- 1.17 MB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
§12.1 事件与概率、古典概型
最新考纲
考情考向分析
1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.
2.了解两个互斥事件的概率加法公式.
3.理解古典概型及其概率计算公式.
4.会计算一些随机事件所含的基本事件数及事件发生的概率.
以考查随机事件、互斥事件与对立事件的概率为主,常与事件的频率交汇考查.本节内容在高考中三种题型都有可能出现,随机事件的频率与概率的题目往往以解答题的形式出现,互斥事件、对立事件的概念及概率常常以选择、填空题的形式出现.
1.事件
(1)不可能事件、必然事件、随机事件:
在同样的条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果在每次试验中一定会发生,它称为必然事件;有的结果可能发生,也可能不发生,它称为随机事件.
(2)基本事件、基本事件空间:
试验连同它出现的每一个结果称为一个基本事件,它是试验中不能再分的最简单的随机事件;所有基本事件构成的集合称为基本事件空间,基本事件空间常用大写希腊字母Ω表示.
2.概率与频率
(1)概率定义:在n次重复进行的试验中,事件A发生的频率,当n很大时,总是在某个常数附近摆动,随着n的增加,摆动幅度越来越小,这时就把这个常数叫做事件A的概率,记作
P(A).
(2)概率与频率的关系:概率可以通过频率来“测量”,频率是概率的一个近似.
3.事件的关系与运算
名称
定义
并事件(和事件)
由事件A和B至少有一个发生所构成的事件C
互斥事件
不可能同时发生的两个事件A、B
互为对立事件
不能同时发生且必有一个发生的两个事件A、B
4.概率的几个基本性质
(1)概率的取值范围:0≤P(A)≤1.
(2)必然事件的概率P(E)=1.
(3)不可能事件的概率P(F)=0.
(4)概率的加法公式
如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).
(5)对立事件的概率
若事件A与事件B互为对立事件,则P(A)=1-P(B).
5.基本事件的特点
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
6.古典概型的两个特点
(1)有限性:在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件;
(2)等可能性:每个基本事件发生的可能性是均等的.
7.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=.
8.古典概型的概率公式
P(A)=.
概念方法微思考
1.随机事件A发生的频率与概率有何区别与联系?
提示 随机事件A发生的频率是随机的,而概率是客观存在的确定的常数,但在大量随机试验中事件A发生的频率稳定在事件A发生的概率附近.
2.随机事件A,B互斥与对立有何区别与联系?
提示 当随机事件A,B互斥时,不一定对立,当随机事件A,B对立时,一定互斥.
3.任何一个随机事件与基本事件有何关系?
提示 任何一个随机事件都等于构成它的每一个基本事件的和.
4.如何判断一个试验是否为古典概型?
提示 一个试验是否为古典概型,关键在于这个试验是否具有古典概型的两个特征:有限性和等可能性.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)事件发生的频率与概率是相同的.( × )
(2)在大量重复试验中,概率是频率的稳定值.( √ )
(3)两个事件的和事件是指两个事件都得发生.( × )
(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.
( × )
(5)从市场上出售的标准为500±5 g的袋装食盐中任取一袋测其重量,属于古典概型.( × )
题组二 教材改编
2.一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( )
A.至多有一次中靶 B.两次都中靶
C.只有一次中靶 D.两次都不中靶
答案 D
解析 “至少有一次中靶”的对立事件是“两次都不中靶”.
3.袋中装有6个白球,5个黄球,4个红球,从中任取一球,则取到白球的概率为( )
A. B. C. D.
答案 A
解析 从袋中任取一球,有15种取法,其中取到白球的取法有6种,则所求概率为P==.
4.同时掷两个骰子,向上点数不相同的概率为________.
答案
解析 掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率P=1-=.
题组三 易错自纠
5.将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( )
A.必然事件 B.随机事件
C.不可能事件 D.无法确定
答案 B
解析 抛掷10次硬币,正面向上的次数可能为0~10,都有可能发生,正面向上5次是随机事件.
6.安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为( )
A. B. C. D.
答案 B
解析 由题意可得,甲连续三天参加活动的所有情况为:第1~3天,第2~4天,第3~5天,第4~6天,共四种情况,∴所求概率P==.故选B.
7.(2018·沈阳模拟)从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为______.
答案 0.35
解析 ∵事件A={抽到一等品},且P(A)=0.65,
∴事件“抽到的产品不是一等品”的概率为
P=1-P(A)=1-0.65=0.35.
题型一 随机事件
命题点1 随机事件的关系
例1 (1)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是( )
A.至多有一张移动卡 B.恰有一张移动卡
C.都不是移动卡 D.至少有一张移动卡
答案 A
解析 “至多有一张移动卡”包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.
