2∈[0,1],使得2φ(x1)<φ(x2)成立,求实数t的取值范围.
解 (1)∵函数的定义域为R,f′(x)=-,
∴当x<0时,f′(x)>0;当x>0时,f′(x)<0,
∴f(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减.
∴f(x)的单调递增区间为(-∞,0),
单调递减区间为(0,+∞).
(2)存在x1,x2∈[0,1],使得2φ(x1)<φ(x2)成立,
则2[φ(x)]min<[φ(x)]max.
∵φ(x)=xf(x)+tf′(x)+e-x=,
∴φ′(x)==-.
①当t≥1时,φ′(x)≤0,φ(x)在[0,1]上单调递减,
∴2φ(1)<φ(0),即t>3->1;
②当t≤0时,φ′(x)≥0,φ(x)在[0,1]上单调递增,
∴2φ(0)<φ(1),即t<3-2e<0;
③当0