- 291.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第五节 椭 圆
[考纲传真] (教师用书独具)1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义、几何图形、标准方程及简单性质(范围、对称性、顶点、离心率).3.理解数形结合思想.4.了解椭圆的简单应用.
(对应学生用书第119页)
[基础知识填充]
1.椭圆的定义
(1)平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
(2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.
①当2a>|F1F2|,即a>c时,M点的轨迹为椭圆;
②当2a=|F1F2|,即a=c时,M点的轨迹为线段F1F2;
③当2a<|F1F2|,即a<c时,M点的轨迹不存在.
2.椭圆的标准方程和几何性质
标准方程
+=1(a>b>0)
+=1(a>b>0)
图形
性
质
范围
-a≤x≤a
-b≤y≤b
-b≤x≤b
-a≤y≤a
对称性
对称轴:坐标轴;对称中心:原点
顶点
A1(-a,0),A2(a,0),
B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a),
B1(-b,0),B2(b,0)
离心率
e=,且e∈(0,1)
a,b,c的关系
c2=a2-b2
[知识拓展]
1.点P(x0,y0)和椭圆的关系
(1)点P(x0,y0)在椭圆内⇔+<1.
(2)点P(x0,y0)在椭圆上⇔+=1.
(3)点P(x0,y0)在椭圆外⇔+>1.
2.焦点三角形
椭圆+=1(a>b>0)上一点P(x0,y0)与两焦点构成的焦点三角形F1PF2中,若∠F1PF2=θ,则S△F1PF2=|PF1||PF2|·sin θ=·b2=b2tan
3.过焦点垂直于长轴的弦长
椭圆过焦点垂直于长轴的半弦长为.
[基本能力自测]
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.( )
(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).( )
(3)椭圆的离心率e越大,椭圆就越圆.( )
(4)椭圆既是轴对称图形,又是中心对称图形.( )
[答案] (1)× (2)√ (3)× (4)√
2.(教材改编)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是( )
A.+=1 B.+=1
C.+=1 D.+=1
D [椭圆的焦点在x轴上,c=1.
又离心率为=,故a=2,b2=a2-c2=4-1=3,
故椭圆的方程为+=1.]
3.(2015·广东高考)已知椭圆+=1(m>0)的左焦点为F1(-4,0),则m=( )
A.2 B.3
C.4 D.9
B [由左焦点为F1(-4,0)知c=4.又a=5,∴25-m2=16,解得m=3或-3.又m>0,故m=3.]
4.(2016·全国卷Ⅰ)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为( )
A. B.
C. D.
B [如图,|OB|为椭圆中心到l的距离,则|OA|·|OF|=|AF|·|OB|,即bc=a·,所以e==.]
5.椭圆+=1的左焦点为F,直线x=m与椭圆相交于点A,B,当△FAB的周长最大时,△FAB的面积是__________.
3 [直线x=m过右焦点(1,0)时,△FAB的周长最大,由椭圆定义知,其周长为4a=8,即a=2,
此时,|AB|=2×==3,
∴S△FAB=×2×3=3.]
(对应学生用书第120页)
椭圆的定义与标准方程
(1)如图851所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是( )
图851
A.椭圆 B.双曲线
C.抛物线 D.圆
(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(,1),P2(-,-),则椭圆的方程为________. 【导学号:79170290】
(3)设F1,F2分别是椭圆E:x2+=1(0|OF|.
∴P点的轨迹是以O,F为焦点的椭圆.
(2)设椭圆方程为mx2+ny2=1(m>0,n>0且m≠n).
∵椭圆经过点P1,P2,∴点P1,P2的坐标适合椭圆方程.
则
①②两式联立,解得
∴所求椭圆方程为+=1.
(3)不妨设点A在第一象限,设半焦距为c,
则F1(-c,0),F2(c,0).
∵AF2⊥x轴,则A(c,b2)(其中c2=1-b2,0|F1F2|这一条件.
(2)当涉及到焦点三角形有关的计算或证明时,常利用勾股定理、正(余)弦定理、椭圆定义,但一定要注意|PF1|+|PF2|与|PF1|·|PF2|的整体代换.
2.求椭圆标准方程的基本方法是待定系数法,具体过程是先定位,再定量,即首先确定焦点所在的位置,然后再根据条件建立关于a,b的方程组,若焦点位置不确定,可把椭圆方程设为Ax2+By2=1(A>0,B>0,A≠B)的形式.
[变式训练1] (1)(1)与圆C1:(x+3)2+y2=1外切,且与圆C2:(x-3)2+y2=81内切的动圆圆心P的轨迹方程为________.
(2)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为椭圆C上的一点,且∠F1PF2=60°,S△PF1F2=3,则b=________.
(3)已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交C于A,B两点,且|AB|=3,则C的方程为__________. 【导学号:79170291】
(1)+=1 (2)3 (3)+=1 [(1)设动圆的半径为r,圆心为P(x,y),则有|PC1|=r+1,|PC2|=9-r.