(2)口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出两个球,事件A=“
取出的两个球同色”,B=“取出的两个球中至少有一个黄球”,C=“取出的两个球中至少有一个白球”,D=“取出的两个球不同色”,E=“取出的两个球中至多有一个白球”.下列判断中正确的序号为____________.
①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④P(C∪E)=1;⑤P(B)=P(C).
答案 ①④
解析 当取出的两个球为一黄一白时,B与C都发生,②不正确;当取出的两个球中恰有一个白球时,事件C与E都发生,③不正确;显然A与D是对立事件,①正确;C∪E为必然事件,P(C∪E)=1,④正确;P(B)=,P(C)=,⑤不正确.
命题点2 随机事件的频率与概率
例2 (2017·全国Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温
[10,15)
[15,20)
[20,25)
[25,30)
[30,35)
[35,40]
天数
2
16
36
25
7
4
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.
(2)当这种酸奶一天的进货量为450瓶时,
若最高气温不低于25,则Y=6×450-4×450=900;
若最高气温位于区间[20,25),则Y=6×300+2(450-300)-4×450=300;
若最高气温低于20,则Y=6×200+2(450-200)-4×450=-100,
所以,Y的所有可能值为900,300,-100.
Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为
=0.8.
因此Y大于零的概率的估计值为0.8.
命题点3 互斥事件与对立事件
例3 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:
(1)取出1球是红球或黑球的概率;
(2)取出1球是红球或黑球或白球的概率.
解 方法一 (利用互斥事件求概率)
记事件A1={任取1球为红球},
A2={任取1球为黑球},
A3={任取1球为白球},
A4={任取1球为绿球},
则P(A1)=,P(A2)==,P(A3)==,
P(A4)=.
根据题意知,事件A1,A2,A3,A4彼此互斥,
由互斥事件的概率公式,得
(1)取出1球是红球或黑球的概率为
P(A1∪A2)=P(A1)+P(A2)=+=.
(2)取出1球是红球或黑球或白球的概率为
P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)
=++=.
方法二 (利用对立事件求概率)
(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1∪A2的对立事件为A3∪A4,所以取出1球为红球或黑球的概率为P(A1∪A2)=1-P(A3∪A4)=1-P(A3)-P(A4)=1--=.
(2)因为A1∪A2∪A3的对立事件为A4,
所以P(A1∪A2∪A3)=1-P(A4)=1-=.
思维升华 (1)准确把握互斥事件与对立事件的概念
①互斥事件是不可能同时发生的事件,但可以同时不发生.
②
对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.
(2)判断互斥、对立事件的方法
判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.
(3)概率与频率的关系
频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.
(4)随机事件概率的求法
利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.
(5)求复杂事件的概率的两种方法
求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法
①将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率.
②若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.
跟踪训练1 (1)某保险公司利用简单随机抽样的方法对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元)
0
1 000
2 000
3 000
4 000
车辆数(辆)
500
130
100
150
120
①若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;
②在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.
解 ①设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得
P(A)==0.15,P(B)==0.12.
由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.
②设C表示事件“投保车辆中新司机获赔4 000元”,由已知,可得样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为=0.24,由频率估计概率得P(C)=0.24.
(2)(2016·北京改编)A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):
A班
6
6.5
7
7.5
8
B班
6
7
8
9
10
11
12
C班
3
4.5
6
7.5
9
10.5
12
13.5
①试估计C班的学生人数;
②从A班和C班抽出的学生中,各随机选取1人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率.
解 ①由题意及分层抽样可知,C班学生人数约为
100×=100×=40.
②设事件Ai为“甲是现有样本中A班的第i个人”,i=1,2,…,5,
事件Cj为“乙是现有样本中C班的第j个人”,j=1,2,…,8.
由题意可知P(Ai)=,i=1,2,…,5;P(Cj)=,j=1,2,…,8.
P(AiCj)=P(Ai)P(Cj)=×=,i=1,2,…,5,j=1,2,…,8.
设事件E为“该周甲的锻炼时间比乙的锻炼时间长”,
由题意知,
E=A1C1∪A1C2∪A2C1∪A2C2∪A2C3∪A3C1∪A3C2∪A3C3∪A4C1∪A4C2∪A4C3∪A5C1∪A5C2∪A5C3∪A5C4.
因此P(E)=P(A1C1)+P(A1C2)+P(A2C1)+P(A2C2)+P(A2C3)+P(A3C1)+P(A3C2)+P(A3C3)+P(A4C1)+P(A4C2)+P(A4C3)+P(A5C1)+P(A5C2)+P(A5C3)+P(A5C4)=15×=.
