- 72.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时分层训练(十五)
导数与函数的极值、最值
A组 基础达标
(建议用时:30分钟)
一、选择题
1.下列函数中,既是奇函数又存在极值的是( )
A.y=x3 B.y=ln(-x)
C.y=xe-x D.y=x+
D [由题可知,B,C选项中的函数不是奇函数,A选项中,函数y=x3单调递增(无极值),而D选项中的函数既为奇函数又存在极值.]
2.当函数y=x·2x取极小值时,x等于( )
【导学号:01772089】
A. B.-
C.-ln 2 D.ln 2
B [令y′=2x+x·2xln 2=0,
∴x=-.
经验证,-为函数y=x·2x的极小值点.]
3.函数f(x)=x2-ln x的最小值为( )
A. B.1
C.0 D.不存在
A [f′(x)=x-=,且x>0,令f′(x)>0,得x>1,令f′(x)<0,得0<
x<1,所以f(x)在x=1处取得极小值也是最小值,且f(1)=-ln 1=.]
4.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是( )
【导学号:01772090】
A.(-1,2) B.(-∞,-3)∪(6,+∞)
C.(-3,6) D.(-∞,-1)∪(2,+∞)
B [∵f′(x)=3x2+2ax+(a+6),
由已知可得f′(x)=0有两个不相等的实根,
∴Δ=4a2-4×3(a+6)>0,即a2-3a-18>0,
∴a>6或a<-3.]
5.设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数f(x)ex的一个极值点,则下列图象不可能为y=f(x)图象的是( )
A B C D
D [因为[f(x)ex]′=f′(x)ex+f(x)(ex)′=[f(x)+f′(x)]ex,且x=-1为函数f(x)ex的一个极值点,所以f(-1)+f′(-1)=0.选项D中,f(-1)>0,f′(-1)>0,不满足f′(-1)+f(-1)=0.]
二、填空题
6.函数f(x)=x3+x2-3x-4在[0,2]上的最小值是________.
【导学号:01772091】
- [f′(x)=x2+2x-3,令f′(x)=0得x=1(x=-3舍去),又f(0)=-4,f(1)=-,f(2)=-,故f(x)在[0,2]上的最小值是f(1)=-.]
7.设a∈R,若函数y=ex+ax有大于零的极值点,则实数a的取值范围是________.
(-∞,-1) [∵y=ex+ax,∴y′=ex+a.
∵函数y=ex+ax有大于零的极值点,
则方程y′=ex+a=0有大于零的解,
∵x>0时,-ex<-1,∴a=-ex<-1.]
8.某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p元,销量Q(单位:件)与零售价p(单位:元)有如下关系:Q=8 300-170p-p2,则该商品零售价定为________元时利润最大,利润的最大值为________元.
30 23 000 [设该商品的利润为y元,由题意知,
y=Q(p-20)=-p3-150p2+11 700p-166 000,
则y′=-3p2-300p+11 700,
令y′=0得p=30或p=-130(舍),
当p∈(0,30)时,y′>0,当p∈(30,+∞)时,y′<0,
因此当p=30时,y有最大值,ymax=23 000.]
三、解答题
9.已知函数f(x)=-x3+ax2+b(a,b∈R).
(1)要使f(x)在(0,2)上单调递增,试求a的取值范围;
(2)当a<0时,若函数满足y极大=1,y极小=-3,试求y=f(x)的解析式.
[解] (1)f′(x)=-3x2+2ax.
依题意f′(x)≥0在(0,2)上恒成立,
即2ax≥3x2.∵x>0,∴2a≥3x,∴2a≥6,∴a≥3,
即a的取值范围是[3,+∞).5分
(2)∵f′(x)=-3x2+2ax=x(-3x+2a).
∵a<0,当x∈时,f′(x)≤0,f(x)递减.
当x∈时,f′(x)>0,f(x)递增.
当x∈[0,+∞)时,f′(x)≤0,f(x)递减. 8分
∴⇒
∴f(x)=-x3-3x2+1. 12分
10.据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为k(k>0).现已知相距18 km的A,B两家化工厂(污染源)的污染强度分别为a,b,它们连线上任意一点C处的污染指数y
等于两化工厂对该处的污染指数之和.设AC=x(km).
(1)试将y表示为x的函数;
(2)若a=1,且x=6时,y取得最小值,试求b的值.
[解] (1)设点C受A污染源污染程度为,点C受B污染源污染程度为,其中k为比例系数,且k>0,从而点C处受污染程度y=+.5分
(2)因为a=1,所以y=+,
y′=k,8分
令y′=0,得x=,
又此时x=6,解得b=8,经验证符合题意,
所以,污染源B的污染强度b的值为8.12分
B组 能力提升
(建议用时:15分钟)
1.(2017·石家庄一模)若函数f(x)=x3+ax2+bx(a,b∈R)的图象与x轴相切于一点A(m,0)(m≠0),且f(x)的极大值为,则m的值为( )
【导学号:01772092】
A.- B.-
C. D.
D [由题意可得f(m)=m3+am2+bm=0,m≠0,则m2+am+b=0 ①,且f′(m)=3m2+2am+b=0 ②,①-②化简得m=-,f′(x)=3x2+2ax+b的两根为-和-,则b=,f=,解得a=-3,m=,故选D.]
2.(2016·北京高考改编)设函数f(x)=则f(x)的最大值为________.
2 [当x>0时,f(x)=-2x<0;当x≤0时,f′(x)=3x2-3=3(x-1)(x
+1),当x<-1时,f′(x)>0,f(x)是增函数,当-1<x<0时,f′(x)<0,f(x)是减函数,∴f(x)≤f(-1)=2,∴f(x)的最大值为2.]
3.已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16.
(1)求a,b的值;
(2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.
[解] (1)因为f(x)=ax3+bx+c,
故f′(x)=3ax2+b.2分
由于f(x)在点x=2处取得极值c-16,
故有即
化简得解得 5分
(2)由(1)知f(x)=x3-12x+c,
f′(x)=3x2-12=3(x-2)(x+2),
令f′(x)=0,得x1=-2,x2=2.
当x∈(-∞,-2)时,f′(x)>0,
故f(x)在(-∞,-2)上为增函数; 7分
当x∈(-2,2)时,f′(x)<0,
故f(x)在(-2,2)上为减函数; 8分
当x∈(2,+∞)时,f′(x)>0,
故f(x)在(2,+∞)上为增函数.
由此可知f(x)在x=-2处取得极大值,
f(-2)=16+c,
f(x)在x=2处取得极小值f(2)=c-16.
由题设条件知16+c=28,解得c=12. 10分
此时f(-3)=9+c=21,f(3)=-9+c=3,
f(2)=-16+c=-4,
因此f(x)在[-3,3]上的最小值为f(2)=-4. 12分