所以|PC1|+|PC2|=10>|C1C2|,
即P在以C1(-3,0),C2(3,0)为焦点,长轴长为10的椭圆上,得点P的轨迹方程为+=1.
(2)由题意得|PF1|+|PF2|=2a,
又∠F1PF2=60°,
所以|PF1|2+|PF2|2-2|PF1||PF2|cos 60°=|F1F2|2,
所以(|PF1|+|PF2|)2-3|PF1||PF2|=4c2,
所以3|PF1||PF2|=4a2-4c2=4b2,
所以|PF1||PF2|=b2,
所以S△PF1F2=|PF1||PF2|sin 60°=×b2×=b2=3,所以b=3.
(3)依题意,设椭圆C:+=1(a>b>0).
过点F2(1,0)且垂直于x轴的直线被曲线C截得弦长|AB|=3,
∴点A必在椭圆上,∴+=1. ①
又由c=1,得1+b2=a2. ②
由①②联立,得b2=3,a2=4.
故所求椭圆C的方程为+=1.]
椭圆的几何性质
(1)(2018·泉州质检)已知椭圆+=1的长轴在x轴上,焦距为4,则m等于( )
A.8 B.7
C.6 D.5
(2)(2016·江苏高考)如图852,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是 ________.
图852
(1)A (2) [(1)∵椭圆+=1的长轴在x轴上,
∴解得6<m<10.
∵焦距为4,∴c2=m-2-10+m=4,解得m=8.
(2)将y=代入椭圆的标准方程,得+=1,
所以x=±a,故B,C.
又因为F(c,0),所以=,=.
因为∠BFC=90°,所以·=0,
所以+2=0,即c2-a2+b2=0,将b2=a2-c2代入并化简,得a2=c2,所以e2==,所以e=(负值舍去).]
[规律方法] 1.与椭圆几何性质有关的问题要结合图形进行分析.
2.求椭圆离心率的主要方法有:(1)直接求出a,c的值,利用离心率公式直接求解.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e的方程(或不等式)求解.
[变式训练2] (1)已知椭圆+=1的离心率为,则k的值为( )
A.-21 B.21
C.-或21 D.或-21
(2)过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为椭圆的右焦点,若∠F1PF2=60°,则椭圆的离心率为( ) 【导学号:79170292】
A. B.
C. D.
(3)(2017·全国卷Ⅲ)已知椭圆C:+=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为( )
A. B.
C. D.
(1)D (2)B (3)A [(1)当9>4-k>0,即-5<k<4时,
a=3,c2=9-(4-k)=5+k,
∴=,解得k=.
当9<4-k,即k<-5时,a=,c2=-k-5,
∴=,解得k=-21,所以k的值为或-21.
(2)由题意,可设P.
因为在Rt△PF1F2中,|PF1|=,|F1F2|=2c,∠F1PF2=60°,所以=.又因为b2=a2-c2,所以c2+2ac-a2=0,即e2+2e-=0,解得e=或e=-,又因为e∈(0,1),所以e=.
(3)由题意知以A1A2为直径的圆的圆心坐标为(0,0),半径为A.
又直线bx-ay+2ab=0与圆相切,
∴圆心到直线的距离d==a,解得a=b,
∴=,
∴e=====.
故选A.]
直线与椭圆的位置关系
角度1 由位置关系研究椭圆的方程与性质
已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为.
图853
(1)求椭圆E的离心率;
(2)如图853,AB是圆M:(x+2)2+(y-1)2=的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.
[解] (1)过点(c,0),(0,b)的直线方程为bx+cy-bc=0,则原点O到该直线的距离d==, 3分
由d=c,得a=2b=2 ,解得离心率=. 5分
(2)由(1)知,椭圆E的方程为x2+4y2=4b2.①
依题意,圆心M(-2,1)是线段AB的中点,且|AB|=.
易知,AB与x轴不垂直,设其方程为y=k(x+2)+1,
代入①得(1+4k2)x2+8k(2k+1)x+4(2k+1)2-4b2=0. 8分
设A(x1,y1),B(x2,y2),
则x1+x2=-,x1x2=.
由x1+x2=-4,得-=-4,解得k=.
从而x1x2=8-2b2. 10分
于是|AB|=|x1-x2|
==.
由|AB|=,得=,解得b2=3.
故椭圆E的方程为+=1. 12分
角度2 由位置关系研究直线的性质
(2015·全国卷Ⅱ)已知椭圆C:+=1(a>b>0)的离心率为,点(2,)在C上.
(1)求C的方程.
(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.
[解] (1)由题意有=,+=1,
解得a2=8,b2=4. 3分
所以C的方程为+=1. 5分
(2)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).
7分
将y=kx+b代入+=1,得
(2k2+1)x2+4kbx+2b2-8=0. 9分
故xM==,yM=k·xM+b=.
于是直线OM的斜率kOM==-,
即kOM·k=-.
所以直线OM的斜率与直线l的斜率的乘积为定值. 12分
[规律方法] 1.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.
2.设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=
=(k为直线斜率).