题型二 古典概型
例4 (1)(2017·全国Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )
A. B. C. D.
答案 D
解析 从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:
基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P
==.
(2)袋中有形状、大小都相同的4个球,其中1个白球,1个红球,2个黄球,从中一次随机摸出2个球,则这2个球颜色不同的概率为________.
答案
解析 基本事件共有C=6(种),
设取出2个球颜色不同为事件A.
A包含的基本事件有CC+CC=5(种).
故P(A)=.
(3)我国古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木、木克土、土克水、水克火、火克金.”将这五种不同属性的物质任意排成一列,设事件A表示“排列中属性相克的两种物质不相邻”,则事件A发生的概率为________.
答案
解析 五种不同属性的物质任意排成一列的所有基本事件数为A=120,满足事件A=“排列中属性相克的两种物质不相邻”的基本事件可以按如下方法进行考虑:从左至右,当第一个位置的属性确定后,例如:金,第二个位置(除去金本身)只能排土或水属性,当第二个位置的属性确定后,其他三个位置的属性也确定,故共有CC=10(种)可能,所以事件A出现的概率为=.
引申探究
1.本例(2)中,若将4个球改为颜色相同,标号分别为1,2,3,4的4个小球,从中一次取2个球,求标号和为奇数的概率.
解 基本事件数仍为6.设标号和为奇数为事件A,则A包含的基本事件为(1,2),(1,4),(2,3),(3,4),共4种,
所以P(A)==.
2.本例(2)中,若将条件改为有放回地取球,取两次,求两次取球颜色相同的概率.
解 基本事件数为CC=16,
颜色相同的事件数为CC+CC=6,
故所求概率P==.
思维升华 求古典概型的概率的关键是求试验的基本事件的总数和事件A
包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树状图法,具体应用时可根据需要灵活选择.
跟踪训练2 (1)甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“手气最佳”(即乙领取的钱数不少于其他任何人)的概率是( )
A. B. C. D.
答案 D
解析 用(x,y,z)表示乙、丙、丁抢到的红包分别为x元、y元、z元.
乙、丙、丁三人抢完6元钱的所有不同的可能结果有10种,分别为(1,1,4),(1,4,1),(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2).
乙获得“手气最佳”的所有不同的可能结果有4种,分别为(4,1,1),(3,1,2),(3,2,1),(2,2,2).
根据古典概型的概率计算公式,得乙获得“手气最佳”的概率P==.
(2)在1,2,3,4,5,6,7,8这组数据中,随机取出五个不同的数,则数字4是取出的五个不同数的中位数的概率为( )
A. B. C. D.
答案 B
解析 设事件A为“数字4是取出的五个不同数的中位数”.“从八个数字中取出五个数字”包含的基本事件的总数为n=C=56.对事件A,先考虑数字4在五个数的中间位置,再考虑分别从数字1,2,3和5,6,7,8中各取两个数字,则事件A包含的基本事件总数为m=CC=3×6=18.由古典概型的概率计算公式,得P(A)===.
题型三 古典概型与统计的综合应用
例5 空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录了某地2018年某月10天的AQI的茎叶图如图所示.
(1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共有30天计算)
(2)若从样本中的空气质量不佳(AQI>100)的这些天中,
随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.
解 (1)从茎叶图中发现该样本中空气质量优的天数为1,空气质量良的天数为3,故该样本中空气质量优良的频率为=,估计该月空气质量优良的概率为,从而估计该月空气质量优良的天数为30×=12.
(2)该样本中为轻度污染的共4天,分别记为a1,a2,a3,a4;
为中度污染的共1天,记为b;为重度污染的共1天,记为c.
从中随机抽取两天的所有可能结果有:(a1,a2),(a1,a3),(a1,a4),(a1,b),(a1,c),(a2,a3),(a2,a4),(a2,b),(a2,c),(a3,a4),(a3,b),(a3,c),(a4,b),(a4,c),(b,c),共15个.
其中空气质量等级恰好不同的结果有(a1,b),(a1,c),(a2,b),(a2,c),(a3,b),(a3,c),(a4,b),(a4,c),(b,c),共9个.
所以该两天的空气质量等级恰好不同的概率为=.
思维升华 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计的结合题,无论是直接描述还是利用概率分布表、频率分布直方图、茎叶图等给出信息,准确从题中提炼信息是解题的关键.
跟踪训练3 从某学校高三年级共800名男生中随机抽取50名测量身高,被测学生身高全部介于155 cm和195 cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第六组比第七组多1人,第一组和第八组人数相同.
