- 56.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
平面向量的基本定理及坐标表示
【考点梳理】
1.平面向量基本定理
(1)定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.
(2)基底:不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.
2.平面向量的坐标表示
在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底,该平面内的任一向量a可表示成a=xi+yj,由于a与数对(x,y)是一一对应的,把有序数对(x,y)叫做向量a的坐标,记作a=(x,y),其中a在x轴上的坐标是x,a在y轴上的坐标是y.
3.平面向量的坐标运算
(1)向量加法、减法、数乘及向量的模
设a=(x1,y1),b=(x2,y2),则
a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),
λa=(λx1,λy1),|a|=.
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标.
②设A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1),
||=.
4.平面向量共线的坐标表示
设a=(x1,y1),b=(x2,y2),其中b≠0.a,b共线⇔x1y2-x2y1=0.
【考点突破】
考点一、平面向量基本定理及其应用
【例1】(1)如果e1,e2是平面α内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是 ( )
A.e1与e1+e2
B.e1-2e2与e1+2e2
C.e1+e2与e1-e2
D.e1+3e2与6e2+2e1
(2)在平行四边形ABCD中,E和F分别是边CD和BC的中点,若=λ+μ,其中λ,μ∈R,则λ+μ=________.
[答案] (1)D (2)
[解析] (1)选项A中,设e1+e2=λe1,则无解;
选项B中,设e1-2e2=λ(e1+2e2),则无解;
选项C中,设e1+e2=λ(e1-e2),则无解;
选项D中,e1+3e2=(6e2+2e1),所以两向量是共线向量.
(2)选择,作为平面向量的一组基底,则=+,=+,=+,
又=λ+μ=+,
于是得解得
所以λ+μ=.
【类题通法】
1.利用平面向量基本定理表示向量时,要选择一组恰当的基底 表示其他向量,即用特殊向量表示一般向量.
2.利用已知向量表示未知向量,实质就是利用三角形法则进行向量的加减运算,在解题时,注意方程思想的运用.如解答本题(2)的关键是根据平面向量基本定理列出关于λ,μ的方程组.
【对点训练】
如图,在梯形ABCD中,AD∥BC,且AD=BC,E,F分别为线段AD与BC的中点.设=a,=b,则=________,=________,=________(用向量a,b表示).
[答案] b-a b-a a-b
[解析] =++=-b-a+b=b-a,=+=-b+=b-a,=+=-b-=a-b.
考点二、平面向量的坐标运算
【例2】已知A(-2,4),B(3,-1),C(-3,-4).设=a,=b,=c,且=3c,=-2b,
(1)求3a+b-3c;
(2)求满足a=mb+nc的实数m,n;
(3)求M,N的坐标及向量的坐标.
[解析] 由已知得a=(5,-5),b=(-6,-3),c=(1,8).
(1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8)
=(15-6-3,-15-3-24)=(6,-42).
(2)∵mb+nc=(-6m+n,-3m+8n),
∴解得
(3)设O为坐标原点.∵=-=3c,
∴=3c+=(3,24)+(-3,-4)=(0,20).
∴M(0,20).
又∵=-=-2b,
∴=-2b+=(12,6)+(-3,-4)=(9,2),
∴N(9,2),∴=(9,-18).
【类题通法】
1. 向量的坐标运算主要是利用向量加、减、数乘运算的法则
进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.常利用向量相等则其坐标相同列方程(组)求解.
2.平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标 进行,实现了向量运算完全代数化,将数与形紧密结合起 .
【对点训练】
已知a=(1,t),b=(t,-6),则|2a+b|的最小值为________.
[答案] 2
[解析] 由条件得2a+b=(2+t,2t-6),所以|2a+b|==,当t=2时,|2a+b|的最小值为2.
考点三、平面向量共线的坐标表示
【例3】(1)已知向量a=(-1,1),b=(3,m),若a∥(a+b),则m=( )
A.-2 B.2
C.-3 D.3
(2)已知梯形ABCD,其中AB∥CD,且DC=2AB,三个顶点A(1,2),B(2,1),C(4,2),则点D的坐标为________.
[答案] (1)C (2)(2,4)
[解析] (1)由题意可知a+b=(2,1+m),
∵a∥(a+b),
∴2+(m+1)=0⇒m=-3.
(2)∵在梯形ABCD中,DC=2AB,
∴=2.设点D的坐标为(x,y),
则=(4,2)-(x,y)=(4-x,2-y).
=(2,1)-(1,2)=(1,-1),
∴(4-x,2-y)=2(1,-1),
即(4-x,2-y)=(2,-2),
∴解得
故点D的坐标为(2,4).
【类题通法】
1.两平面向量共线的充要条件有两种形式:(1)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2-x2y1=0;(2)若a∥b(a≠0),则b=λa.
2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例求解.
【对点训练】
1.已知向量a=(1-sin θ,1),b=,若a∥b,则锐角θ=________.
[答案]
[解析] 由a∥b,得(1-sin θ)(1+sin θ)=,
所以cos2θ=,
所以cos θ=或-,又θ为锐角,所以θ=.
2.已知向量=(1,-3),=(2,-1),=(k+1,k-2),若A,B,C三点能构成三角形,则实数k应满足的条件是________.
[答案] k≠1
[解析] 若点A,B,C能构成三角形,则向量,不共线.
因为=-=(2,-1)-(1,-3)=(1,2),
=-=(k+1,k-2)-(1,-3)=(k,k+1),
所以1×(k+1)-2k≠0,解得k≠1.