(1)求第六组、第七组的频率并补充完整频率分布直方图;
(2)若从身高属于第六组和第八组的所有男生中随机抽取两名,记他们的身高分别为x,y,求|x-y|≤5的概率.
解 (1)由频率分布直方图知,前五组的频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82,
所以后三组的频率为1-0.82=0.18,
人数为0.18×50=9,
由频率分布直方图得第八组的频率为0.008×5=0.04,人数为0.04×50=2,设第六组人数为m,则第七组人数为m-1,又m+m-1+2=9,所以m=4,即第六组人数为4,第七组人数为3,频率分别为0.08,0.06,频率除以组距分别等于0.016,0.012,则完整的频率分布直方图如图所示:
(2)由(1)知身高在[180,185)内的男生有四名,设为a,b,c,d,身高在[190,195]的男生有两名,设为A,B.
若x,y∈[180,185),有ab,ac,ad,bc,bd,cd共6种情况;
若x,y∈[190,195],只有AB 1种情况;
若x,y分别在[180,185),[190,195]内,有aA,bA,cA,dA,aB,bB,cB,dB共8种情况,
所以基本事件的总数为6+8+1=15,
事件|x-y|≤5包含的基本事件的个数为6+1=7,
故所求概率为.
1.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )
A.至少有一个黑球与都是黑球
B.至少有一个黑球与都是红球
C.至少有一个黑球与至少有一个红球
D.恰有一个黑球与恰有两个黑球
答案 D
解析 对于A,事件“至少有一个黑球”与事件“都是黑球”可以同时发生,∴A不正确;对于B,事件“至少有一个黑球”与事件“都是红球”不能同时发生,但一定会有一个发生,
∴这两个事件是对立事件,∴B不正确;对于C,事件“至少有一个黑球”与事件“至少有一个红球”可以同时发生,如:一个红球,一个黑球,∴C不正确;对于D,事件“恰有一个黑球”与事件“恰有两个黑球”不能同时发生,但从口袋中任取两个球时还有可能是两个都是红球,∴两个事件是互斥事件但不是对立事件,∴D正确.
2.(2016·天津)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为( )
A. B. C. D.
答案 A
解析 事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为+=.
3.对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35]上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )
A.0.09 B.0.20 C.0.25 D.0.45
答案 D
解析 设[25,30)上的频率为x,由所有矩形面积之和为1,即x+(0.02+0.04+0.03+0.06)×5=1,得[25,30)上的频率为0.25.所以产品为二等品的概率为0.04×5+0.25=0.45.
4.(2018·抚顺期中)根据某医疗研究所的调查,某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现有一血液为A型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为( )
A.15% B.20% C.45% D.65%
答案 D
解析 因为某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%,现在能为A型病人输血的有O型和A型,故为病人输血的概率为50%+15%=65%,故选D.
5.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.从以上五张卡片中任取两张,则这两张卡片颜色不同且标号之和小于4的概率为( )
A. B. C. D.
答案 C
解析 从五张卡片中任取两张的所有可能情况有如下10种:
红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝
1蓝2,其中两张卡片的颜色不同且标号之和小于4的有3种情况:红1蓝1,红1蓝2,红2蓝1,故所求的概率为P=,故选C.
6.已知a∈{-2,0,1,2,3},b∈{3,5},则函数f(x)=(a2-2)ex+b为减函数的概率是( )
A. B. C. D.
答案 C
解析 函数f(x)=(a2-2)ex+b为减函数,则a2-2<0,又a∈{-2,0,1,2,3},故只有a=0,a=1满足题意,又b∈{3,5},所以函数f(x)=(a2-2)ex+b为减函数的概率P==,故选C.
7.从集合{1,2,3,4,5,6,7,8,9}中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为________.
答案
解析 从集合{1,2,3,4,5,6,7,8,9}中任取两个不同的数,有n==36(种)情形,其中一个数是另一个数的3倍的事件有{1,3},{2,6},{3,9},共3种情形,所以由古典概型的概率计算公式可得其概率是P==.
8.(2018·大连模拟)无重复数字的五位数a1a2a3a4a5,当a1a3,a3a5时称为波形数,则由1,2,3,4,5任意组成的一个没有重复数字的五位数是波形数的概率是________.
答案
解析 ∵a2>a1,a2>a3,a4>a3,a4>a5,∴a2只能是3,4,5中的一个.
①若a2=3,则a4=5,a5=4,a1与a3是1或2,这时共有A=2(个)符合条件的五位数;
②若a2=4,则a4=5,a1,a3,a5可以是1,2,3,共有A=6(个)符合条件的五位数;
③若a2=5,则a4=3或4,此时分别与①②中的个数相同.
∴满足条件的五位数有2(A+A)=16(个).
又由1,2,3,4,5任意组成的一个没有重复数字的五位数有A=120(个),故所求概率为=.
9.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,则所取的2个球中恰有1个白球、1个红球的概率为________.
答案
解析 从袋中任取2个球共有C=105(种)取法,其中恰有1个白球、1个红球共有CC=50(种)取法,所以所取的球恰有1个白球、1个红球的概率为=.
10.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.
答案
解析 从10件产品中取4件,共有C种取法,恰好取到1件次品的取法有CC种,由古典概型概率计算公式得P===.
11.海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区
A
B
C
数量
50
150
100
(1)求这6件样品中来自A,B,C各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
解 (1)A,B,C三个地区商品的总数量为50+150+100=300,抽样比为=,
所以样本中包含三个地区的个体数量分别是
50×=1,150×=3,100×=2.
所以A,B,C三个地区的商品被选取的件数分别是1,3,2.
(2)方法一 设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.
则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.
每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.
记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.
所以P(D)=,
即这2件商品来自相同地区的概率为.
方法二 这2件商品来自相同地区的概率为==.
12.一个盒子里装有三张卡片,分别标记为数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.
(1)求“抽取的卡片上的数字满足a+b=c”的概率;
(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.
解 由题意知,(a,b,c)所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.
(1)设“抽取的卡片上的数字满足a+b=c”为事件A,
则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种.
所以P(A)==.
因此,“抽取的卡片上的数字满足a+b=c”的概率为.
(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件包括(1,1,1),(2,2,2),(3,3,3),共3种.
所以P(B)=1-P()=1-=.
因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为.
13.(2018·湖北省部分重点中学考试)某商场对某一商品搞活动,已知该商品每一个的进价为3元,售价为8元,每天销售的第20个及之后的商品按半价出售,该商场统计了近10天这种商品的销售量,如图所示.设x为这种商品每天的销售量,y为该商场每天销售这种商品的利润,从日利润不少于96元的几天里任选2天,则选出的这2天日利润都是97元的概率为( )
A. B. C. D.
答案 B
解析 日销售量不少于20个时,日利润不少于96元,其中日销售量为20个时,日利润为96元;日销售量为21个时,日利润为97元.从条形统计图可以看出,日销售量为20个的有3天,日销售量为21个的有2天,日销售量为20个的3天记为a,b,c,日销售量为21个的2天记为A,B,从这5天中任选2天,可能的情况有10种:(a,b),(a,c),(a,A),(a,
B),(b,c),(b,A),(b,B),(c,A),(c,B),(A,B),其中选出的2天日销售量都为21个的情况只有1种,故所求概率P=,故选B.
14.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.
现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________.
答案
解析 “至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为
P==.
“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.
故他属于不超过2个小组的概率是
P=1-=.
15.一个三位数个、十、百位上的数字依次为x,y,z,当且仅当y>x,y>z时,称这样的数为“凸数”(如243),现从集合{5,6,7,8}中取出三个不同的数组成一个三位数,则这个三位数是“凸数”的概率为( )
A. B. C. D.
答案 B
解析 从集合{5,6,7,8}中取出3个不同的数组成一个三位数共有24个结果:567,576,657,675,756,765,568,586,658,685,856,865,578,587,758,785,857,875,678,687,768,786,867,876,其中是“凸数”的是:576,675,586,685,587,785,687,786共8个结果,
∴这个三位数是“凸数”的概率为=,故选B.
16.如图,用K,A1,A2三类不同的元件连接成一个系统.当K正常工作且A1,A2至少有一个正常工作时,系统正常工作.已知K,A1,A2正常工作的概率依次为0.8,0.7,0.7,则系统正常工作的概率为________.
答案 0.728
解析 方法一 由题意知K,A1,A2正常工作的概率分别为P(K)=0.8,P(A1)=0.7,P(A2)=0.7,
∵K,A1,A2相互独立,
∴A1,A2至少有一个正常工作的概率为P(1A2)+P(A12)+P(A1A2)=(1-0.7)×0.7+0.7×(1-0.7)+0.7×0.7=0.91.
∴系统正常工作的概率为P(K)[P(1A2)+P(A12)+P(A1A2)]=0.8×0.91=0.728.
方法二 A1,A2至少有一个正常工作的概率为1-P(12)=1-(1-0.7)(1-0.7)=0.91,故系统正常工作的概率为P(K)[1-P(12)]=0.8×0.91=0.728.